Selected Solutions

1 (b) The sequent $\vdash \forall x \forall y(P(x, y) \rightarrow \neg \forall z(P(x, z) \rightarrow \neg P(z, y))$ is not valid. For instance, consider the model \mathcal{M} consisting of the set $\{a, b\}$ with interpretation $P^{\mathcal{M}}=\{(a, b)\}$ together with $l(x)=a$ and $l(y)=b$. We have $\mathcal{M} \vDash_{l} P(x, y)$ but not $\mathcal{M} \vDash_{l} \neg \forall z(P(x, z) \rightarrow \neg P(z, y))$. The latter can be seen as follows. If $l(z)=a$ then $\mathcal{M} \vDash_{l} P(x, z) \rightarrow \neg P(z, y)$ since $\mathcal{M} \nvdash_{l} P(x, z)$. If $l(z)=b$ then $\mathcal{M} \vDash_{l} \neg P(z, y)$ and thus also $\mathcal{M} \vDash_{l} P(x, z) \rightarrow \neg P(z, y)$. Hence $\mathcal{M} \not \vDash_{l} \neg \forall z(P(x, z) \rightarrow \neg P(z, y))$.

3 (b) The following derivation shows that the given terms are not unifiable:

$$
\begin{gathered}
\frac{P(x, f(y, a)) \approx P(y, x)}{\mathrm{d} \Downarrow} \\
\frac{x \approx y, f(y, a) \approx x}{\vee \Downarrow\{x \mapsto y\}} \\
f(y, a) \approx y \\
\Downarrow \\
\perp
\end{gathered}
$$

(c) The given atoms are unifiable:

$$
\begin{gathered}
\frac{R(h(x, y, g(a, z))) \approx R(h(g(y, y), g(z, z), g(a, a)))}{\mathrm{d} \Downarrow} \\
\frac{h(x, y, g(a, z)) \approx h(g(y, y), g(z, z), g(a, a))}{\mathrm{d} \Downarrow} \\
x \approx g(y, y), y \approx g(z, z), g(a, z) \approx g(a, a) \\
\mathrm{d} \Downarrow \\
x \approx g(y, y), y \approx g(z, z), a \approx a, z \approx a \\
\mathrm{t} \Downarrow \\
x \approx g(y, y), y \approx g(z, z), \underline{z} \approx a \\
v \Downarrow\{z \mapsto a\} \\
x \approx g(y, y), y \approx g(a, a) \\
v \Downarrow\{y \mapsto g(a, a)\} \\
\frac{x \approx g(g(a, a), g(a, a))}{v \Downarrow\{x \mapsto g(g(a, a), g(a, a))\}}
\end{gathered}
$$

The resulting mgu is $\{x \mapsto g(g(a, a), g(a, a)), y \mapsto g(a, a), z \mapsto a\}$.

4 We first rename the variable x in the second argument of the disjunction and then transform the resulting formula into an equivalent prenex normal form:

$$
\begin{aligned}
& \neg(\forall x \exists y P(f(x, y), y) \rightarrow \forall z Q(z)) \vee \forall x^{\prime} R\left(x^{\prime}, x^{\prime}\right) \\
& \quad \equiv \neg \exists x \forall y \forall z(P(f(x, y), y) \rightarrow Q(z)) \vee \forall x^{\prime} R\left(x^{\prime}, x^{\prime}\right) \\
& \quad \equiv \forall x \exists y \exists z \neg(P(f(x, y), y) \rightarrow Q(z)) \vee \forall x^{\prime} R\left(x^{\prime}, x^{\prime}\right) \\
& \quad \equiv \forall x \exists y \exists z \forall x^{\prime}\left(\neg(P(f(x, y), y) \rightarrow Q(z)) \vee R\left(x^{\prime}, x^{\prime}\right)\right)
\end{aligned}
$$

Next, we transform the quantifier-free part of the prenex normal form into CNF:

$$
\begin{aligned}
& \equiv \forall x \exists y \exists z \forall x^{\prime}\left(\neg(\neg P(f(x, y), y) \vee Q(z)) \vee R\left(x^{\prime}, x^{\prime}\right)\right) \\
& \equiv \forall x \exists y \exists z \forall x^{\prime}\left((P(f(x, y), y) \wedge \neg Q(z)) \vee R\left(x^{\prime}, x^{\prime}\right)\right) \\
& \equiv \forall x \exists y \exists z \forall x^{\prime}\left(\left(P(f(x, y), y) \vee R\left(x^{\prime}, x^{\prime}\right)\right) \wedge\left(\neg Q(z) \vee R\left(x^{\prime}, x^{\prime}\right)\right)\right)
\end{aligned}
$$

We obtain an equisatisfiable Skolem normal form by replacing the existentially quantified variables y and z by fresh Skolem functions $g(x)$ and $h(x)$:

$$
\approx \forall x \forall x^{\prime}\left(\left(P(f(x, g(x)), g(x)) \vee R\left(x^{\prime}, x^{\prime}\right)\right) \wedge\left(\neg Q(h(x)) \vee R\left(x^{\prime}, x^{\prime}\right)\right)\right)
$$

