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Selected Solutions
First we transform the negation of the given formula into CNF:

The sequent pAq— 1 F (p—=7)V (¢ — r) is valid:
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The resulting clausal form {{p},{—-p,p}, {—p}} is unsatisfiable:
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O resolve 1, 3, p

Hence the formula (((p — (p = p)) = p) — (—p — L) is valid.
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Since Yy.h = h[0/y] - h[1/y], we start by computing OBDDs for Byg/, and By /y):
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Since apply(:, Bhrjo/y], Br[i/y]) = Bhjo/y), the left OBDD represents Vy.h.
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There are 7 subformulas:
(1) P(f(2),y,2),
(2) Jy P(f(2),y,2),

(3) Q(z,9(y, 2));

(4) vz Q(z,9(y, 2)),

(5) Jy P(f(2),y,2) = Yz Q(z,9(y,2)),

(6) Vo (Jy P(f(2),y,2) = V2 Q(x,9(y,2))),

(7) =V By P(f(x),y,2) = V2 Q(z,9(y, 2))).

(b)| The underlined variable occurrences in the parse tree are bound, the others are free.

(¢)| 1. We have

elf(z)/a] =
elf (2)/y] = —Va By P(f(2),y,2) = V2 Q(x,9(f(2), 2)))
plf(2)/2] = Vz 3y P(f(2),y, f(2)) = V2 Q(z,9(y, 2)))

The term f(z) is free for  and z but not for y.
ii. We have

elg(y,x)/x] = ¢
elg(y,z)/y] = ~Vz 3y P(f(x),y,2) = V2 Q(x,9(g(y, ), 2)))
elg(y,x)/z] = V& (Jy P(f(x),y,9(y,2)) = V2 Q(x,9(y,x)))
The term g(y, x) is free for x but not for y and z.
iii. We have

elg(f(y),y)/z] = ¢
elg(fW),y)/yl = ~Vz Fy P(f(2),y,2) = V2 Q(z,9(9(f(y),v),2)))
elg(f(),y)/z] = =V Sy P(f(x),y,9(f(y),v)) = V2 Q(x,9(y, 2)))



The term g(f(y),y) is free for  and y but not for z.

First we show that adding a resolvent preserves satisfiability. Assume that S is satisfiable, i.e., there
exists a valuation v such that 4(S) = T. Consider clauses C1,Cs € S which clash on literal ¢ and let
C={(Ci\{f}) U (Co\{l})}and S’ = SUC. If 5(¢) = F then there exists a literal ¢’ € Cy \ {¢}
such that 9(¢') = T. Hence 9(C) = T and therefore S’ is satisfiable. Otherwise, 9(¢) = T and thus
there exists a literal £/ € Cy \ {£¢} such that 7(¢') = T. Again, 9(C) = T and S’ is satisfiable.

Now we can show the original claim. Let S be refutable, so resolution produces a clausal form S’
with O € §’. For a proof by contradiction, assume S is satisfiable. By our previous reasoning, S’ is
also satisfiable. Since O € S/, we arrive at a contradiction. Hence S is unsatisfiable.



