## Selected Solutions

1 (a) We obtain the following DPLL derivation:

$$
\begin{aligned}
& \Longrightarrow \quad \begin{array}{llll} 
& & \| & \varphi \\
& 1_{d}^{d} & \| & \varphi
\end{array} \\
& \Longrightarrow \quad \begin{array}{lll}
d & d \\
1 & 2 & \|
\end{array} \\
& \Longrightarrow \quad \begin{array}{llll}
d & d & d \\
1 & 2 & 3
\end{array} \| \varphi \\
& \left.\Longrightarrow \quad \begin{array}{llll}
d & d & d \\
1 & d & 4
\end{array} \right\rvert\,
\end{aligned}
$$

$$
\begin{aligned}
& \Longrightarrow \quad \stackrel{d}{1} \stackrel{d}{2} 4 \neg 56 \quad \| \varphi \\
& \Longrightarrow \quad 1234 \neg 56 \neg 7 \quad \| \varphi \\
& \Longrightarrow \quad \stackrel{d}{d} \stackrel{d}{2} 4 \neg 56 \neg 78 \quad \| \varphi
\end{aligned}
$$

(unit propagate, $\alpha$ )
(unit propagate, $\beta$ )
(unit propagate, $\gamma$ )
(unit propagate, $\delta$ )
(unit propagate, $\epsilon$ )

At this point the clause $\neg 4 \vee \neg 8 \vee 7$ of $\varphi$ is falsified. The above derivation gives rise to the following implication graph:


We obtain the corresponding conflict graph by removing the nodes $\neg 5$ and $\stackrel{d}{2}$.
(b) The atoms of the current decision level are 3, 4, 5, 6, 7 and 8. Starting from the conflict clause $\neg 4 \vee \neg 8 \vee 7$, the following clauses are obtained by resolution:
(1) $\neg 4 \vee \neg 8 \vee 7$
conflict clause
(2) $\neg 4 \vee \neg 6 \vee 7$
resolving (1) with $\epsilon$
(3) $\neg 4 \vee \neg 6$
resolving (2) with $\delta$
(4) $\neg 3 \vee \neg 4$
resolving (3) with $\gamma$
(5) $\neg 1 \vee \neg 3$
resolving (4) with $\alpha$

The last clause $\neg 1 \vee \neg 3$ contains exactly one literal $(\neg 3)$ of the current decision level and thus is a backjump clause. Backjumping according to this clause produces
or

2 (a)

| $y_{0}$ | $\forall x \forall y \forall z(P(x, z) \vee P(f(y, z), a)$ |
| :--- | :--- | premise

3 (a) From the truth tables

| $x$ | $y$ | $z$ | $f(x, y, z)$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 | | $x$ | $\bar{x}$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
|  |  |

we infer that both $f(x, y, z)$ and $\bar{x}$ are self-dual. By Post's adequacy theorem it follows that the set $\left\{f,^{-}\right\}$is not adequate.
(b) From the truth table

| $y$ | $z$ | $x$ | $g(x, y, z)$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

we obtain the binary decision tree


Applying the reduce algorithm produces the desired reduced OBDD


4 (c) Consider the model $\mathcal{M}$ consisting of the set $\{a, b\}$ together with the interpretations $P^{\mathcal{M}}=\{a\}$ and $Q^{\mathcal{M}}=\varnothing$. Then $\mathcal{M} \vDash \forall x \exists y(P(y) \rightarrow Q(x))$ but not $\mathcal{M} \vDash \forall x(\exists y P(y) \rightarrow Q(x))$. Hence $\mathcal{M} \not \models \forall x \exists y(P(y) \rightarrow Q(x)) \rightarrow \forall x(\exists y P(y) \rightarrow Q(x))$ and we conclude that the given formula is not valid.

