

Logik

WS 2015/2016

LVA 703026

EXAM 3

September 26, 2016

This exam consists of <u>five</u> exercises. The available points for each item are written in the margin. You need at least 50 points to pass.

- [7] (a) Consider the propositional formula $\varphi = \neg (q \lor (p \to r)) \land (p \lor \neg r)$. Use Tseitin's transformation to transform φ into an equisatisfiable CNF.
- [6] (b) Use DPLL to test the satisfiability of the propositional formula

 $\phi \ = \ (s \lor q) \land (\neg s \lor q) \land (t \lor p) \land (\neg t \lor \neg q) \land (t \lor \neg q \lor \neg p)$

[7] (c) Consider the propositional formula $\psi = 3 \land (\neg 1 \lor \neg 3 \lor 2) \land (\neg 2 \lor 4) \land (\neg 2 \lor \neg 4)$ and the following (partial) DPLL derivation ending in a conflict:

	$\parallel \psi$		
(unit propagation)	$\parallel \psi$	3	\Longrightarrow
(decide)	$\parallel \psi$	$3\stackrel{d}{1}$	\Longrightarrow
(unit propagation)	$\parallel \psi$	$3 \stackrel{d}{1} 2$	\implies
(unit propagation)	$\parallel \psi$	$\begin{smallmatrix} d \\ 3 \end{smallmatrix} 1 \end{smallmatrix} 2 \thinspace 4$	\implies

Draw the conflict graph, determine all unique implication points with the corresponding backjump clauses, and give the results obtained by applying the backjump rule using those clauses.

- [6] (a) Determine whether the terms f(f(f(a, z), y), x), w) and f(w, f(x, f(y, f(z, a)))) are unifiable and compute a most general unifier, if possible. Here a is a constant symbol and x, y, z, and w are variables.
- [7] (b) Compute a Skolem normal form for the predicate logic formula

 $\exists x \ P(x) \rightarrow (\neg \forall x \ (Q(x) \rightarrow \exists x \ R(x)) \rightarrow \forall y \ P(y))$

[7] (c) Use resolution to determine whether the following set of clauses is satisfiable:

 $\{\{P(a)\},\{\neg P(x),P(f(x))\},\{\neg P(f(f(f(a))))\}\}$

- 3 For each of the following sequents, either give a natural deduction proof or find a model which does not satisfy it.
- [6] (a) $\forall x \exists y (P(x) \to Q(y)) \vdash \forall x (P(x) \to \exists y Q(y))$

[7] (b)
$$\forall x (P(x) \to \exists y Q(y)) \vdash \forall x \exists y (P(x) \to Q(y))$$

[7] (c)
$$\forall x \exists y (P(x) \to R(x, y)) \vdash \exists y \forall x (P(x) \to R(x, y))$$

[7] (a) Complete the following proof of the Löwenheim-Skolem theorem (which states that a sentence ψ has a model with infinitely many elements if it has a model with at least n elements for all $n \ge 1$) for first-order logic by filling in the missing parts:

Consider the family of sentences

$$\phi_n = \exists x_1 \exists x_2 \dots \exists x_n \bigwedge_{1 \leqslant i < j \leqslant n}$$

and the infinite set

Every finite subset Δ of Γ is

 $k = \max$

. To see that, let

and consider a model with at least k elements satisfying ψ , which exists by assumption. Hence by the _______ theorem also Γ is satisfiable, i.e., there is a model \mathcal{M} with ______. So $\mathcal{M} \models \phi_n$ for all $n \ge 1$ and also $\mathcal{M} \models$ ______. Thus \mathcal{M} has infinitely many elements and satisfies ψ .

(b) Determine whether the following formula in second-order logic is valid:

 $\Gamma =$

 $\forall P \left(\forall x \, \forall y \, \forall z \left(P(x,y) \land P(y,z) \rightarrow P(x,z) \right) \land \neg \forall x \, \forall y \left(P(x,y) \rightarrow P(y,x) \right) \rightarrow \forall x \, \neg P(x,x) \right)$

- [6] (c) Consider a model \mathcal{M} consisting of a single binary predicate R, that represents a directed graph G. Express the following two statements either in first-order logic or, if that is not possible, in second-order logic:
 - The graph G does not contain any cycles of length 2 or less. (The length of a cycle is the number of its edges.)
 - The graph G does not contain any cycles.

[7]

[20] 5 Determine whether the following statements are true or false. Every correct answer is worth 2 points. For every wrong answer 1 point is subtracted, provided the total number of points is non-negative.

statement

 $\neg(\phi \leftrightarrow \psi) \equiv (\phi \leftrightarrow \neg \psi)$

A propositional formula ϕ is a tautology if its negation $\neg \phi$ is not a tautology.

For every sentence ϕ in predicate logic and model \mathcal{M} either $\mathcal{M} \models \phi$ or $\mathcal{M} \not\models \phi$.

For every formula in predicate logic there is an equisatisfiable formula in prenex normal form.

If a variable x occurs bound in a predicate logic formula ϕ , then x does not occur free in ϕ .

No single connective from the set $\{\perp, \neg, \lor, \land, \leftrightarrow, \rightarrow\}$ is adequate (on its own) for propositional logic.

If n is the length of the propositional formula ϕ , then the length of the conjunctive normal form of ϕ is at most n^2 .

Can the propositional formula $p \land (\neg p \lor q \lor r) \land \neg q \land (q \lor \neg r)$ be shown unsatisfiable by using *only* unit propagation in DPLL?

Every prefix (i.e., initial substring) of a propositional formula does not contain more closing parentheses than opening parentheses.

If a sentence ψ in predicate logic does not have a model with infinitely many elements, then there is some natural number n such that no model of ψ has more than n elements.