

LVA 703026 + 703027

March 21, 2024

Week 3

Logik

Solved exercises must be marked and solutions (as a single PDF file) uploaded in OLAT. The (strict) deadline is 7 am on March 21.

SS 2024

Exercises

 $\langle \mathbf{3} \rangle$

- 1. In this exercise we consider the question whether there exists a blue/red coloring of the set of numbers $\{1, \ldots, n\}$ such that there is no monochromatic solution of the equation a + b = c for $1 \le a < b < c \le n$. For instance, for n = 5 the answer is yes because the only solutions of the equation are
 - 1+2=3 1+3=4 1+4=5 2+3=5

and so we can (e.g.) use the coloring 1 2 3 4 5:

$$1+2=3$$
 $1+3=4$ $1+4=5$ $2+3=5$

- (a) Show that the answer is yes when $n \leq 8$.
- (b) Construct a CNF formula φ such that satisfiability of φ answers the question for n = 9, and encode φ into DIMACS format. Use a SAT solver to obtain the answer.
- $\langle 2 \rangle$ 2. Prove the validity of the following sequents using natural deduction:

(a)
$$p \to (q \to r), q \vdash p \to (q \land r)$$

(b)
$$p \to q \vdash (p \land q \to p) \land (p \to p \land q)$$

 $\langle 3 \rangle$ 3. Prove that the following propositional formulas are theorems, using natural deduction:

(a)
$$q \to (p \to (p \to (q \to p)))$$

(b)
$$((p \to q) \to q) \to ((q \to p) \to p)$$

(c)
$$p \land q \to \neg(\neg p \lor \neg q)$$

(2) 4. Design elimination and introduction rules for the propositional connective \leftrightarrow (equivalence), and show that they are derived rules if $\varphi \leftrightarrow \psi$ is interpreted as $(\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$.