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Theorem

natural deduction is complete: φ1, φ2, . . . , φn ⊨ ψ =⇒ φ1, φ2, . . . , φn ⊢ ψ is valid

Definitions

▶ clause is set of literals {ℓ1, . . . , ℓn}
▶ 2 denotes empty clause

▶ clausal form is set of clauses {C1, . . . , Cm}

▶ literals ℓ1 and ℓ2 are complementary if ℓ1 = ℓc2 =

{
¬p if ℓ2 = p

p if ℓ2 = ¬p
▶ clauses C1 and C2 clash on literal ℓ if ℓ ∈ C1 and ℓc ∈ C2

▶ resolvent of clashing clauses C1 and C2 on literal ℓ is clause (C1 \ {ℓ}) ∪ (C2 \ {ℓc})
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Resolution

input: clausal form S

output: yes if S is satisfiable no if S is unsatisfiable

1 repeatedly add resolvent of clashing clauses in S

2 return no as soon as empty clause is derived

3 return yes if all clashing clauses have been resolved

Definition

refutation of S is resolution derivation of 2 from S

Theorem

▶ resolution is terminating

▶ resolution is sound and complete: S admits refutation ⇐⇒ clausal form S is unsatisfiable
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Remark

binary decision diagram (BDD) is directed acyclic graph (dag) representing boolean function

Definitions

▶ BDD is reduced if C1, C2, C3 are not applicable

C1 remove duplicate terminals

C2 remove redundant tests

C3 remove duplicate non-terminals

▶ BDD B is ordered if there exists order [x1, . . . , xn ] of variables in B such that

i < j for all edges

xi

xj

and

xi

xj

in B

▶ orders o1 and o2 are compatible if o1 and o2 are subsequences of some order o
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Theorem

reduced OBDD representation of boolean function for given order is unique

Corollary

checking

▶ satisfiability

▶ validity

▶ equivalence

is trivial for reduced OBDDs (with compatible variable orderings)
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Part I: Propositional Logic

algebraic normal forms, binary decision diagrams, conjunctive normal forms, DPLL, Horn

formulas, natural deduction, Post’s adequacy theorem, resolution, SAT, semantics, sorting

networks, soundness and completeness, syntax, Tseitin’s transformation

Part II: Predicate Logic

natural deduction, quantifier equivalences, resolution, semantics, Skolemization, syntax,

undecidability, unification

Part III: Model Checking

adequacy, branching-time temporal logic, CTL∗, fairness, linear-time temporal logic, model

checking algorithms, symbolic model checking
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Example (Cardinality Constraints using BDDs)

2 ⩽ x1 + · · ·+ x9 ⩽ 3

x1 x2 x3 x4 x5 x6 x7 x8 x9 0

x2 x3 x4 x5 x6 x7 x8 x9 0

x3 x4 x5 x6 x7 x8 x9 1

x4 x5 x6 x7 x8 x9 1

0 0 0 0 0 0
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Reduce Algorithm

input: • OBDD

output: • equivalent reduced OBDD with compatible variable ordering

Idea

assign natural number id(n) to every node n while traversing input BDD layer by layer in

bottom-up manner

Notation

BDD Bf of boolean function f has root node rf x rf

lo(rf ) hi(rf )
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Reduce Algorithm

input: • OBDD

output: • equivalent reduced OBDD with compatible variable ordering

▶ assign #0 to all terminal nodes labelled 0

▶ assign #1 to all terminal nodes labelled 1

▶ non-terminal node n with variable x :

1 if id(lo(n)) = id(hi(n)) then id(n) = id(lo(n))

2 if there exists node m ̸= n with same variable x and id(m) defined such that

id(lo(m)) = id(lo(n)) and id(hi(m)) = id(hi(n))

then id(n) = id(m)

3 otherwise id(n) = next unused natural number

▶ share nodes with same label
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Example
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Definition

restriction of boolean function f with respect to variable x :

f [0/x ] replace all occurrences of x in f by 0

f [1/x ] replace all occurrences of x in f by 1

Example

f = x · (y+ x)

▶ f [0/x ] = 0 · (y+ 0) = 0

▶ f [1/x ] = 1 · (y+ 1) = y

▶ f [0/y ] = x · (0 + x) = 0

▶ f [1/y ] = x · (1 + x) = x
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Theorem (Shannon expansion)

f = x · f [0/x ] + x · f [1/x ] for every boolean function f and variable x

Notational Convention

operator precedence · > ⊕, +

Restrict Algorithm

input: • OBDD Bf , variable x, value i ∈ {0,1}
output: • reduced OBDD of f [ i/x ] with compatible variable ordering

1 redirect every incoming edge of node n labelled with x to

▶ lo(n) if i = 0

▶ hi(n) if i = 1

2 reduce resulting OBDD
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Example

x

y y

z

0 1

x

y y

z

0 1

x

y y

z

0 1

f = xyz + x(y+ z) f [0/y ] f [1/y ]

inaccessible nodes are taken care of by garbage collector
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Notation

BDD Bf of boolean function f has root node rf x rf

lo(rf )f [0/x ] hi(rf ) f [1/x ]

Apply Algorithm

input: • binary operation ⋆ on boolean functions

• OBDDs Bf and Bg with compatible variable orderings

output: • reduced OBDD of f ⋆g with compatible variable ordering

f ⋆g = x · (f ⋆g)[0/x ] + x · (f ⋆g)[1/x ]
= x · (f [0/x ] ⋆g[0/x ])︸ ︷︷ ︸ + x · (f [1/x ] ⋆g[1/x ])︸ ︷︷ ︸

simpler than f ⋆g
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Apply Algorithm apply(⋆,Bf ,Bg)

case I rf , rg terminal nodes with labels ℓf , ℓg

return ℓf ⋆ ℓg

case II rf , rg non-terminal nodes with same label x

return x rf

apply(⋆, lo(rf ), lo(rg)) apply(⋆,hi(rf ),hi(rg))
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Apply Algorithm apply(⋆,Bf ,Bg)

case III rf non-terminal node with label x

rg terminal node or non-terminal node with label y > x

return x rf

apply(⋆, lo(rf ), rg) apply(⋆,hi(rf ), rg)

case IV rg non-terminal node with label x

rf terminal node or non-terminal node with label y > x

return x rg

apply(⋆, rf , lo(rg)) apply(⋆, rf ,hi(rg))

followed by application of reduce algorithm
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Example

apply(+, x1 R1

x2R2

x3 R3

x4R4

0R5 1 R6

, x1 S1

x3 S2

x4S3

0S4 1 S5

) R1,S1

R2,S3

R3,S3 R3,S2

R6,S3 R4,S3

R6,S4 R6,S5 R5,S4
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Definition

quantification of boolean function f over variable x :

▶ ∃ x.f f [0/x ] + f [1/x ]

▶ ∀ x.f f [0/x ] · f [1/x ]

Summary

function f OBDD Bf function f OBDD Bf function f OBDD Bf

0 0 g + h apply(+,Bg,Bh) g[0/x ] restrict(0, x,Bg)

1 1 g ⊕ h apply(⊕,Bg,Bh) g[1/x ] restrict(1, x,Bg)

x x

0 1

g · h apply( · ,Bg,Bh) ∃ x.g apply(+,Bg [0/x ],Bg [1/x ])

g apply(⊕,Bg,B1) ∀ x.g apply( · ,Bg [0/x ],Bg [1/x ])
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Demo

BoolTool

by Patrick Muxel (2004), Philipp Ruff (2006), Caroline Terzer (2006), Markus Plattner (2007),

Elias Zischg (2012)

BoolTool Reloaded

by Martin Neuner (2023)

SS 2024 Logic lecture 5 2. Algorithms for Binary Decision Diagrams Demo 25/48

http://cl-informatik.uibk.ac.at/software/booltool/
https://booltool-informatik.uibk.ac.at/


Outline

1. Summary of Previous Lecture

2. Algorithms for Binary Decision Diagrams

3. Intermezzo

4. Hidden Weighted Bit Function

5. Predicate Logic

6. Further Reading

SS 2024 Logic lecture 5 3. Intermezzo 26/48



with session ID 0992 9580

Questions

Which of the following statements are true ?

A The output of restrict has fewer nodes than the input.

B The number of edges in a reduced OBDD depends on the order.

C An OBDD for a formula with n variables has at most 2n+1 − 1 nodes.

D Negating a reduced OBDD does not change the number of nodes.

E A reduced OBDD with 12 nodes containing up to 4 variables exists.
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Definitions

▶ wt(x1, . . . , xn) =
n∑

i=1

xi

▶ HWBn(x1, . . . , xn) =

{
0 if wt(x1, . . . , xn) = 0

xwt(x1,...,xn) otherwise

Example

x1 x2 x3 x4 HWB4 x1 x2 x3 x4 HWB4 x1 x2 x3 x4 HWB4 x1 x2 x3 x4 HWB4

0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 1

0 0 0 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 1 0

0 0 1 0 0 0 1 1 0 1 1 0 1 0 0 1 1 1 0 1

0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1
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Example

x1

x2 x2

x3 x3 x3

x4 x4

0 1

x4

x3 x1

x1 x2 x3

0 1

reduced OBDD free (read-1) BDD

Theorem

▶ every reduced OBDD computing HWBn has size exponential in n

▶ some reduced BDD computing HWBn has size quadratic in n
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Definition

propositional formulas are built from

▶ atoms p, q, r, p1, p2, . . .

▶ bottom ⊥
▶ top ⊤
▶ negation ¬ ¬p "not p"

▶ conjunction ∧ p ∧ q "p and q"

▶ disjunction ∨ p ∨ q "p or q"

▶ implication → p → q "if p then q"

according to following Backus – Naur Form:

φ ::= p | ⊥ | ⊤ | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ)
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Propositional Logic is Not Very Expressive

statements like

▶ Mary admires every professor

▶ some professor admires Mary

▶ Mary admires herself

▶ no student attended every lecture

▶ no lecture was attended by every student

▶ no lecture was attended by any student

cannot be expressed adequately in propositional logic
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concept notation intended meaning

predicate symbols P, Q, R, A, B, . . . relations over domain

function symbols f , g, h, a, b, . . . functions over domain

variables x, y, z, . . . (unspecified) elements of domain

quantifiers ∀, ∃ for all, for some

connectives ¬, ∧, ∨, →

Remarks

▶ function and predicate symbols take fixed number of arguments (arity)

▶ function and predicate symbols of arity 0 are called constants

▶ = (equality) is designated predicate symbol of arity 2
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Example (Exercise 2.1.1)

▶ Mary admires every professor

▶ some professor admires Mary

▶ Mary admires herself

▶ no student attended every lecture

▶ no lecture was attended by every student

▶ no lecture was attended by any student

A(x, y) x admires y P(x) x is professor L(x) x is lecture

B(x, y) x attended y S(x) x is student m Mary

A, B binary predicate symbols

P, S, L unary predicate symbols

m function symbol of arity 0
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Definitions

▶ terms are built from function symbols and variables according to following BNF grammar:

t ::= x | c | f(t, . . . , t)

▶ formulas are built from predicate symbols, terms, connectives and quantifiers according to

following BNF grammar:

φ ::= P | P(t, . . . , t) | (t = t) | ⊥ | ⊤ | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ) | (∀ x φ) | (∃ x φ)

▶ notational conventions:

▶ binding precedence = > ¬, ∀, ∃ > ∧, ∨ > →

▶ omit outer parentheses

▶ →, ∧, ∨ are right-associative
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Example (Exercise 2.1.1, cont’d)

A(x, y) x admires y P(x) x is professor L(x) x is lecture

B(x, y) x attended y S(x) x is student m Mary

▶ Mary admires every professor ∀ x (P(x) → A(m, x))

▶ some professor admires Mary ∃ x (P(x) ∧ A(x,m))

▶ Mary admires herself A(m,m)

▶ no student attended every lecture ¬∃ x (S(x) ∧ ∀ y (L(y) → B(x, y)))

▶ no lecture was attended by every student ¬∃ x (L(x) ∧ ∀ y (S(y) → B(y, x)))

▶ no lecture was attended by any student ∀ x ∀ y (L(x) ∧ S(y) → ¬B(y, x))
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Parse Tree

∃ x (∃ y ((A(y,m) ∨ A(m, y)) ∧ B(x, y)) ∧ ∃ y (B(x, y) ∧ ∃ z (A(y, z) ∨ B(y, z))))

∃ x

∧

∃ y

∧

∨

A

y m

A

m y

B

x y

∃ y

∧

B

x y

∃ z

∨

A

y z

B

y z
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Definitions

▶ occurrence of variable x in formula φ is free in φ if it is leaf node in parse tree of φ such

that there is no node ∀ x or ∃ x on path to root node

▶ occurrence of variable x in formula φ is bound if this occurrence is not free in φ

▶ scope of occurrence of ∀ x (∃ x) in formula ∀ x φ (∃ x φ) is φ except any subformula of φ

of form ∀ x ψ or ∃ x ψ
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Example

∀ x

→

∃ y

∧

∨

P

y z

P

y y

Q

x

∃ z

∧

Q

y

∃ x

∨

P

y x

P

x z

bound occurrences of variables
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Example

∀ x

→

∃ y

∧

∨

P

y z

P

y y

Q

x

∃ z

∧

Q

y

∃ x

∨

P

y x

P

x z

scope of ∀ x
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Definition

φ[t/x ] is result of replacing all free occurrences of x in φ by t

Example

φ = ∀ x (P(x) ∧ Q(y)) → ¬P(x) ∨ ∃ y Q(y)
t = f(a,g(x))

φ[t/x ] = ∀ x (P(x) ∧ Q(y)) → ¬P(f(a,g(x))) ∨ ∃ y Q(y)

φ[t/y ] = ∀ x (P(x) ∧ Q(f(a,g(x)))) → ¬P(x) ∨ ∃ y Q(y)

undesired effect: x is captured by ∀ x
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Definition

term t is free for x in φ if variables in t do not become bound in φ[t/x ]

Example

φ = ∀ x ((∀ z (P(z) ∧ Q(y))) → ¬P(x) ∨ Q(z))

t = f(y, z)

▶ t is free for x in φ

▶ t is not free for y in φ

▶ t is free for z in φ

Definition

sentence is formula without free variables
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Huth and Ryan

▶ Section 2.1

▶ Section 2.2

▶ Section 6.2

Extensions and Variants of OBDDs

▶ Algorithms and Data Structures in VLSI Design

Christoph Meinel and Thorsten Theobald

Springer-Verlag 1998

www.hpi.uni-potsdam.de/fileadmin/hpi/FG_ITS/books/OBDD-Book.pdf

▶ Zero-Suppressed BDDs and Their Applications

Shin-ichi Minato

International Journal on Software Tools for Technology Transfer 3, pp. 156 – 170, 2001

doi: 10.1007/s100090100038
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Important Concepts

▶ apply algorithm

▶ bound occurrence

▶ existential quantifier

▶ free BDD

▶ free occurrence

▶ function symbol

▶ hidden weighted bit function

▶ predicate symbol

▶ quantification

▶ quantifier

▶ reduce algorithm

▶ restrict algorithm

▶ restriction

▶ sentence

▶ scope

▶ Shannon expansion

▶ universal quantifier

▶ variable

homework for April 18
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