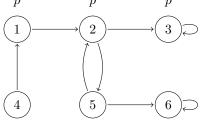


[7]

[6]

Logik	WS 2017/2018	LVA 703027
EXAN	12	February 28, 2018
	This exam consists of <u>five</u> exercises. The available points for each item are wr in the margin. You need at least 50 points to pass.	itten
1	Consider the boolean function $f(x, y, z) = x \oplus (y + z)$.	
	(a) Is f monotone? Is f self-dual? Is f affine?	
	(b) Can \overline{x} be expressed (only) using f ?	
	(c) Let g be a boolean function such that $\{g\}$ is adequate. Is $\{\hat{g}\}$ adequate? Here \hat{g} is	s the dual of g .
2	(a) Use the unification algorithm from the lecture to determine whether the two terms h and $h(y, z, f(b, f(a, w)))$ are unifiable and compute a most general unifier if post and b are constants while w, x, y and z are variables.	
	(b) Explain how resolution can be used to determine the validity of a formula ϕ in product do not have to explain resolution.	redicate logic. You
	(c) Use resolution to determine whether the formula	
	$\phi = \neg \forall x \; \exists y \; \neg P(x,y) \land (\forall z \; \exists w \; P(w,z) \rightarrow \forall z' \; Q(z'))$	
	is satisfiable.	
	For each of the following sequents, either give a natural deduction proof or find a modes satisfy it. (a) $p \lor q, \neg r \to \neg p \vdash q \lor r$ (b) $\exists x P(x), x = y \vdash P(y)$	del which does not
	(c) $\vdash \forall x ((\neg P(x) \rightarrow \bot) \rightarrow P(x))$	
4	Consider the CTL formula $\phi = AX(AF p \lor AG \neg p)$	
	(a) Use the labeling algorithm to determine in which states ϕ holds, for the following	model:
	p p p	



- (b) Give a CTL formula ψ that is equivalent to ϕ but does not use the temporal connectives in ϕ (so ψ may not contain AX, AF, and AG).
- (c) Given a path π in a model \mathcal{M} , define $\pi \models G\varphi$, i.e., satisfaction of the LTL formula $G\varphi$ with respect to π . Using the definition, show that $G\varphi \equiv GG\varphi$ for every LTL formula φ .

[20] 5 Determ

Determine whether the following statements are true or false. Every correct answer is worth 2 points. For every wrong answer 1 point is subtracted, provided the total number of points is non-negative.

statement

The dual of any affine boolean function is monotone.

The symbols ζ and Γ are letters from the Greek alphabet.

If $F = (\neg p \lor q \lor r) \land \neg q$ then $\stackrel{d}{p} \parallel F \implies \stackrel{d}{p} r \parallel F$ in DPLL.

The LTL formulas $\phi \mathsf{R} \psi$ and $\psi \mathsf{U}(\phi \land \psi) \lor \mathsf{G} \psi$ are equivalent.

The sequent $\neg \forall x (P(x) \lor Q(y)) \vdash \neg Q(y) \land \exists x \neg P(x)$ is valid.

If f is a binary boolean function then $f(x,y) = \overline{y} \cdot f(x,0) \oplus y \cdot f(x,1)$.

Sorting n inputs with insertion sort requires at most 2n + 3 comparators.

If $\phi \vdash \psi$ is a valid sequent in propositional logic then $\neg \phi \lor \psi$ is a tautology.

All occurrences of the variable x in the formula $P(y) \land \forall y \ (\exists x \ Q(x, y) \lor P(x))$ are bound.

If X is the set of all self-dual boolean functions, then any function constructed from functions in X is also self-dual.