> This exam consists of five exercises. The available points for each item are written in the margin. You need at least 50 points to pass.

1 In this exercise we consider the boolean function ite defined by

$$
\operatorname{ite}(x, y, z)= \begin{cases}z & \text { if } x=0 \\ y & \text { if } x=1\end{cases}
$$

(a) Compute a reduced OBDD for ite with variable ordering $[y, x, z]$.
(b) Find the missing clauses such that $a \leftrightarrow \operatorname{ite}(x, y, z)$ and

are equivalent.
(c) Is ite monotone? Is ite self-dual? Is ite affine?
(2) Consider the model \mathcal{M} :

[7] (a) Use the CTL model checking algorithm to determine in which states of \mathcal{M} the CTL formula $\phi=\mathrm{A}[p \cup \mathrm{AF} q] \wedge \mathrm{AXEF} \neg p$ holds.
[6] (b) Consider the LTL formulas $\phi_{1}=\mathrm{G}(\mathrm{F} p \wedge \mathrm{~F} q), \phi_{2}=p \mathrm{U} q \rightarrow \neg p$, and $\phi_{3}=\mathrm{G}(p \vee \mathrm{XX} q)$. Find a model \mathcal{M} and a state s such that $\mathcal{M}, s \models \phi_{i}$ for all $1 \leqslant i \leqslant 3$.
[7] (c) Show that the LTL formula $\mathrm{F} p \rightarrow \mathrm{~F} q$ and the CTL formula $\mathrm{AF} p \rightarrow \mathrm{AF} q$ are not equivalent.

4 For each of the following sequents, either give a natural deduction proof or find a model which does not satisfy it.
(a) $p \rightarrow t, \neg t \vee \neg s \vdash p \rightarrow \neg s$

3 (a) Use resolution to determine whether the formula $(p \rightarrow q \rightarrow p) \rightarrow p$ is valid or not.
(b) Give a Skolem normal form of the formula $\exists x((\exists y P(x, y)) \rightarrow(\forall y \exists z Q(y, z)))$.
(c) Determine whether the terms $h(f(x, x), y, f(a, x))$ and $h(y, f(x, a), y)$ are unifiable and compute a most general unifier if possible. Here a is a constant and x and y are variables.
(b) $Q(c), \exists x(Q(x) \rightarrow \forall x P(x)) \vdash P(c)$
(c) $\forall x Q(x), \exists x(Q(x) \rightarrow \forall x P(x)) \vdash P(c)$

5 Determine whether the following statements are true or false. Every correct answer is worth 2 points. For every wrong answer 1 point is subtracted, provided the total number of points is non-negative.

statement

The sequent $\vdash \forall x(D(x) \rightarrow \exists y D(y))$ is valid.
Every binary monotone boolean function is affine.
The propositional formulas \perp and T are equisatisfiable.
The LTL formulas $\phi \mathrm{R} \psi$ and $\mathrm{G} \psi \vee \psi \mathrm{U}(\phi \wedge \psi)$ are equivalent.
The hereditary base 3 representation of 333 is $3^{3+2}+3^{3+1}+3^{2}$.
The formula $\forall x \forall y P(x, y) \vee \neg Q(f(x))$ is a Skolem normal form.
The set $\{\forall x \exists y P(x, y), \neg \exists x \forall y \neg P(y, x), \forall x \neg P(x, x)\}$ is consistent.
Every sorting network for $n>1$ wires has at least $(n-1)^{2}$ comparators.
The substitution $\{x \mapsto y, y \mapsto x\}$ is a most general unifier of $f(x, y)$ and $f(y, x)$.
In the model \mathcal{M}

$\mathcal{M}, 0 \vDash$ AF AG p holds.

