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Selected Solutions
Because f(0,1,1) =0® (1+1)=1and f(1,1,1) =1® (1 +1) =0, f is not monotone. The dual

f(@y,2) = f(@,y,2) =@ (y+2) =20yz = xDyzd1

of f is different from f (e.g. f(0,0,0) = 0 and £(0,0,0) = 1), so f is not self-dual. Finally, f is not

affine since its algebraic normal form is z ® y & z P y=.

(b)| No. Since f(0,0,0) = 0, it follows from Post’s adequacy theorem that { f } is not adequate. However,

{f,  } is adequate and hence ~ cannot be expressed in terms of f.

Alternatively, one can prove by induction that any expression constructed from f and variables

evaluates to 0 when all variables are set to 0. Since 0 = 1, ~ cannot be expressed.

Yes. By Post’s adequacy theorem, f(0,...,0) =1, f(1,...,1) =0, and f is neither monotone nor self-dual
nor affine. Let n be the arity of f. We prove that {f} is adequate by showing that f satisfies the five
conditions of Post’s adequacy theorem.

(1)
(2)
(3)

We have f(0,...,0) = f(1,...,1)=0=1.

We have f(1,...,1) = f(0,...,0) =1 =0.

Since f is not monotone,
f(bla-~-abi—1,x7bi+17--~7bn) = E

for some i and by,...,b;_1,bi11,...,b, € {0,1}. Hence also
S, bim1, b1, by) = @

and thus

f(bla-~-a6i—17x75i+17--~75n) = f(bl,-~-,bi—1,57bi+17--~7bn) = E

It follows that f is not monotone.

Alternatively, the non-monotonicity of f is a direct consequence of (1) and (2).

Since the dual f of f is f, and f = f because f is not self-dual, f cannot be self-dual.

If f is affine then there exist bits ¢, cq,..., ¢, such that

f(xla"'vxn) =chcx1 @ - Depxy

Hence

f@r,...,xn) =cOax1 @ Dty = 1DcPerzy @ Depy

and thus

flxi,...,zn) = 1B cPaz1® Dy, = 1B @ Dep) D1z -+ D cpy

contradicting the fact that f is not affine. We conclude that f is not affine.



From the parse tree of ¢

A /E U\AX
E G/ \EX ‘

b
-
p
we obtain 7 subformulas:
p EGp -p

EX—p

(b)| Applying the CTL model checking algorithm results in the table

p —-p EGp EX—-p EGpAEX—-p AXp ¢

11V v v
2|V v v
3 v v
4|V v

Hence ¢ holds in states 1, 2 and 4.
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