Selected Solutions

1 (b) We can take $\psi_{1,2}=\psi_{1,4}=\psi_{2,3}=\psi_{3,4}=p$. We have $\mathcal{M}, 1 \vDash \mathrm{X}_{q}$ and $\mathcal{M}, 3 \not \models \mathrm{X} q$. Hence we take $\psi_{1,3}=\mathrm{X} q$. The states 2 and 4 cannot be distinguished because they admit exactly the same traces: $\left(\{q\}\{p\}^{+}\right)^{\omega}$ and $\left(\{q\}\{p\}^{+}\right)^{*}\{q\}\{p\}^{\omega}$.

2 Consider the model \mathcal{M} :

The formula $\neg \mathrm{A}[\mathrm{GF} \neg p]$ does hold in state 0 of \mathcal{M} because the path $(0)^{\omega}$ does not satisfy $\mathrm{GF} \neg p$. The formula $\mathrm{E}[\mathrm{FA}[\mathrm{G} p]]$ does not hold in state 0 since neither state 0 nor state 1 satisfies $\mathrm{A}[\mathrm{G} p]$.The following derivation can be obtained by DPLL:

$$
\begin{aligned}
& \Longrightarrow \quad \begin{array}{llll}
\\
& & & \| \\
r & & \| & \varphi
\end{array} \\
& \Longrightarrow \quad{ }^{d} q \| \varphi \\
& \Longrightarrow \quad \neg r \| \varphi \\
& \Longrightarrow \quad \neg r \stackrel{d}{p} \| \varphi \\
& \Longrightarrow \quad \neg r \stackrel{d}{p} s \| \varphi \\
& \Longrightarrow \quad \neg r \neg p \| \varphi \\
& \Longrightarrow \quad \neg r \neg p q \| \varphi \\
& \Longrightarrow \quad \text { fail-state }
\end{aligned}
$$

Hence φ is unsatisfiable.
(a) We have

and so the input $(5,1,2,4,3)$ is correctly sorted.
(b) The size of the network is 13 and its depth is 8 :

(c) No. The input $(1,3,2,4,5)$ is not sorted:

