Logic

Diana Gründlinger
Alexander Montag Johannes Niederhauser

Fabian Mitterwallner

Aart Middeldorp

Daniel Rainer

Drticify

with session ID 09929580 for anonymous questions ars.uibk.ac.at

Outline

1. Summary of Previous Lecture
2. Algorithms for Binary Decision Diagrams
3. Intermezzo
4. Hidden Weighted Bit Function
5. Predicate Logic
6. Further Reading
natural deduction is complete: $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \vDash \psi \quad \Longrightarrow \quad \varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \vdash \psi$ is valid

Definitions

- clause is set of literals $\left\{\ell_{1}, \ldots, \ell_{n}\right\}$
- \square denotes empty clause
- clausal form is set of clauses $\left\{C_{1}, \ldots, C_{m}\right\}$
- literals ℓ_{1} and ℓ_{2} are complementary if $\ell_{1}=\ell_{2}^{c}= \begin{cases}\neg p & \text { if } \ell_{2}=p \\ p & \text { if } \ell_{2}=\neg p\end{cases}$
- clauses C_{1} and C_{2} clash on literal ℓ if $\ell \in C_{1}$ and $\ell^{c} \in C_{2}$
- resolvent of clashing clauses C_{1} and C_{2} on literal ℓ is clause $\left(C_{1} \backslash\{\ell\}\right) \cup\left(C_{2} \backslash\left\{\ell^{c}\right\}\right)$

Resolution

input: clausal form S
output: yes if S is satisfiable no if S is unsatisfiable
(1) repeatedly add resolvent of clashing clauses in S
(2) return no as soon as empty clause is derived
(3) return yes if all clashing clauses have been resolved

Definition

refutation of S is resolution derivation of \square from S

Theorem

- resolution is terminating
resolution is sound and complete: S admits refutation \Longleftrightarrow clausal form S is unsatisfiable

SS 2024
Logic
lecture 5

1. Summary of Previous Lecture

Remark

binary decision diagram (BDD) is directed acyclic graph (dag) representing boolean function

Definitions

- BDD is reduced if C1, C2, C3 are not applicable

C1 remove duplicate terminals
C2 remove redundant tests
C3 remove duplicate non-terminals

- BDD B is ordered if there exists order $\left[x_{1}, \ldots, x_{n}\right]$ of variables in B such that

- orders O_{1} and O_{2} are compatible if O_{1} and O_{2} are subsequences of some order o

Theorem

reduced OBDD representation of boolean function for given order is unique

Corollary

checking

- satisfiability
- validity
- equivalence
is trivial for reduced OBDDs (with compatible variable orderings)

Part I: Propositional Logic

algebraic normal forms, binary decision diagrams, conjunctive normal forms, DPLL, Horn formulas, natural deduction, Post's adequacy theorem, resolution, SAT, semantics, sorting networks, soundness and completeness, syntax, Tseitin's transformation

Part II: Predicate Logic

natural deduction, quantifier equivalences, resolution, semantics, Skolemization, syntax, undecidability, unification

Part III: Model Checking

adequacy, branching-time temporal logic, CTL*, fairness, linear-time temporal logic, model checking algorithms, symbolic model checking

Example (Cardinality Constraints using BDDs)

$$
2 \leqslant x_{1}+\cdots+x_{9} \leqslant 3
$$

Outline

1. Summary of Previous Lecture
2. Algorithms for Binary Decision Diagrams

Reduce Restrict Apply Quantification
3. Intermezzo
4. Hidden Weighted Bit Function
5. Predicate Logic
6. Further Reading

(2)

Reduce Algorithm

input: - OBDD
output: • equivalent reduced OBDD with compatible variable ordering

Idea

assign natural number id(n) to every node n while traversing input BDD layer by layer in bottom-up manner

Notation

BDD B_{f} of boolean function f has root node r_{f}

Reduce Algorithm

input: - OBDD
output: - equivalent reduced OBDD with compatible variable ordering

- assign \#0 to all terminal nodes labelled 0
- assign \#1 to all terminal nodes labelled 1
- non-terminal node n with variable x :
(1) if $\mathrm{id}(\operatorname{Io}(n))=\operatorname{id}(\mathrm{hi}(n))$ then $\mathrm{id}(n)=\mathrm{id}(\operatorname{lo}(n))$
(2) if there exists node $m \neq n$ with same variable x and $\operatorname{id}(m)$ defined such that

$$
\mathrm{id}(\mathrm{lo}(m))=\mathrm{id}(\mathrm{lo}(n)) \quad \text { and } \quad \mathrm{id}(\mathrm{hi}(m))=\mathrm{id}(\mathrm{hi}(n))
$$

then $\operatorname{id}(n)=\operatorname{id}(m)$
(3) otherwise $\operatorname{id}(n)=$ next unused natural number

- share nodes with same label

Example

Outline

1. Summary of Previous Lecture
2. Algorithms for Binary Decision Diagrams

Reduce Restrict Apply Quantification
3. Intermezzo
4. Hidden Weighted Bit Function
5. Predicate Logic
6. Further Reading

Definition

restriction of boolean function f with respect to variable x :
$f[0 / x]$ replace all occurrences of x in f by 0
$f[1 / x] \quad$ replace all occurrences of x in f by 1

Example

$f=x \cdot(y+\bar{x})$
$\Rightarrow f[0 / x]=0 \cdot(y+\overline{0})=0$
$\Rightarrow f[1 / x]=1 \cdot(y+\overline{1})=y$

- $f[0 / y]=x \cdot(0+\bar{x})=0$
$\Rightarrow f[1 / y]=x \cdot(1+\bar{x})=x$

Theorem (Shannon expansion)

$f=\bar{x} \cdot f[0 / x]+x \cdot f[1 / x]$ for every boolean function f and variable x

Notational Convention

operator precedence $\quad>\oplus,+$

Restrict Algorithm

input: - OBDD B_{f}, variable x, value $i \in\{0,1\}$
output: • reduced OBDD of $f[i / x]$ with compatible variable ordering
(1) redirect every incoming edge of node n labelled with x to

- lo(n) if $i=0$
- hi(n) if $i=1$
(2) reduce resulting OBDD

SS 2024
Logic
lecture 5
2. Algorithms for Binary Decision Diagrams

Restrict

Example

$f=\bar{x} y z+x(y+z)$

$f[0 / y]$

$$
f[1 / y]
$$

inaccessible nodes are taken care of by garbage collector

Outline

1. Summary of Previous Lecture
2. Algorithms for Binary Decision Diagrams
Reduce
Restrict
Apply
Quantification
3. Intermezzo
4. Hidden Weighted Bit Function
5. Predicate Logic
6. Further Reading

Notation

BDD B_{f} of boolean function f has root node r_{f}

$$
f[0 / x] \quad \operatorname{lo}\left(r_{f}\right) \quad \operatorname{hi}\left(r_{f}\right) \quad f[1 / x]
$$

Apply Algorithm

input: - binary operation \star on boolean functions

- OBDDs B_{f} and B_{g} with compatible variable orderings
output: - reduced OBDD of $f \star g$ with compatible variable ordering

$$
\begin{aligned}
f \star g & =\bar{x} \cdot(f \star g)[0 / x]+x \cdot(f \star g)[1 / x] \\
& =\bar{x} \cdot \underbrace{(f[0 / x] \star g[0 / x])}_{\text {simpler than } f \star g}+x \cdot \underbrace{(f[1 / x] \star g[1 / x])}
\end{aligned}
$$

SS 2024
Logic
lecture 5
2. Algorithms for Binary Decision Diagrams

Apply Algorithm

case I $\quad r_{f}, r_{g}$ terminal nodes with labels ℓ_{f}, ℓ_{g}
return
$\ell_{f} \star \ell_{g}$
case II r_{f}, r_{g} non-terminal nodes with same label x
return

$$
\operatorname{apply}\left(\star, \operatorname{lo}\left(r_{f}\right), \operatorname{lo}\left(r_{g}\right)\right) \quad \operatorname{apply}\left(\star, \text { hi }\left(r_{f}\right), \text { hi }\left(r_{g}\right)\right)
$$

SS 2024
Logic
lecture 5
2. Algorithms for Binary Decision Diagrams

Apply Algorithm

case III $\quad r_{f}$ non-terminal node with label x
r_{g} terminal node or non-terminal node with label $y>x$ return

case IV $\quad r_{g}$ non-terminal node with label x
r_{f} terminal node or non-terminal node with label $y>x$
return

followed by application of reduce algorithm

SS 2024
Logic
lecture 5
2. Algorithms for Binary Decision Diagrams

Example

Outline

1. Summary of Previous Lecture
2. Algorithms for Binary Decision Diagrams
Reduce
Restrict
Apply
Quantification
3. Intermezzo
4. Hidden Weighted Bit Function
5. Predicate Logic
6. Further Reading

Definition

quantification of boolean function f over variable x :

- ヨx.f
$f[0 / x]+f[1 / x]$
- $\forall x . f$ $f[0 / x] \cdot f[1 / x]$

Summary

function f OBDD B
function f
OBDD B_{f}
function f
OBDD B_{f}

| 0 | 0 | $g+h$ | $\operatorname{apply}\left(+, B_{g}, B_{h}\right)$ | $g[0 / x]$ | restrict $\left(0, x, B_{g}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 1 | 1 | $g \oplus h$ | $\operatorname{apply}\left(\oplus, B_{g}, B_{h}\right)$ | $g[1 / x]$ | restrict $\left(1, x, B_{g}\right)$ |
| x | X | $g \cdot h$ | $\operatorname{apply}\left(\cdot, B_{g}, B_{h}\right)$ | $\exists x . g$ | $\operatorname{apply}\left(+, B_{g[0 / x]}, B_{g[1 / x]}\right)$ |
| | X | \bar{g} | $\operatorname{apply}\left(\oplus, B_{g}, B_{1}\right)$ | $\forall x . g$ | $\operatorname{apply}\left(\cdot, B_{g[0 / x]}, B_{g[1 / x]}\right)$ |

BoolTool
by Patrick Muxel (2004), Philipp Ruff (2006), Caroline Terzer (2006), Markus Plattner (2007), Elias Zischg (2012)

BoolTool Reloaded
by Martin Neuner (2023)

SS 2024
Logic
lecture 5
2. Algorithms for Binary Decision Diagrams

Demo

Outline

1. Summary of Previous Lecture

2. Algorithms for Binary Decision Diagrams
3. Intermezzo
4. Hidden Weighted Bit Function
5. Predicate Logic
6. Further Reading

Drticify with session ID 09929580

Questions

Which of the following statements are true ?
A The output of restrict has fewer nodes than the input.
B The number of edges in a reduced OBDD depends on the order.
C An OBDD for a formula with n variables has at most $2^{n+1}-1$ nodes.
D Negating a reduced OBDD does not change the number of nodes.

E A reduced OBDD with 12 nodes containing up to 4 variables exists.

Outline

1. Summary of Previous Lecture
2. Algorithms for Binary Decision Diagrams
3. Intermezzo
4. Hidden Weighted Bit Function
5. Predicate Logic
6. Further Reading

Definitions

- $\operatorname{wt}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}$
$-\operatorname{HWB}_{n}\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}0 & \text { if } w t\left(x_{1}, \ldots, x_{n}\right)=0 \\ x_{\mathrm{wt}\left(x_{1}, \ldots, x_{n}\right)} & \text { otherwise }\end{cases}$

Example

x_{1}	x_{2}	x_{3}	x_{4}	HWB_{4}	x_{1}	x_{2}	x_{3}	x_{4}	HWB_{4}	x_{1}	x_{2}	x_{3}	x_{4}	HWB_{4}	x_{1}	x_{2}	x_{3}	x_{4}	HWB_{4}
0	0	0	0	0	0	1	0	0	0	1	0	0	0	1	1	1	0	0	1
0	0	0	1	0	0	1	0	1	1	1	0	0	1	0	1	1	0	1	0
0	0	1	0	0	0	1	1	0	1	1	0	1	0	0	1	1	1	0	1
0	0	1	1	0	0	1	1	1	1	1	0	1	1	1	1	1	1	1	1

Example

reduced OBDD

free (read-1) BDD

Theorem

- every reduced OBDD computing HWB_{n} has size exponential in n
- some reduced BDD computing HWB_{n} has size quadratic in n

Outline

1. Summary of Previous Lecture

2. Algorithms for Binary Decision Diagrams
3. Intermezzo
4. Hidden Weighted Bit Function
5. Predicate Logic
Introduction
6. Further Reading

Syntax
Free and Bound Variables
Substitution

Definition

propositional formulas are built from

- atoms
$p, q, r, p_{1}, p_{2}, \ldots$
- bottom
\perp
- top
- negation
- conjunction
$\wedge \quad p \wedge q$
"not p"
- disjunction

V
$p \vee q$
"p or q"

- implication
\rightarrow
$\neg p$
$p \wedge q$
$p \vee q$
$p \rightarrow q$
" p and q "
according to following Backus-Naur Form :

$$
\varphi::=p|\perp| \top|(\neg \varphi)|(\varphi \wedge \varphi)|(\varphi \vee \varphi)|(\varphi \rightarrow \varphi)
$$

Propositional Logic is Not Very Expressive

statements like

- Mary admires every professor
- some professor admires Mary
- Mary admires herself
- no student attended every lecture
- no lecture was attended by every student
- no lecture was attended by any student
cannot be expressed adequately in propositional logic

concept	notation	intended meaning
predicate symbols	P, Q, R, A, B, \ldots	relations over domain
function symbols	f, g, h, a, b, \ldots	functions over domain
variables	x, y, z, \ldots	(unspecified) elements of domain
quantifiers	\forall, \exists	for all, for some
connectives	$\neg, \wedge, \vee, \rightarrow$	

Remarks

- function and predicate symbols take fixed number of arguments (arity)
- function and predicate symbols of arity 0 are called constants
- = (equality) is designated predicate symbol of arity 2

Example (Exercise 2.1.1)

- Mary admires every professor
- some professor admires Mary
- Mary admires herself
- no student attended every lecture
- no lecture was attended by every student
- no lecture was attended by any student

$A(x, y)$	x admires y
$B(x, y)$	x attended y

$P(x) \quad x$ is professor
$S(x) \quad x$ is student
$L(x) \quad x$ is lecture
m Mary
$A, B \quad$ binary predicate symbols $P, S, L \quad$ unary predicate symbols
$m \quad$ function symbol of arity 0

Outline

```
1. Summary of Previous Lecture
2. Algorithms for Binary Decision Diagrams
3. Intermezzo
4. Hidden Weighted Bit Function
5. Predicate Logic
Introduction
Syntax
Free and Bound Variables
Substitution
6. Further Reading
```


Definitions

- terms are built from function symbols and variables according to following BNF grammar:

$$
t::=x|c| f(t, \ldots, t)
$$

- formulas are built from predicate symbols, terms, connectives and quantifiers according to following BNF grammar:

$$
\varphi::=P|P(t, \ldots, t)|(t=t)|\perp| \top|(\neg \varphi)|(\varphi \wedge \varphi)|(\varphi \vee \varphi)|(\varphi \rightarrow \varphi)|(\forall x \varphi)|(\exists x \varphi)
$$

- notational conventions:
- binding precedence $=>\neg, \forall, \exists>\wedge, \vee>\rightarrow$
- omit outer parentheses
- $\rightarrow, \wedge, \vee$ are right-associative

Example (Exercise 2.1.1, cont'd)

$A(x, y)$	x admires y	$P(x)$	x is professor	$L(x)$
$B(x, y)$	x is lecture			
$B(x)$	x is student	m	Mary	

- Mary admires every professor
- some professor admires Mary
- Mary admires herself
- no student attended every lecture
- no lecture was attended by every student
- no lecture was attended by any student

$$
\begin{aligned}
& \forall x(P(x) \rightarrow A(m, x)) \\
& \exists x(P(x) \wedge A(x, m)) \\
& A(m, m) \\
& \neg \exists x(S(x) \wedge \forall y(L(y) \rightarrow B(x, y))) \\
& \neg \exists x(L(x) \wedge \forall y(S(y) \rightarrow B(y, x))) \\
& \forall x \forall y(L(x) \wedge S(y) \rightarrow \neg B(y, x))
\end{aligned}
$$

Parse Tree

$$
\exists x(\exists y((A(y, m) \vee A(m, y)) \wedge B(x, y)) \wedge \exists y(B(x, y) \wedge \exists z(A(y, z) \vee B(y, z))))
$$

Outline

1. Summary of Previous Lecture

2. Algorithms for Binary Decision Diagrams
3. Intermezzo
4. Hidden Weighted Bit Function
5. Predicate Logic

Introduction
Syntax
Free and Bound Variables
6. Further Reading

Definitions

- occurrence of variable x in formula φ is free in φ if it is leaf node in parse tree of φ such that there is no node $\forall x$ or $\exists x$ on path to root node
- occurrence of variable x in formula φ is bound if this occurrence is not free in φ
- scope of occurrence of $\forall x(\exists x)$ in formula $\forall x \varphi(\exists x \varphi)$ is φ except any subformula of φ of form $\forall x \psi$ or $\exists x \psi$

Example

bound occurrences of variables

Example

scope of $\forall x$

Outline

```
1. Summary of Previous Lecture
2. Algorithms for Binary Decision Diagrams
3. Intermezzo
4. Hidden Weighted Bit Function
```

5. Predicate Logic

Introduction
Syntax
Free and Bound Variables
Substitution
6. Further Reading

Definition

$\varphi[t / x]$ is result of replacing all free occurrences of x in φ by t

Example

$$
\begin{aligned}
\varphi & =\forall x(P(x) \wedge Q(y)) \rightarrow \neg P(x) \vee \exists y Q(y) \\
t & =f(a, g(x)) \\
\varphi[t / x] & =\forall x(P(x) \wedge Q(y)) \rightarrow \neg P(f(a, g(x))) \vee \exists y Q(y) \\
\varphi[t / y] & =\forall x(P(x) \wedge Q(f(a, g(x)))) \rightarrow \neg P(x) \vee \exists y Q(y)
\end{aligned}
$$

undesired effect: x is captured by $\forall x$

Definition

term t is free for x in φ if variables in t do not become bound in $\varphi[t / x]$

Example

$$
\begin{aligned}
\varphi & =\forall x((\forall z(P(z) \wedge Q(y))) \rightarrow \neg P(x) \vee Q(z)) \\
t & =f(y, z)
\end{aligned}
$$

- t is free for x in φ
- t is not free for y in φ
- t is free for z in φ

Definition

sentence is formula without free variables

Outline

```
1. Summary of Previous Lecture
2. Algorithms for Binary Decision Diagrams
3. Intermezzo
4. Hidden Weighted Bit Function
5. Predicate Logic
```


6. Further Reading

Huth and Ryan

- Section 2.1
- Section 2.2
- Section 6.2

Extensions and Variants of OBDDs

- Algorithms and Data Structures in VLSI Design

Christoph Meinel and Thorsten Theobald
Springer-Verlag 1998
www.hpi.uni-potsdam.de/fileadmin/hpi/FG_ITS/books/OBDD-Book.pdf

- Zero-Suppressed BDDs and Their Applications

Shin-ichi Minato
International Journal on Software Tools for Technology Transfer 3, pp. 156-170, 2001 doi: 10.1007/s100090100038

Important Concepts

- apply algorithm	- hidden weighted bit function	- restriction
- bound occurrence	- predicate symbol	- sentence
- existential quantifier	- quantification	- scope
- free BDD	- quantifier	- Shannon expansion
- free occurrence	- reduce algorithm	- universal quantifier
- function symbol	- restrict algorithm	- variable

homework for April 18

