

Logik SS 2024 LVA 703026 + 703027

Week 5 April 18, 2024

Selected Solutions

1 (b) First we transform the negation of the given formula into CNF:

$$\neg(((p \to (p \to p)) \to p) \to (\neg p \to \bot)) \equiv \neg(\neg((p \to (p \to p)) \to p) \lor (\neg p \to \bot))$$

$$\equiv ((p \to (p \to p)) \to p) \land \neg(\neg p \to \bot)$$

$$\equiv (\neg(p \to (p \to p)) \lor p) \land \neg(p \lor \bot)$$

$$\equiv (\neg(\neg p \lor (p \to p)) \lor p) \land (\neg p \land \top)$$

$$\equiv ((p \land \neg(p \to p)) \lor p) \land \neg p$$

$$\equiv ((p \land (p \land \neg p)) \lor p) \land \neg p$$

$$\equiv (p \lor p) \land ((p \land \neg p) \lor p) \land \neg p$$

$$\equiv (p \lor p) \land (p \lor p) \land (\neg p \lor p) \land \neg p$$

The resulting clausal form $\big\{\big\{p\big\},\big\{\neg p,p\big\},\big\{\neg p\big\}\big\}$ is unsatisfiable:

- 1. $\{p\}$ 2. $\{\neg p, p\}$
- 3. $\{\neg p\}$
- 4. \square resolve 1, 3, p

Hence the formula $(((p \to (p \to p)) \to p) \to (\neg p \to \bot)$ is valid.

2 The sequent $p \land q \rightarrow r \vdash (p \rightarrow r) \lor (q \rightarrow r)$ is valid:

1	$p \wedge q \to r$	premise
2	$\neg((p \to r) \lor (q \to r))$	assumption
3	p	assumption
4	q	assumption
5	$ \ \ \ p \wedge q$	∧i 3,4
6	r	\rightarrow e 1,5
7	$q \rightarrow r$	→i 4-6
8	$(p \to r) \lor (q \to r)$	∨i ₂ 7
9		¬e 2,8
10	r	⊥e 9
11	$p \rightarrow r$	→i 3-10
12	$(p \to r) \lor (q \to r)$	$\vee i_1$ 11
13	\perp	$\neg e 2, 12$
14	$(p \to r) \lor (q \to r)$	PBC 2-13

3 (c) Since $\forall y.h \equiv h[0/y] \cdot h[1/y]$, we start by computing OBDDs for $B_{h[0/y]}$ and $B_{h[1/y]}$:

Since $\operatorname{\mathsf{apply}}(\cdot, B_{h[0/y]}, B_{h[1/y]}) = B_{h[0/y]}$, the left OBDD represents $\forall y.h.$

4 (a)

There are 7 subformulas:

- (1) P(f(x), y, z),
- (2) $\exists y P(f(x), y, z),$
- (3) Q(x, g(y, z)),
- (4) $\forall z \ Q(x, g(y, z)),$
- (5) $\exists y \ P(f(x), y, z) \rightarrow \forall z \ Q(x, g(y, z)),$
- (6) $\forall x (\exists y \ P(f(x), y, z) \rightarrow \forall z \ Q(x, g(y, z))),$
- (7) $\neg \forall x (\exists y P(f(x), y, z) \rightarrow \forall z Q(x, g(y, z))).$
- (b) The underlined variable occurrences in the parse tree are bound, the others are free.

(c)

i. We have

$$\varphi[f(z)/x] = \varphi$$

$$\varphi[f(z)/y] = \neg \forall x (\exists y P(f(x), y, z) \to \forall z Q(x, g(f(z), z)))$$

$$\varphi[f(z)/z] = \neg \forall x (\exists y P(f(x), y, f(z)) \to \forall z Q(x, g(y, z)))$$

The term f(z) is free for x and z but not for y.

ii. We have

$$\begin{split} & \varphi[g(y,x)/x] = \varphi \\ & \varphi[g(y,x)/y] = \neg \forall x \left(\exists y \, P(f(x),y,z) \to \forall z \, Q(x,g(g(y,x),z))\right) \\ & \varphi[g(y,x)/z] = \neg \forall x \left(\exists y \, P(f(x),y,g(y,x)) \to \forall z \, Q(x,g(y,x))\right) \end{split}$$

The term g(y, x) is free for x but not for y and z.

iii. We have

$$\begin{split} & \varphi[g(f(y),y)/x] = \varphi \\ & \varphi[g(f(y),y)/y] = \neg \forall x \left(\exists y \, P(f(x),y,z) \rightarrow \forall z \, Q(x,g(g(f(y),y),z)) \right) \\ & \varphi[g(f(y),y)/z] = \neg \forall x \left(\exists y \, P(f(x),y,g(f(y),y)) \rightarrow \forall z \, Q(x,g(y,z)) \right) \end{split}$$

First we show that adding a resolvent preserves satisfiability. Assume that S is satisfiable, i.e., there exists a valuation v such that $\bar{v}(S) = \mathsf{T}$. Consider clauses $C_1, C_2 \in S$ which clash on literal ℓ and let $C = \{(C_1 \setminus \{\ell\}) \cup (C_2 \setminus \{\ell^c\})\}$ and $S' = S \cup C$. If $\bar{v}(\ell) = \mathsf{F}$ then there exists a literal $\ell' \in C_1 \setminus \{\ell\}$ such that $\bar{v}(\ell') = \mathsf{T}$. Hence $\bar{v}(C) = \mathsf{T}$ and therefore S' is satisfiable. Otherwise, $\bar{v}(\ell) = \mathsf{T}$ and thus there exists a literal $\ell' \in C_2 \setminus \{\ell^c\}$ such that $\bar{v}(\ell') = \mathsf{T}$. Again, $\bar{v}(C) = \mathsf{T}$ and S' is satisfiable.

Now we can show the original claim. Let S be refutable, so resolution produces a clausal form S' with $\square \in S'$. For a proof by contradiction, assume S is satisfiable. By our previous reasoning, S' is also satisfiable. Since $\square \in S'$, we arrive at a contradiction. Hence S is unsatisfiable.