

Logik	SS 2024	LVA 703026 + 703027

Selected Solutions

Week 6

|1||(b)| For easy reference, we label the nodes of B_g and B_h :

April 25, 2024

We obtain the intermediate OBDD

Applying the reduce algorithm produces the desired reduced OBDD B_{g+h} :

2 For instance, let \mathcal{M} consist of the set $\{a, b\}$ with $f^{\mathcal{M}}(x, y) = a$ for all $x, y \in \{a, b\}$ and $P^{\mathcal{M}} = \{(a, a, a)\}$, and let the environment l satisfy l(z) = a. We have $\mathcal{M} \vDash_l \varphi$ because $f^{\mathcal{M}}(x, y) = f^{\mathcal{M}}(y, y) = a$ for all $x, y \in \{a, b\}$ and $(a, a, l(z)) \in P^{\mathcal{M}}$.

Let \mathcal{M}' be the same model as \mathcal{M} and let the environment l' satisfy l'(z) = b. We do not have $\mathcal{M}' \vDash_{l'} \varphi$ because $(a, a, l'(z)) = (a, a, b) \notin P^{\mathcal{M}'}$.

3 (b) The set $\{\forall x (\exists y P(x, y) \to \neg P(x, x)), \exists x \forall y P(y, x), \neg \forall x \neg P(x, x)\}$ is inconsistent. We show this by proving the validity of the sequent $\forall x (\exists y P(x, y) \to \neg P(x, x)), \exists x \forall y P(y, x) \vdash \forall x \neg P(x, x):$

1		$\forall x \ (\exists y \ P(x,y) \to \neg P(x,x))$	premise
2		$\exists x \forall y P(y,x)$	premise
3	x_0	$\exists y \ P(x_0, y) \to \neg P(x_0, x_0)$	$\forall e 1$
4	x_1	$\forall y \ P(y, x_1)$	assumption
5		$P(x_0, x_1)$	$\forall e 4$
6		$\exists y \ P(x_0, y)$	∃i 5
7		$\neg P(x_0, x_0)$	$\rightarrow e 3, 6$
8		$\neg P(x_0, x_0)$	$\exists e 2, 4-7$
9		$\forall x \neg P(x, x)$	$\forall i 3-8$

We obtain $\forall x (\exists y \ P(x, y) \to \neg P(x, x)), \exists x \ \forall y \ P(y, x) \vDash \forall x \ \neg P(x, x)$ by the soundness of natural deduction. Hence, any model \mathcal{M} with $\mathcal{M} \vDash \forall x (\exists y \ P(x, y) \to \neg P(x, x))$ and $\mathcal{M} \vDash \exists x \ \forall y \ P(y, x)$ satisfies $\mathcal{M} \vDash \forall x \ \neg P(x, x)$ and therefore $\mathcal{M} \nvDash \neg \forall x \ \neg P(x, x)$.

 $\underbrace{|4||(b)|}_{A = \{0,1\}} \text{ The sequent } \forall x \ P(f(x), x) \vdash \exists y \ \forall x \ P(y, x) \text{ is not valid. Take the model } \mathcal{M} \text{ with the universe}$

$$P^{\mathcal{M}} = \{(0,0), (1,1)\}$$

 $1,1)\} \qquad \qquad f^{\mathcal{M}}(x) = x$

We have $\mathcal{M} \models \forall x \ P(f(x), x)$, since both $(0, 0) \in P^{\mathcal{M}}$ and $(1, 1) \in P^{\mathcal{M}}$. However, for y = 0 we have x = 1 such that $(0, 1) \notin P^{\mathcal{M}}$, and for y = 1 we have x = 0 with $(1, 0) \notin P^{\mathcal{M}}$. Therefore $\forall x \ P(f(x), x) \nvDash \exists y \forall x \ P(x, y)$.

|(c)| The sequent $\exists x \exists y (P(x,y) \lor P(y,x)), \neg \exists x P(x,x) \vdash \exists x \exists y \neg (x=y)$ is valid:

1		$\exists x \exists y (P(x,y) \lor P(y,x))$	premise
2		$\neg \exists x \ P(x, x)$	premise
3	x_0	$\exists y (P(x_0, y) \lor P(y, x_0))$	assumption
4	y_0	$P(x_0, y_0) \lor P(y_0, x_0)$	assumption
5		$x_0 = y_0$	assumption
6		$P(y_0, y_0) \vee P(y_0, y_0)$	=e 5,4
7		$P(y_0,y_0)$	assumption
8		$P(y_0, y_0)$	assumption
9		$P(y_0, y_0)$	$\vee e \ 6, 7 - 7, 8 - 8$
10		$\exists x \ P(x,x)$	∃i9
11		\perp	$\neg e \ 10, 2$
12		$\neg(x_0 = y_0)$	¬i 5–11
13		$\exists y \neg (x_0 = y)$	∃i 12
14		$\exists x \exists y \neg (x = y)$	∃i 13
15		$\exists x \exists y \neg (x = y)$	$\exists e 3, 4-14$
16		$\exists x \exists y \neg(x=y)$	$\exists e \ 1, \ 3-15$