

Logik	SS 2024	LVA 703026+703027

Week 10 + 11

June 6, 2024

Solved exercises must be marked and solutions (as a single PDF file) uploaded in OLAT. The (strict) deadline is 7 am on June 6.

Exercises

- $\langle 3 \rangle$ 1. Recall the hidden weighted bit function HWB_n for $n \ge 1$.
 - (a) Compute the algebraic normal form of HWB₃.
 - (b) Is HWB₃ monotone? Is HWB₃ self-dual?
 - (c) Determine all minimal adequate subsets of $\{\oplus, HWB_2, \rightarrow, HWB_3, \bar{}\}$. Here $x \to y = \bar{x} + y$.
- $\langle 3 \rangle$ 2. Consider the model \mathcal{M} :

- (a) Use the CTL model checking algorithm to determine in which states of \mathcal{M} the CTL formula $\varphi = \mathsf{EX} \mathsf{A}[\neg q \mathsf{U} \mathsf{EX} q]$ holds.
- (b) Determine in which states of \mathcal{M} the LTL formula $\psi = (X \neg p) \cup (X q)$ holds.
- (c) For each $1 \leq i \leq 5$ find a CTL formula χ_i which holds only in state *i* of \mathcal{M} .
- $\langle 1 \rangle$ 3. Consider the sequent

 $\forall x (P(x) \lor Q(x)), \exists x \neg Q(x), \forall x (R(x) \rightarrow \neg P(x)) \vdash \exists x \neg R(x)$

Either give a natural deduction proof or find a model which does not satisfy it.

(3) 4. Consider the LTL formula $\chi = p \cup (\neg X p)$.

- (a) Construct the labelled Büchi automaton $A_{\neg \chi}$.
- (b) Which of the following traces are accepted by $A_{\neg \chi}$?

i. $\{p\}^{\omega}$ ii. $\{p\} \varnothing \{p\}^{\omega}$ iii. $\varnothing \{p\} \varnothing \{p\}^{\omega}$