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1 (a) We obtain the following DPLL derivation:
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At this point the clause ¬4 ∨ ¬8 ∨ 7 of φ is falsified. The above derivation gives rise to the following
implication graph:
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We obtain the corresponding conflict graph by removing the nodes ¬5 and
d
2.

(b) The atoms of the current decision level are 3, 4, 5, 6, 7 and 8. Starting from the conflict clause
¬4 ∨ ¬8 ∨ 7, the following clauses are obtained by resolution:

(1) ¬4 ∨ ¬8 ∨ 7 conflict clause

(2) ¬4 ∨ ¬6 ∨ 7 resolving (1) with ϵ

(3) ¬4 ∨ ¬6 resolving (2) with δ

(4) ¬3 ∨ ¬4 resolving (3) with γ

(5) ¬1 ∨ ¬3 resolving (4) with α

The last clause ¬1 ∨ ¬3 contains exactly one literal (¬3) of the current decision level and thus is a
backjump clause. Backjumping according to this clause produces
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2 (a) 1 ∀x ∀y ∀z (P (x, z) ∨ P (f(y, z), a) premise

2 y0
3 ∀y ∀z (P (f(y0, a), z) ∨ P (f(y, z), a) ∀ e 1

4 ∀z (P (f(y0, a), z) ∨ P (f(y0, z), a) ∀ e 3

5 P (f(y0, a), a) ∨ P (f(y0, a), a) ∀ e 4

6 P (f(y0, a), a) assumption

7 P (f(y0, a), a) assumption

8 P (f(y0, a), a) ∨e 5, 6, 7

9 ∀y P (f(y, a), a) ∀ i 2 – 8

3 (a) From the truth tables

x y z f(x, y, z)

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

x x

0 1

1 0

we infer that both f(x, y, z) and x are self-dual. By Post’s adequacy theorem it follows that the set
{f, } is not adequate.

(b) From the truth table

y z x g(x, y, z)

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

we obtain the binary decision tree
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Applying the reduce algorithm produces the desired reduced OBDD:
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4 (c) Consider the model M consisting of the set {a, b} together with the interpretations PM = {a}
and QM = ∅. Then M ⊨ ∀x ∃y (P (y) → Q(x)) but not M ⊨ ∀x (∃y P (y) → Q(x)). Hence
M ⊭ ∀x ∃y (P (y) → Q(x)) → ∀x (∃y P (y) → Q(x)) and we conclude that the given formula is not
valid.


