

Logik

SS 2024

LVA 703026 + 703027

Week 12

June 13, 2024

Selected Solutions

1 (b) We can take $\psi_{1,2} = \psi_{1,4} = \psi_{2,3} = \psi_{3,4} = p$. We have $\mathcal{M}, 1 \models Xq$ and $\mathcal{M}, 3 \nvDash Xq$. Hence we take $\psi_{1,3} = Xq$. The states 2 and 4 cannot be distinguished because they admit exactly the same *traces*: $(\{q\}\{p\}^+)^{\omega}$ and $(\{q\}\{p\}^+)^*\{q\}\{p\}^{\omega}$.

2 Consider the model \mathcal{M} :

The formula $\neg A[GF \neg p]$ does hold in state 0 of \mathcal{M} because the path $(0)^{\omega}$ does not satisfy $GF \neg p$. The formula E[FA[Gp]] does not hold in state 0 since neither state 0 nor state 1 satisfies A[Gp].

4 The following derivation can be obtained by DPLL:

	$\parallel \varphi$	
\implies	$\stackrel{d}{r} \parallel arphi$	(decide)
\implies	$\stackrel{d}{r} q \parallel arphi$	(unit propagate)
\implies	$ eg r \parallel arphi$	(backtrack)
\implies	$ eg r \stackrel{d}{p} \parallel arphi$	(decide)
\implies	$ eg r \stackrel{d}{p} s \parallel \varphi$	(unit propagate)
\implies	$\neg r \ \neg p \parallel \ \varphi$	(backtrack)
\implies	$\neg r \neg p \ q \parallel \ \varphi$	(unit propagate)
\implies	fail-state	(fail)

Hence φ is unsatisfiable.

5 (a) We have

5	5	5	2	1	1	1	1	1	1	1	1	1	1
1	1	1	1	2	2	2	2	2	2	2	2	2	2
2	2	2	5	5	5	3	3	3	3	3	3	3	3
4	3	3	3	3	3	5	5	5	5	4	4	4	4
3	4	4	4	4	4	4	4	4	4	5	5	5	5

and so the input (5, 1, 2, 4, 3) is correctly sorted.

(b) The size of the network is 13 and its depth is 8:

:	. :	. : :	. : .	: . :	
	T :	T i i	T IT		
	• :	• : : :	•	: † :	
	•	÷ 🛉	│ ¶ :		•
- + ÷	ł	ҿ÷≜÷	· I ÷ 🕈	<u>-</u>	
:	:	- : :		: :	

(c) No. The input (1, 3, 2, 4, 5) is not sorted:

1	1	1	1	1	1	1	1	1	1	1	1	1	1
3	3	3	3	3	3	3	3	3	3	3	3	3	3
2	2	2	2	2	2	2	2	2	2	2	2	2	2
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5