Selected Solutions

(a) Because $f(0,1,1)=0 \oplus(1+1)=1$ and $f(1,1,1)=1 \oplus(1+1)=0, f$ is not monotone. The dual

$$
\hat{f}(x, y, z)=\overline{f(\bar{x}, \bar{y}, \bar{z})}=\overline{\bar{x} \oplus(\bar{y}+\bar{z})}=\overline{\bar{x} \oplus \overline{y z}}=x \oplus y z \oplus 1
$$

of f is different from f (e.g. $f(0,0,0)=0$ and $\hat{f}(0,0,0)=1$), so f is not self-dual. Finally, f is not affine since its algebraic normal form is $x \oplus y \oplus z \oplus y z$.
(b) No. Since $f(0,0,0)=0$, it follows from Post's adequacy theorem that $\{f\}$ is not adequate. However, $\left\{f,{ }^{-}\right\}$is adequate and hence ${ }^{-}$cannot be expressed in terms of f.
Alternatively, one can prove by induction that any expression constructed from f and variables evaluates to 0 when all variables are set to 0 . Since $\overline{0}=1,{ }^{-}$cannot be expressed.

3 Yes. By Post's adequacy theorem, $f(0, \ldots, 0)=1, f(1, \ldots, 1)=0$, and f is neither monotone nor self-dual nor affine. Let n be the arity of f. We prove that $\{\hat{f}\}$ is adequate by showing that \hat{f} satisfies the five conditions of Post's adequacy theorem.
(1) We have $\hat{f}(0, \ldots, 0)=\overline{f(1, \ldots, 1)}=\overline{0}=1$.
(2) We have $\hat{f}(1, \ldots, 1)=\overline{f(0, \ldots, 0)}=\overline{1}=0$.
(3) Since f is not monotone,

$$
f\left(b_{1}, \ldots, b_{i-1}, x, b_{i+1}, \ldots, b_{n}\right)=\bar{x}
$$

for some i and $b_{1}, \ldots, b_{i-1}, b_{i+1}, \ldots, b_{n} \in\{0,1\}$. Hence also

$$
f\left(b_{1}, \ldots, b_{i-1}, \bar{x}, b_{i+1}, \ldots, b_{n}\right)=x
$$

and thus

$$
\hat{f}\left(\bar{b}_{1}, \ldots, \bar{b}_{i-1}, x, \bar{b}_{i+1}, \ldots, \bar{b}_{n}\right)=\overline{f\left(b_{1}, \ldots, b_{i-1}, \bar{x}, b_{i+1}, \ldots, b_{n}\right)}=\bar{x}
$$

It follows that \hat{f} is not monotone.
Alternatively, the non-monotonicity of f is a direct consequence of (1) and (2).
(4) Since the dual $\hat{\hat{f}}$ of \hat{f} is f, and $\hat{f} \neq f$ because f is not self-dual, \hat{f} cannot be self-dual.
(5) If \hat{f} is affine then there exist bits c, c_{1}, \ldots, c_{n} such that

$$
\hat{f}\left(x_{1}, \ldots, x_{n}\right)=c \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}
$$

Hence

$$
f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)=\overline{c \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}}=1 \oplus c \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}
$$

and thus

$$
f\left(x_{1}, \ldots, x_{n}\right)=1 \oplus c \oplus c_{1} \bar{x}_{1} \oplus \cdots \oplus c_{n} \bar{x}_{n}=\left(1 \oplus c \oplus c_{1} \oplus \cdots \oplus c_{n}\right) \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}
$$

contradicting the fact that f is not affine. We conclude that \hat{f} is not affine.

4 (a) From the parse tree of φ

we obtain 7 subformulas:
p
EG p
$\neg p$
$\mathrm{EX} \neg p$
$\mathrm{EG} p \wedge \mathrm{EX} \neg p$
$\mathrm{AX} p$
φ
(b) Applying the CTL model checking algorithm results in the table

	p	$\neg p$	$\mathrm{EG} p$	$\mathrm{EX} \neg p$	$\mathrm{EG} p \wedge \mathrm{EX} \neg p$	$\mathrm{AX} p$	φ
1	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark
2	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark
3		\checkmark		\checkmark			
4	\checkmark		\checkmark			\checkmark	\checkmark

Hence φ holds in states 1, 2 and 4 .

