This exam consists of five exercises. The available points for each item are written in the margin. You need at least 50 points to pass.
[7] 1 (a) Consider the propositional formula $\varphi=\neg(q \vee(p \rightarrow r)) \wedge(p \vee \neg r)$. Use Tseitin's transformation to transform φ into an equisatisfiable CNF.
[6] (b) Use DPLL to test the satisfiability of the propositional formula

$$
\phi=(s \vee q) \wedge(\neg s \vee q) \wedge(t \vee p) \wedge(\neg t \vee \neg q) \wedge(t \vee \neg q \vee \neg p)
$$

[7]
(c) Consider the propositional formula $\psi=3 \wedge(\neg 1 \vee \neg 3 \vee 2) \wedge(\neg 2 \vee 4) \wedge(\neg 2 \vee \neg 4)$ and the following (partial) DPLL derivation ending in a conflict:

		ψ	
\Rightarrow	3	ψ	(unit propagation)
\Longrightarrow	$3 \stackrel{d}{1}$	ψ	(decide)
	$3 \stackrel{d}{1} 2$	ψ	(unit propagation)
\Longrightarrow	$3 \stackrel{d}{1} 24$	ψ	(unit propagation)

Draw the conflict graph, determine all unique implication points with the corresponding backjump clauses, and give the results obtained by applying the backjump rule using those clauses.
[6] $\quad 2$ (a) Determine whether the terms $f(f(f(f(a, z), y), x), w)$ and $f(w, f(x, f(y, f(z, a))))$ are unifiable and compute a most general unifier, if possible. Here a is a constant symbol and x, y, z, and w are variables.
(b) Compute a Skolem normal form for the predicate logic formula

$$
\exists x P(x) \rightarrow(\neg \forall x(Q(x) \rightarrow \exists x R(x)) \rightarrow \forall y P(y))
$$

(c) Use resolution to determine whether the following set of clauses is satisfiable:

$$
\{\{P(a)\},\{\neg P(x), P(f(x))\},\{\neg P(f(f(f(a))))\}\}
$$

3 For each of the following sequents, either give a natural deduction proof or find a model which does not satisfy it.
[7] 4 (a) Complete the following proof of the Löwenheim-Skolem theorem (which states that a sentence ψ has a model with infinitely many elements if it has a model with at least n elements for all $n \geqslant 1$) for first-order logic by filling in the missing parts:
Consider the family of sentences

$$
\phi_{n}=\exists x_{1} \exists x_{2} \ldots \exists x_{n} \bigwedge_{1 \leqslant i<j \leqslant n} \square
$$

and the infinite set

$$
\Gamma=\square
$$

Every finite subset Δ of Γ is \square. To see that, let

$$
k=\max \square
$$

and consider a model with at least k elements satisfying ψ, which exists by assumption. Hence by the \square theorem also Γ is satisfiable, i.e., there is a model \mathcal{M} with \square. So $\mathcal{M} \models \phi_{n}$ for all $n \geqslant 1$ and also $\mathcal{M} \models \square$. Thus \mathcal{M} has infinitely many elements and satisfies ψ.
(b) Determine whether the following formula in second-order logic is valid:
$\forall P(\forall x \forall y \forall z(P(x, y) \wedge P(y, z) \rightarrow P(x, z)) \wedge \neg \forall x \forall y(P(x, y) \rightarrow P(y, x)) \rightarrow \forall x \neg P(x, x))$
(a) $\forall x \exists y(P(x) \rightarrow Q(y)) \vdash \forall x(P(x) \rightarrow \exists y Q(y))$
(b) $\forall x(P(x) \rightarrow \exists y Q(y)) \vdash \forall x \exists y(P(x) \rightarrow Q(y))$
(c) $\forall x \exists y(P(x) \rightarrow R(x, y)) \vdash \exists y \forall x(P(x) \rightarrow R(x, y))$
\square
(c) Consider a model \mathcal{M} consisting of a single binary predicate R, that represents a directed graph G. Express the following two statements either in first-order logic or, if that is not possible, in second-order logic:

- The graph G does not contain any cycles of length 2 or less. (The length of a cycle is the number of its edges.)
- The graph G does not contain any cycles.

5 Determine whether the following statements are true or false. Every correct answer is worth 2 points. For every wrong answer 1 point is subtracted, provided the total number of points is non-negative.

statement

$\neg(\phi \leftrightarrow \psi) \equiv(\phi \leftrightarrow \neg \psi)$
A propositional formula ϕ is a tautology if its negation $\neg \phi$ is not a tautology.
For every sentence ϕ in predicate logic and model \mathcal{M} either $\mathcal{M} \models \phi$ or $\mathcal{M} \not \models \phi$.

For every formula in predicate logic there is an equisatisfiable formula in prenex normal form.
If a variable x occurs bound in a predicate logic formula ϕ, then x does not occur free in ϕ.

No single connective from the set $\{\perp, \neg, \vee, \wedge, \leftrightarrow, \rightarrow\}$ is adequate (on its own) for propositional logic.

If n is the length of the propositional formula ϕ, then the length of the conjunctive normal form of ϕ is at most n^{2}.

Can the propositional formula $p \wedge(\neg p \vee q \vee r) \wedge \neg q \wedge(q \vee \neg r)$ be shown unsatisfiable by using only unit propagation in DPLL?

Every prefix (i.e., initial substring) of a propositional formula does not contain more closing parentheses than opening parentheses.

If a sentence ψ in predicate logic does not have a model with infinitely many elements, then there is some natural number n such that no model of ψ has more than n elements.

