

SS 2024 lecture 5

Logic

Diana Gründlinger

Aart Middeldorp

Fabian Mitterwallner

Alexander Montag

Johannes Niederhauser

Daniel Rainer

with session ID 0992 9580 for anonymous questions

ars.uibk.ac.at

- **1. Summary of Previous Lecture**
- 2. Algorithms for Binary Decision Diagrams
- 3. Intermezzo
- 4. Hidden Weighted Bit Function
- 5. Predicate Logic
- 6. Further Reading

Theorem

natural deduction is **complete**: $\varphi_1, \varphi_2, \dots, \varphi_n \vDash \psi \implies \varphi_1, \varphi_2, \dots, \varphi_n \vdash \psi$ is valid

Definitions

- clause is set of literals $\{\ell_1, \ldots, \ell_n\}$
- denotes empty clause
- clausal form is set of clauses $\{C_1, \ldots, C_m\}$
- ► literals ℓ_1 and ℓ_2 are complementary if $\ell_1 = \ell_2^c = \begin{cases} \neg p & \text{if } \ell_2 = p \\ p & \text{if } \ell_2 = \neg p \end{cases}$
- ▶ clauses C_1 and C_2 clash on literal ℓ if $\ell \in C_1$ and $\ell^c \in C_2$
- ▶ resolvent of clashing clauses C_1 and C_2 on literal ℓ is clause $(C_1 \setminus \{\ell\}) \cup (C_2 \setminus \{\ell^c\})$

Resolution

input: clausal form S

output: yes if S is satisfiable no if S is unsatisfiable

① repeatedly add resolvent of clashing clauses in S

return no as soon as empty clause is derived

③ return yes if all clashing clauses have been resolved

Definition

refutation of *S* is resolution derivation of \Box from *S*

Theorem

- resolution is terminating
- ▶ resolution is sound and complete: S admits refutation ↔ clausal form S is unsatisfiable

Remark

binary decision diagram (BDD) is directed acyclic graph (dag) representing boolean function

Definitions

- ▶ BDD is reduced if C1, C2, C3 are not applicable
 - C1 remove duplicate terminals
 - C2 remove redundant tests
 - C3 remove duplicate non-terminals
- ▶ BDD *B* is ordered if there exists order $[x_1, ..., x_n]$ of variables in *B* such that

• orders o_1 and o_2 are compatible if o_1 and o_2 are subsequences of some order o

Theorem

reduced OBDD representation of boolean function for given order is unique

Corollary

checking

- satisfiability
- validity
- equivalence

is trivial for reduced OBDDs (with compatible variable orderings)

Part I: Propositional Logic

algebraic normal forms, binary decision diagrams, conjunctive normal forms, DPLL, Horn formulas, natural deduction, Post's adequacy theorem, resolution, SAT, semantics, sorting networks, soundness and completeness, syntax, Tseitin's transformation

Part II: Predicate Logic

natural deduction, quantifier equivalences, resolution, semantics, Skolemization, syntax, undecidability, unification

Part III: Model Checking

adequacy, branching-time temporal logic, CTL*, fairness, linear-time temporal logic, model checking algorithms, symbolic model checking

Example (Cardinality Constraints using BDDs)

 $2 \leqslant x_1 + \cdots + x_9 \leqslant 3$

1. Summary of Previous Lecture

2. Algorithms for Binary Decision Diagrams

Reduce Restrict Apply Quantification

- 3. Intermezzo
- 4. Hidden Weighted Bit Function
- 5. Predicate Logic
- 6. Further Reading

Reduce Algorithm

input: • OBDD

output: • equivalent reduced OBDD with compatible variable ordering

Idea

assign natural number id(n) to every node n while traversing input BDD layer by layer in bottom-up manner

lo

Notation

BDD B_f of boolean function f has root node r_f

$$(r_f)$$
 hi (r_f)

Reduce Algorithm

input: • OBDD

output: • equivalent reduced OBDD with compatible variable ordering

- assign #0 to all terminal nodes labelled 0
- assign #1 to all terminal nodes labelled 1
- non-terminal node n with variable x:

(1) if id(lo(n)) = id(hi(n)) then id(n) = id(lo(n))

(2) if there exists node $m \neq n$ with same variable x and id(m) defined such that

id(lo(m)) = id(lo(n)) and id(hi(m)) = id(hi(n))

then id(n) = id(m)

③ otherwise id(n) = next unused natural number

share nodes with same label

Example

1. Summary of Previous Lecture

2. Algorithms for Binary Decision Diagrams

Reduce Restrict Apply Quantification

- 3. Intermezzo
- 4. Hidden Weighted Bit Function
- 5. Predicate Logic
- 6. Further Reading

Definition

restriction of boolean function *f* with respect to variable *x*:

f[0/x] replace all occurrences of x in f by 0

f[1/x] replace all occurrences of x in f by 1

Example

- $f = x \cdot (y + \overline{x})$
- $\flat \ f[0/x] = 0 \cdot (y + \overline{0}) = 0$
- $\models f[1/x] = 1 \cdot (y + \overline{1}) = y$
- $\blacktriangleright f[0/y] = x \cdot (0 + \overline{x}) = 0$
- $\blacktriangleright f[1/y] = x \cdot (1 + \overline{x}) = x$

 $f = \overline{x} \cdot f[0/x] + x \cdot f[1/x]$ for every boolean function f and variable x

Notational Convention

operator precedence $\cdot > \oplus, +$

Restrict Algorithm

- input: OBDD B_f , variable x, value $i \in \{0, 1\}$
- output: reduced OBDD of f[i/x] with compatible variable ordering

① redirect every incoming edge of node n labelled with x to

- ► lo(n) if i = 0
- hi(n) if i = 1

② reduce resulting OBDD

Example

 $f = \overline{x}yz + x(y+z) \qquad \qquad f[0/y] \qquad \qquad f[1/y]$

inaccessible nodes are taken care of by garbage collector

1. Summary of Previous Lecture

2. Algorithms for Binary Decision Diagrams

Reduce Restrict Apply Quantification

3. Intermezzo

- 4. Hidden Weighted Bit Function
- 5. Predicate Logic
- 6. Further Reading

Notation

BDD B_f of boolean function f has root node r_f

rf $lo(r_f)$ f[0/x] $hi(r_f)$ f[1/x]

Apply Algorithm

- input: binary operation \star on boolean functions
 - OBDDs B_f and B_g with compatible variable orderings
- output: reduced OBDD of $f \star g$ with compatible variable ordering

$$f \star g = \overline{x} \cdot (f \star g)[0/x] + x \cdot (f \star g)[1/x]$$

= $\overline{x} \cdot \underbrace{(f[0/x] \star g[0/x])}_{} + x \cdot \underbrace{(f[1/x] \star g[1/x])}_{}$

simpler than $f \star g$

Apply Algorithm apply (\star, B_f, B_g)

- **case I** r_f , r_g terminal nodes with labels ℓ_f , ℓ_g **return** $\ell_f \star \ell_g$
- **case II** r_f , r_g non-terminal nodes with same label x

Apply Algorithm apply (\star, B_f, B_g)

return

return

case III *r_f* non-terminal node with label *x*

 r_g terminal node or non-terminal node with label y > x

 $(\star, \log(r_f), r_g) = \operatorname{apply}(\star, \operatorname{hi}(r_f), r_g)$

case IV r_g non-terminal node with label x

 r_f terminal node or non-terminal node with label y > x

 $apply(\star, r_f, lo(r_g)) \qquad apply(\star, r_f, hi(r_g))$

followed by application of reduce algorithm

Example

1. Summary of Previous Lecture

2. Algorithms for Binary Decision Diagrams

Reduce Restrict Apply Quantification

3. Intermezzo

- 4. Hidden Weighted Bit Function
- 5. Predicate Logic
- 6. Further Reading

Definition

quantification of boolean function *f* over variable *x*:

 $\exists x.f \qquad f[0/x] + f[1/x]$ $\forall x.f \qquad f[0/x] \cdot f[1/x]$

Summary					
function f	OBDD B _f	function <i>f</i>	OBDD B _f	function <i>f</i>	OBDD B _f
0	0	g+h	$apply(+, B_g, B_h)$	g[0/x]	$restrict(0, x, B_g)$
1	1	$g \oplus h$	$apply(\oplus, B_g, B_h)$	g[1/x]	$restrict(1, x, B_g)$
X	X	g ∙ h	$apply(\cdot, B_g, B_h)$	$\exists x.g$	$apply(+, B_{g[0/x]}, B_{g[1/x]})$
	0 1	\overline{g}	$apply(\oplus, B_g, B_1)$	$\forall x.g$	$apply(\cdot,B_{g[0/x]},B_{g[1/x]})$

BoolTool

by Patrick Muxel (2004), Philipp Ruff (2006), Caroline Terzer (2006), Markus Plattner (2007), Elias Zischg (2012)

BoolTool Reloaded

by Martin Neuner (2023)

- **1. Summary of Previous Lecture**
- 2. Algorithms for Binary Decision Diagrams

3. Intermezzo

- 4. Hidden Weighted Bit Function
- 5. Predicate Logic
- 6. Further Reading

Furticify with session ID 0992 9580

Questions

Which of the following statements are true ?

- A The output of restrict has fewer nodes than the input.
- **B** The number of edges in a reduced OBDD depends on the order.
- **C** An OBDD for a formula with *n* variables has at most $2^{n+1} 1$ nodes.
- **D** Negating a reduced OBDD does not change the number of nodes.
- **E** A reduced OBDD with 12 nodes containing up to 4 variables exists.

- **1. Summary of Previous Lecture**
- 2. Algorithms for Binary Decision Diagrams
- 3. Intermezzo

4. Hidden Weighted Bit Function

- 5. Predicate Logic
- 6. Further Reading

Definitions

•
$$\operatorname{wt}(x_1, \dots, x_n) = \sum_{i=1}^n x_i$$

• $\operatorname{HWB}_n(x_1, \dots, x_n) = \begin{cases} 0 & \text{if } \operatorname{wt}(x_1, \dots, x_n) = 0 \\ x_{\operatorname{wt}(x_1, \dots, x_n)} & \text{otherwise} \end{cases}$

Example

$x_1 x_2 x_3 x_4$	HWB_4						
0 0 0 0	0	0 1 0 0	0	1 0 0 0	1	1 1 0 0	1
0 0 0 1	0	0 1 0 1	1	1 0 0 1	0	1 1 0 1	0
0 0 1 0	0	0 1 1 0	1	1 0 1 0	0	1 1 1 0	1
0 0 1 1	0	0 1 1 1	1	1011	1	1 1 1 1	1

Example

free (read-1) BDD

Theorem

- every reduced OBDD computing HWB_n has size exponential in n
- some reduced BDD computing HWB_n has size guadratic in n•

- **1. Summary of Previous Lecture**
- 2. Algorithms for Binary Decision Diagrams
- 3. Intermezzo
- 4. Hidden Weighted Bit Function

5. Predicate Logic

Introduction Syntax Free and Bound Variables Substitution

6. Further Reading

Definition

propositional formulas are built from

- atoms $p, q, r, p_1, p_2, ...$
- ▶ bottom ⊥
- ▶ top T
- ▶ negation \neg $\neg p$ "not p"
- ► conjunction \land $p \land q$ "p and q"
- ► disjunction \lor $p \lor q$ "p or q"
- ▶ implication \rightarrow $p \rightarrow q$ "if p then q"

according to following Backus-Naur Form:

$$\varphi ::= p \mid \perp \mid \top \mid (\neg \varphi) \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi) \mid (\varphi \to \varphi)$$

Propositional Logic is Not Very Expressive

statements like

- Mary admires every professor
- some professor admires Mary
- Mary admires herself
- no student attended every lecture
- no lecture was attended by every student
- no lecture was attended by any student

cannot be expressed adequately in propositional logic

concept	notation	intended meaning
predicate symbols	P, Q, R, A, B,	relations over domain
function symbols	f, g, h, a, b,	functions over domain
variables	х, у, z,	(unspecified) elements of domain
quantifiers	∀,∃	for all, for some
connectives	\neg , \land , \lor , \rightarrow	

Remarks

- function and predicate symbols take fixed number of arguments (arity)
- function and predicate symbols of arity 0 are called constants
- equality) is designated predicate symbol of arity 2

Example (Exercise 2.1.1)

- Mary admires every professor
- some professor admires Mary
- Mary admires herself
- no student attended every lecture
- no lecture was attended by every student
- no lecture was attended by any student
- A(x,y)x admires yP(x)x is professorL(x)x is lectureB(x,y)x attended yS(x)x is studentmMary
- A, B binary predicate symbols
- P, S, L unary predicate symbols
- *m* function symbol of arity 0

- **1. Summary of Previous Lecture**
- 2. Algorithms for Binary Decision Diagrams
- 3. Intermezzo
- 4. Hidden Weighted Bit Function

5. Predicate Logic

Introduction Syntax Free and Bound Variables Substitution

6. Further Reading

Definitions

terms are built from function symbols and variables according to following BNF grammar:

$$t ::= x \mid c \mid f(t, \ldots, t)$$

formulas are built from predicate symbols, terms, connectives and quantifiers according to following BNF grammar:

 $\varphi ::= P | P(t, \ldots, t) | (t = t) | \perp | \top | (\neg \varphi) | (\varphi \land \varphi) | (\varphi \lor \varphi) | (\varphi \to \varphi) | (\forall x \varphi) | (\exists x \varphi)$

- notational conventions:
 - ▶ binding precedence = > \neg , \forall , \exists > \land , \lor > \rightarrow
 - omit outer parentheses
 - \rightarrow , \wedge , \vee are right-associative

Example (Exercise 2.1.1, cont'd)

A(x,y) x admires y B(x,y) x attended y

- $P(x) \quad x \text{ is professor} \\ S(x) \quad x \text{ is student}$
- Mary admires every professor
- some professor admires Mary
- Mary admires herself
- no student attended every lecture
- no lecture was attended by every student
- no lecture was attended by any student

m Mary $\forall x (P(x) \rightarrow A(m, x))$ $\exists x (P(x) \land A(x,m))$ A(m,m) $\neg \exists x (S(x) \land \forall y (L(y) \rightarrow B(x, y)))$ $\neg \exists x (L(x) \land \forall y (S(y) \rightarrow B(y, x)))$ $\forall x \forall y (L(x) \land S(y) \rightarrow \neg B(y, x))$

L(x)

x is lecture

Parse Tree

$\exists x (\exists y ((A(y,m) \lor A(m,y)) \land B(x,y)) \land \exists y (B(x,y) \land \exists z (A(y,z) \lor B(y,z))))$

- **1. Summary of Previous Lecture**
- 2. Algorithms for Binary Decision Diagrams
- 3. Intermezzo
- 4. Hidden Weighted Bit Function

5. Predicate Logic

Introduction Syntax Free and Bound Variables Substitution

6. Further Reading

Definitions

- ► occurrence of variable x in formula φ is free in φ if it is leaf node in parse tree of φ such that there is no node ∀x or ∃x on path to root node
- occurrence of variable x in formula φ is **bound** if this occurrence is not free in φ
- ► scope of occurrence of $\forall x \ (\exists x)$ in formula $\forall x \varphi \ (\exists x \varphi)$ is φ except any subformula of φ of form $\forall x \psi$ or $\exists x \psi$

Example

bound occurrences of variables

_A_M_ 42/48 Example

scope of $\forall x$

_A_M_ 42/48

- **1. Summary of Previous Lecture**
- 2. Algorithms for Binary Decision Diagrams
- 3. Intermezzo
- 4. Hidden Weighted Bit Function

5. Predicate Logic

Introduction Syntax Free and Bound Variables Substitution

6. Further Reading

Definition

 $\varphi[t/x]$ is result of replacing all free occurrences of x in φ by t

Example

 $arphi = orall \mathbf{x} \left(\mathbf{P}(\mathbf{x}) \land \mathbf{Q}(\mathbf{y})
ight)
ightarrow
egree \mathbf{P}(\mathbf{x}) \lor \exists \mathbf{y} \, \mathbf{Q}(\mathbf{y})$ $t = f(a, g(\mathbf{x}))$

 $\varphi[t/x] = \forall x (P(x) \land Q(y)) \to \neg P(f(a, g(x))) \lor \exists y Q(y)$ $\varphi[t/y] = \forall x (P(x) \land Q(f(a, g(x)))) \to \neg P(x) \lor \exists y Q(y)$

undesired effect: x is captured by $\forall x$

Definition

term t is free for x in φ if variables in t do not become bound in $\varphi[t/x]$

Example

$$arphi = orall x \left(\left(orall z \left(P(z) \land Q(y)
ight)
ight)
ightarrow \neg P(x) \lor Q(z)
ight)$$

 $t = f(y, z)$

- t is free for x in φ
- t is not free for y in φ
- *t* is free for *z* in φ

Definition

sentence is formula without free variables

- **1. Summary of Previous Lecture**
- 2. Algorithms for Binary Decision Diagrams
- 3. Intermezzo
- 4. Hidden Weighted Bit Function
- 5. Predicate Logic
- 6. Further Reading

Huth and Ryan

- Section 2.1
- Section 2.2
- Section 6.2

Extensions and Variants of OBDDs

- Algorithms and Data Structures in VLSI Design Christoph Meinel and Thorsten Theobald Springer-Verlag 1998
 www.hpi.uni-potsdam.de/fileadmin/hpi/FG_ITS/books/OBDD-Book.pdf
- Zero-Suppressed BDDs and Their Applications Shin-ichi Minato International Journal on Software Tools for Technology Transfer 3, pp. 156–170, 2001 doi: 10.1007/s100090100038

Important Concepts

- apply algorithm
- bound occurrence
- existential quantifier
- free BDD
- free occurrence
- function symbol

- hidden weighted bit function
- predicate symbol
- quantification
- quantifier
- reduce algorithm
- restrict algorithm

- restriction
- sentence
- scope
- Shannon expansion
- universal quantifier
- variable

homework for April 18