Selected Solutions

1 (b) For easy reference, we label the nodes of B_{g} and B_{h} :

We obtain the intermediate OBDD

Applying the reduce algorithm produces the desired reduced OBDD B_{g+h} :

$\sqrt{2}$ For instance, let \mathcal{M} consist of the set $\{a, b\}$ with $f^{\mathcal{M}}(x, y)=a$ for all $x, y \in\{a, b\}$ and $P^{\mathcal{M}}=\{(a, a, a)\}$, and let the environment l satisfy $l(z)=a$. We have $\mathcal{M} \vDash_{l} \varphi$ because $f^{\mathcal{M}}(x, y)=f^{\mathcal{M}}(y, y)=a$ for all $x, y \in\{a, b\}$ and $(a, a, l(z)) \in P^{\mathcal{M}}$.

Let \mathcal{M}^{\prime} be the same model as \mathcal{M} and let the environment l^{\prime} satisfy $l^{\prime}(z)=b$. We do not have $\mathcal{M}^{\prime} \vDash_{l^{\prime}} \varphi$ because $\left(a, a, l^{\prime}(z)\right)=(a, a, b) \notin P^{\mathcal{M}^{\prime}}$.

3 (b) The set $\{\forall x(\exists y P(x, y) \rightarrow \neg P(x, x)), \exists x \forall y P(y, x), \neg \forall x \neg P(x, x)\}$ is inconsistent. We show this by proving the validity of the sequent $\forall x(\exists y P(x, y) \rightarrow \neg P(x, x)), \exists x \forall y P(y, x) \vdash \forall x \neg P(x, x)$:

	$\begin{aligned} & \forall x(\exists y P(x, y) \rightarrow \neg P(x, x)) \\ & \exists x \forall y P(y, x) \end{aligned}$	premise premise
x_{0}	$\exists y P\left(x_{0}, y\right) \rightarrow \neg P\left(x_{0}, x_{0}\right)$	$\forall \mathrm{e} 1$
x_{1}	$\forall y P\left(y, x_{1}\right)$	assumption
	$P\left(x_{0}, x_{1}\right)$	$\forall \mathrm{e} 4$
	$\exists y P\left(x_{0}, y\right)$	$\exists \mathrm{i} 5$
	$\neg P\left(x_{0}, x_{0}\right)$	$\rightarrow \mathrm{e} 3,6$
	$\neg P\left(x_{0}, x_{0}\right)$	$\exists \mathrm{e} 2,4-7$
	$\forall x \neg P(x, x)$	$\forall \mathrm{i} 3-8$

We obtain $\forall x(\exists y P(x, y) \rightarrow \neg P(x, x)), \exists x \forall y P(y, x) \vDash \forall x \neg P(x, x)$ by the soundness of natural deduction. Hence, any model \mathcal{M} with $\mathcal{M} \vDash \forall x(\exists y P(x, y) \rightarrow \neg P(x, x))$ and $\mathcal{M} \vDash \exists x \forall y P(y, x)$ satisfies $\mathcal{M} \vDash \forall x \neg P(x, x)$ and therefore $\mathcal{M} \not \models \neg \forall x \neg P(x, x)$.

4 (b) The sequent $\forall x P(f(x), x) \vdash \exists y \forall x P(y, x)$ is not valid. Take the model \mathcal{M} with the universe $A=\{0,1\}$ and the interpretations

$$
P^{\mathcal{M}}=\{(0,0),(1,1)\}
$$

$$
f^{\mathcal{M}}(x)=x
$$

We have $\mathcal{M} \vDash \forall x P(f(x), x)$, since both $(0,0) \in P^{\mathcal{M}}$ and $(1,1) \in P^{\mathcal{M}}$. However, for $y=0$ we have $x=1$ such that $(0,1) \notin P^{\mathcal{M}}$, and for $y=1$ we have $x=0$ with $(1,0) \notin P^{\mathcal{M}}$. Therefore $\forall x P(f(x), x) \not \models \exists y \forall x P(x, y)$.
(c) The sequent $\exists x \exists y(P(x, y) \vee P(y, x)), \neg \exists x P(x, x) \vdash \exists x \exists y \neg(x=y)$ is valid:

	$\begin{aligned} & \exists x \exists y(P(x, y) \vee P(y, x)) \\ & \neg \exists x P(x, x) \end{aligned}$	premise premise
x_{0}	$\exists y\left(P\left(x_{0}, y\right) \vee P\left(y, x_{0}\right)\right)$	assumption
y_{0}	$P\left(x_{0}, y_{0}\right) \vee P\left(y_{0}, x_{0}\right)$	assumption
	$x_{0}=y_{0}$	assumption
	$P\left(y_{0}, y_{0}\right) \vee P\left(y_{0}, y_{0}\right)$	=e 5, 4
	$P\left(y_{0}, y_{0}\right)$	assumption
	$P\left(y_{0}, y_{0}\right)$	assumption
	$P\left(y_{0}, y_{0}\right)$	Ve 6, 7-7, 8-8
	$\exists x P(x, x)$	$\exists \mathrm{i} 9$
	\perp	$\neg \mathrm{e} 10,2$
	$\neg\left(x_{0}=y_{0}\right)$	$\neg \mathrm{i} 5-11$
	$\exists y \neg\left(x_{0}=y\right)$	$\exists \mathrm{i} 12$
	$\exists x \exists y \neg(x=y)$	$\exists \mathrm{i} 13$
	$\exists x \exists y \neg(x=y)$	$\exists \mathrm{e} 3,4-14$
	$\exists x \exists y \neg(x=y)$	$\exists \mathrm{e} 1,3-15$

