

Logik SS 2024 LVA 703026 + 703027

Week 1 March 7, 2024

Selected Solutions

[2] (a) For
$$\varphi = \neg(p \to \neg(q \to r \lor \neg p))$$
 we have

with 9 subformulas: φ , $p \to \neg(q \to (r \lor \neg p))$, p, $\neg(q \to (r \lor \neg p))$, $q \to (r \lor \neg p)$, q, $r \lor \neg p$, r and $\neg p$. For $\psi = ((q \to (\bot \to p)) \to q) \to \top \to p$ we have

with 9 subformulas: ψ , $(q \to (\bot \to p)) \to q$, $q \to (\bot \to p)$, q, $\bot \to p$, \bot , p, $\top \to p$ and \top .

(b) For $\varphi = \neg(p \to \neg(q \to r \lor \neg p))$ we have

p	q	r	$\neg p$	$r \lor \neg p$	$q \to r \vee \neg p$		$p \to \neg (q \to r \vee \neg p)$	φ
Т	Т	Т	F	Т	Т	F	F	Т
Т	Т	F	F	F	F	Т Т	Т	F
Т	F	Т	F	Т	Т	F	F	Т
Т	F	F	F	F	Т	F	F	Т
F	Т	Т	Т	Т	Т	F	Т	F
F	Т	F	Т	Т	Т	F	Т	F
F	F	Т	Т	Т	Т	F	Т	F
F	F	F	Т	Т	Т	F	Т	F

For ψ we have

p	q	_	$\perp \rightarrow p$	$q \to (\bot \to p)$	$(q \to (\bot \to p)) \to q$	Т	$\mid \top \rightarrow p$	ψ
				Т			Т	
			Т	Т			Т	Т
			Т	Т	Т	Т	F	F
F	F	F	Т	Т	F	Т	F	Т

Since the last column in the truth table for φ contains T, we infer that φ is satisfiable. For instance, for the valuation $v(p) = v(q) = v(r) = \mathsf{T}$ we have $\overline{v}(\varphi) = \mathsf{T}$. The formula φ is not valid since the last column in the truth table contains F. For the valuation $v(p) = v(q) = \mathsf{T}$ and $v(r) = \mathsf{F}$ we have $\overline{v}(\varphi) = \mathsf{F}$.

The same holds for ψ . For instance, for the valuation $v(p)=v(q)=\mathsf{T}$ we have $\overline{v}(\psi)=\mathsf{T}$ and for the valuation $v(p)=\mathsf{F}$ and $v(q)=\mathsf{T}$ we have $\overline{v}(\psi)=\mathsf{F}$.

3 (a) The semantic entailment $(p \to q) \to p, \neg (q \land p) \vDash \neg (\neg p \to q)$ is false:

p	q	$p \rightarrow q$	$(p \to q) \to p$	$q \wedge p$	$\neg (q \land p)$	$\neg p$	$\neg p \rightarrow q$	$\neg(\neg p \to q)$
Т	Т	Т	Т	Т	F			
Т	F	F	Т	F	Т	F	Т	F
F	Т	Т Т	T T F		'		!	!
F	F	Т	F					

(b) The semantic entailment $\neg p \land \neg \neg (\neg p \to \top) \vDash \bot$ is false:

					$\neg \neg (\neg p \to \top)$	$ \mid \neg p \wedge \neg \neg (\neg p \to \top) \mid$	
Т	F	Т	T T	F	Т	F	
F	Т .	Т	Т	F	Т	T	F

4 (a) Using the procedure from slide 41 we obtain

$$\begin{array}{ccc} p \vee ((q \vee \neg r) \wedge (p \vee (q \wedge r))) & \stackrel{\textcircled{\scriptsize 3}}{\longrightarrow} & (p \vee (q \vee \neg r)) \wedge (p \vee (p \vee (q \wedge r))) \\ & \stackrel{\textcircled{\scriptsize 3}}{\longrightarrow} & (p \vee (q \vee \neg r)) \wedge (p \vee ((p \vee q) \wedge (p \vee r)) \\ & \stackrel{\textcircled{\scriptsize 3}}{\longrightarrow} & (p \vee (q \vee \neg r)) \wedge ((p \vee (p \vee q)) \wedge (p \vee (p \vee r))) \end{array}$$

(b) For instance

$$\neg(p \to (q \land (\neg p \to q))) \qquad \stackrel{\textcircled{1}}{\longrightarrow} \qquad \neg(\neg p \lor (q \land (\neg p \to q))) \\
\stackrel{\textcircled{2}}{\longrightarrow} \qquad \neg(\neg p \lor (q \land (\neg \neg p \lor q))) \\
\stackrel{\textcircled{2}}{\longrightarrow} \qquad \neg(\neg p \lor (q \land (p \lor q))) \\
\stackrel{\textcircled{2}}{\longrightarrow} \qquad \neg \neg p \land \neg(q \land (p \lor q)) \\
\stackrel{\textcircled{2}}{\longrightarrow} \qquad p \land \neg(q \land (p \lor q)) \\
\stackrel{\textcircled{2}}{\longrightarrow} \qquad p \land (\neg q \lor \neg(p \lor q)) \\
\stackrel{\textcircled{2}}{\longrightarrow} \qquad p \land (\neg q \lor (\neg p \land \neg q)) \\
\stackrel{\textcircled{3}}{\longrightarrow} \qquad p \land ((\neg q \lor \neg p) \land (\neg q \lor \neg q))$$

[5] (a) For each row whose last entry is T, we form the conjunction of the literals corresponding to the atoms. Here "corresponding" means that atom p is turned into $\neg p$ when p is assigned F, and stays p if p is assigned T. Then we form the disjunction of all conjunctions. If there are no rows ending in T we return the DNF \bot . If there are no atoms, we return \top if the formula evaluates to T and \bot if it evaluates to F.

Applying the above procedure to the truth tables computed in the solution of Exercise 2(b) yields

$$(p \land q \land r) \lor (p \land \neg q \land r) \lor (p \land \neg q \land \neg r)$$

for φ and

$$(p \land q) \lor (p \land \neg q) \lor (\neg p \land \neg q)$$

for ψ .