Solved exercises must be marked and solutions (as a single PDF file) uploaded in OLAT. The (strict) deadline is 7 am on April 25 .

Exercises

1. Consider the boolean function f defined by $f(x, y, z)=\bar{x} \bar{y} \oplus \bar{x} z \oplus \bar{y} z$ and the following two reduced OBDDs:

(a) Construct a reduced OBDD for f with variable order $[y, z, x]$.
(b) Compute apply $\left(+, B_{g}, B_{h}\right)$.
2. Consider the formula

$$
\varphi=\forall x \forall y P(f(x, y), f(y, y), z)
$$

Here P is a ternary predicate symbol and f is a binary function symbol. Construct two models \mathcal{M} and \mathcal{M}^{\prime} with respective environments l and l^{\prime} such that $\mathcal{M} \vDash_{l} \varphi$ and $\mathcal{M}^{\prime} \nvdash_{l^{\prime}} \varphi$.
3. Which of the following sets of sentences are consistent? Prove your answer.
(a) $\{\forall x \exists y P(x, y), \exists y \forall x \neg P(x, y), \forall x \neg P(x, x)\}$
(b) $\{\forall x(\exists y P(x, y) \rightarrow \neg P(x, x)), \exists x \forall y P(y, x), \neg \forall x \neg P(x, x)\}$
4. For each of the following sequents, either give a natural deduction proof or find a model which does not satisfy it.
(a) $\vdash \forall x \exists y(P(x) \rightarrow Q(y)) \rightarrow \forall x(P(x) \rightarrow \exists y Q(y))$
(b) $\forall x P(f(x), x) \vdash \exists y \forall x P(y, x)$
(c) $\exists x \exists y(P(x, y) \vee P(y, x)), \neg \exists x P(x, x) \vdash \exists x \exists y \neg(x=y)$

