

Logik	SS 2024	LVA 703026+703027	
Week 13		June 20, 2024	

Selected Solutions

1 (a) We obtain the following DPLL derivation:

	$\parallel \varphi$	
(decide)	$\begin{array}{c} \overset{d}{1} & \parallel & arphi \end{array}$	\implies
(decide)	$egin{array}{cccc} {}^{d} {}^{d} {}^{d} {}^{l} 1 {}^{2} {}^{l} {}^{l} {}^{l} arphi {}^{d} arphi {}^{d} arphi {}^{l} arphi $	\implies
(decide)	$egin{array}{cccc} d&d&d\ 1&2&3&\parallel&arphi \end{array}$	\implies
$(\text{unit propagate, } \alpha)$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	\implies
$(\text{unit propagate}, \beta)$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	\implies
$(\text{unit propagate}, \gamma)$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	\implies
$(\text{unit propagate}, \delta)$	$\begin{smallmatrix} d & d & d \\ 1 & 2 & 3 & 4 & \neg 5 & 6 & \neg 7 & \parallel & \varphi \end{smallmatrix}$	\implies
$(\text{unit propagate}, \epsilon)$	$\begin{smallmatrix} d & d \\ 2 & 3 \end{smallmatrix} 4 \ \neg 5 \enspace 6 \ \neg 7 \enspace 8 \hspace{0.2cm} \parallel \hspace{0.2cm} \varphi$	\implies

At this point the clause $\neg 4 \lor \neg 8 \lor 7$ of φ is falsified. The above derivation gives rise to the following implication graph:

...

We obtain the corresponding conflict graph by removing the nodes $\neg 5$ and $\overset{d}{2}$.

(b) The atoms of the current decision level are 3, 4, 5, 6, 7 and 8. Starting from the conflict clause $\neg 4 \lor \neg 8 \lor 7$, the following clauses are obtained by resolution:

$(1) \ \neg 4 \lor \neg 8 \lor 7$	conflict clause
$(2) \neg 4 \lor \neg 6 \lor 7$	resolving (1) with ϵ
$(3) \neg 4 \lor \neg 6$	resolving (2) with δ
$(4) \neg 3 \lor \neg 4$	resolving (3) with γ
(5) $\neg 1 \lor \neg 3$	resolving (4) with α

The last clause $\neg 1 \lor \neg 3$ contains exactly one literal ($\neg 3$) of the current decision level and thus is a backjump clause. Backjumping according to this clause produces

2 (a) $\forall x \, \forall y \, \forall z \; (P(x,z) \vee P(f(y,z),a)$ 1 premise $\mathbf{2}$ y_0 3 $\forall y \, \forall z \, (P(f(y_0, a), z) \vee P(f(y, z), a)$ $\forall e 1$ $\forall z \left(P(f(y_0, a), z) \lor P(f(y_0, z), a) \right)$ 4 $\forall \, e \, \mathbf{3}$ 5 $P(f(y_0, a), a) \lor P(f(y_0, a), a)$ $\forall e 4$ 6 $P(f(y_0, a), a)$ assumption assumption 7 $P(f(y_0, a), a)$ 8 $P(f(y_0, a), a)$ $\lor e 5, 6, 7$ $\overline{\forall y \, P(f(y,a),a)}$ 9 $\forall i \ 2-8$

3 (a) From the truth tables

 \mathbf{or}

x	y	z	f(x,y,z)	x	\overline{x}
0	0	0	1	0	1
0	0	1	1	1	0
0	1	0	0		'
0	1	1	1		
1	0	0	0		
1	0	1	1		
1	1	0	0		
1	1	1	0		
			1		

we infer that both f(x, y, z) and \overline{x} are self-dual. By Post's adequacy theorem it follows that the set $\{f, \overline{}\}$ is not adequate.

(b) From the truth table

y	z	x	g(x, y, z)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

we obtain the binary decision tree

(backjump)

Applying the reduce algorithm produces the desired reduced OBDD:

 $\begin{array}{|c|c|} \hline \hline (c) \end{array} \begin{array}{c} \text{Consider the model } \mathcal{M} \text{ consisting of the set } \{a,b\} \text{ together with the interpretations } P^{\mathcal{M}} = \{a\} \\ \text{ and } Q^{\mathcal{M}} = \varnothing. \end{array} \begin{array}{c} \text{Then } \mathcal{M} \vDash \forall x \exists y \ (P(y) \rightarrow Q(x)) \text{ but not } \mathcal{M} \vDash \forall x \ (\exists y \ P(y) \rightarrow Q(x)). \end{array} \end{array} \begin{array}{c} \text{Hence} \\ \mathcal{M} \nvDash \forall x \exists y \ (P(y) \rightarrow Q(x)) \rightarrow \forall x \ (\exists y \ P(y) \rightarrow Q(x)) \text{ and we conclude that the given formula is not valid.} \end{array}$