

Logik SS 2024 LVA 703026 + 703027

Week 10 + 11 June 6, 2024

Selected Solutions

[2] (b) Since every state satisfies p, no path satisfies $\mathsf{X} \neg p$. Hence the paths that satisfy ψ are precisely the paths that satisfy $\mathsf{X}\ q$. All such paths must begin with $1 \to 3$ or $2 \to 3$. Since from state 1 there is also the step to state 2, only state 2 satisfies ψ .

3	1		$\forall x \ (P(x) \lor Q(x))$	premise	
2			$\exists x \neg Q(x)$	premise	
	3		$\forall x (R(x) \to \neg P(x))$	premise	
	4	x_0	$\neg Q(x_0)$	assumption	
	5		$P(x_0) \vee Q(x_0)$	$\forall e 1$	
	6		$P(x_0)$	assumption	
	7		$Q(x_0)$	assumption	
	8		\perp	¬e 7,4	
	9		$P(x_0)$	⊥e 8	
	10		$P(x_0)$	$\vee e \ 5, 6, 7 - 9$	
	11		$R(x_0) \to \neg P(x_0)$	∀e 3	
	12		$\neg \neg P(x_0)$	¬¬i 10	
	13		$\neg R(x_0)$	MT 11, 12	
	14		$\exists x \neg R(x)$	∃i 13	
	15		$\exists x \neg R(x)$	$\exists e 2, 4-14$	

[4] (a) First we compute the closure $C(\chi) = \{\chi, \neg \chi, p, \neg p, \mathsf{X}\, p, \neg \mathsf{X}\, p\}$. The subsets of $C(\chi)$ that satisfy the conditions for states of $A_{\neg \chi}$ are

$$\bullet \ \{\chi, p, \neg \, \mathsf{X} \, p\}$$

$$\bullet \ \{\neg \chi, \neg p, \mathsf{X} \, p\}$$

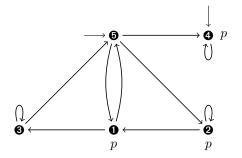
2
$$\{\chi, p, Xp\}$$

$$\mathbf{\Phi} \left\{ \neg \chi, p, \mathsf{X} \, p \right\}$$

where \bullet and \bullet are initial states because they contain $\neg \chi$. The conditions on the transition relation give rise to the following 10 transitions:

	0	0	•	4	6
0 2 3	✓		√		√
0	✓	\checkmark			
0			\checkmark		\checkmark
4				\checkmark	
4	✓	\checkmark		\checkmark	

In a picture:



- i. The trace $\{p\}^\omega$ is accepted because of the path ${\bf 4}^\omega.$
 - ii. The trace $\{p\}\emptyset\{p\}^\omega$ is not accepted because there is no corresponding path in $A_{\neg\chi}$ that starts in an initial state.
 - iii. The trace $\varnothing\{p\}\varnothing\{p\}^\omega$ is accepted because of the path ${\bf 6}{\bf 6}{\bf 6}^\omega$.