This exam consists of five exercises. The available points for each item are written in the margin. You need at least 50 points to pass.

1 Consider the boolean function f defined by $f(x, y, z)=x z+y z$ with $\mathrm{OBDD}_{\mathrm{f}}$:

(a) Give reduced OBDDs for f with variable orderings $[y, x, z]$ and $[z, x, y]$.
(b) Compute a reduced OBDD for $\exists y$. f.

2 Consider the model \mathcal{M}

(a) Use the CTL model checking algorithm to determine in which states of \mathcal{M} the CTL formula $\phi=\mathrm{E}[(\mathrm{AX} \neg p) \cup \mathrm{A}[q \mathrm{U}(\mathrm{EG} \neg q)]]$ holds.
(b) Give an LTL formula ψ such that $\mathcal{M}, s \models \psi$ if and only if $s \in\{2,3\}$.
(c) Are the CTL^{*} formulas $\mathrm{E}[\mathrm{XFG} \neg p]$ and $\neg \mathrm{A}[\mathrm{X} \mathrm{GE}[\mathrm{F} p]]$ equivalent?

3 (a) Consider the following CNF φ :

$$
\left(\neg 1 \vee^{\alpha} \neg 3 \vee 4\right) \wedge(\neg 2 \vee \stackrel{\beta}{2} 3 \vee \neg 5) \wedge\left(\neg 3 \vee^{\gamma} 6\right) \wedge\left(\neg 4 \vee \neg^{\circ} 6 \vee \neg 7\right) \wedge\left(\neg 6^{\epsilon} \vee 8\right) \wedge\left(\neg 4 \vee^{\zeta} \vee^{\zeta} \vee \neg 8\right)
$$

Starting from the state $\stackrel{d}{1} \stackrel{d}{2} \stackrel{d}{3} \| \varphi$, use DPLL to determine satisfiability of φ.
(b) Transform the formula $\forall x \exists y \forall z \exists w(P(x, w) \rightarrow H(y) \wedge \neg Q(z, w))$ into clausal form.
(c) Use resolution to show unsatisfiability of the following clausal form.

$$
\begin{aligned}
\{ & \{\neg P(x, f(x)), Q(f(x))\},\{\neg Q(x), R(f(x))\},\{\neg R(f(f(f(x))))\}, \\
& \{P(a, f(a))\},\{P(f(f(f(a))), y)\}\}
\end{aligned}
$$

For each resolvent give the mgu for the clashing literals. Here a is a constant.

44 For each of the following sequents, either give a natural deduction proof or find a model which does not satisfy it. In parts (b) and (c), k and m are constants.
(a) $(p \rightarrow q) \rightarrow r, q \vdash p \vee r$
(b) $\forall x(P(x, m) \rightarrow \neg Q(x)), Q(m) \vdash Q(k) \rightarrow \neg P(k, m)$
(c) $\forall x(P(x, m) \rightarrow \neg Q(x)), Q(m) \vdash Q(k) \rightarrow \neg(k=m)$

5 Determine whether the following statements are true or false. Every correct answer is worth 2 points. For every wrong answer 1 point is subtracted, provided the total number of points is non-negative.

statement

If f is a boolean function then $f[0 / x] \cdot f[1 / x]=0$.
The PCP instance $(1,11),(01,10),(00,0)$ has a solution.
The boolean function $f(x, y, z)=\overline{(\bar{x} \oplus y) \cdot(x+z)}$ is monotone.
The propositional formula $p \vee q$ has an equisatisfiable Horn formula.
Every LTL formula is semantically equivalent to a CTL* path formula.
$P(f(y)) \rightarrow \forall x \exists y(\neg Q(x, y) \vee P(y)) \neg \nvdash x(P(f(y)) \rightarrow \exists y(\neg Q(x, y) \vee P(y)))$
The CTL formulas $\mathrm{A}[\phi \mathrm{U} \psi]$ and $\neg(\mathrm{E}[\neg \psi \mathrm{U}(\neg \psi \wedge \neg \phi)] \vee \neg \mathrm{AF} \psi)$ are equivalent.
Any valid sequent has a natural deduction proof in which the proof rule $\neg \neg$ e is not used.
The natural numbers can be colored with two colors such that not all of x, y, z have the same color whenever $x^{2}+y^{2}=z^{2}$ with $1 \leqslant x, y, z \leqslant 100$.

The comparator network

is a sorting network.

