Selected Solutions

(b) Since every state satisfies p, no path satisfies $\mathrm{X} \neg p$. Hence the paths that satisfy ψ are precisely the paths that satisfy $\mathrm{X} q$. All such paths must begin with $1 \rightarrow 3$ or $2 \rightarrow 3$. Since from state 1 there is also the step to state 2 , only state 2 satisfies ψ.

2
3
4

4 (a) First we compute the closure $\mathcal{C}(\chi)=\{\chi, \neg \chi, p, \neg p, \mathrm{X} p, \neg \mathrm{X} p\}$. The subsets of $\mathcal{C}(\chi)$ that satisfy the conditions for states of $A_{\neg \chi}$ are
(1) $\{\chi, p, \neg \mathbf{X} p\}$
(3) $\{\chi, \neg p, \neg \mathrm{X} p\}$
(6 $\{\neg \chi, \neg p, \mathrm{X} p\}$
(2) $\{\chi, p, \mathrm{X} p\}$
(4) $\{\neg \chi, p, \mathrm{X} p\}$
where $\mathbf{4}$ and $\mathbf{6}$ are initial states because they contain $\neg \chi$. The conditions on the transition relation give rise to the following 10 transitions:

In a picture:

(b) i. The trace $\{p\}^{\omega}$ is accepted because of the path $\mathbf{4}^{\omega}$.
ii. The trace $\{p\} \varnothing\{p\}^{\omega}$ is not accepted because there is no corresponding path in $A_{\neg \chi}$ that starts in an initial state.
iii. The trace $\varnothing\{p\} \varnothing\{p\}^{\omega}$ is accepted because of the path © (1) © ${ }^{\omega}$.

