
SS 2024 lecture 5

Logic

Diana Gründlinger Aart Middeldorp Fabian Mitterwallner

Alexander Montag Johannes Niederhauser Daniel Rainer

http://cl-informatik.uibk.ac.at/teaching/ss24/lics
http://cl-informatik.uibk.ac.at/~ami

ars.uibk.ac.at
with session ID 0992 9580 for anonymous questions

SS 2024 Logic lecture 5 2/48

https://ars.uibk.ac.at/p/09929580
https://ars.uibk.ac.at/p/09929580
https://ars.uibk.ac.at/p/09929580

Outline

1. Summary of Previous Lecture

2. Algorithms for Binary Decision Diagrams

3. Intermezzo

4. Hidden Weighted Bit Function

5. Predicate Logic

6. Further Reading

SS 2024 Logic lecture 5 3/48

Theorem

natural deduction is complete: φ1, φ2, . . . , φn ⊨ ψ =⇒ φ1, φ2, . . . , φn ⊢ ψ is valid

Definitions

▶ clause is set of literals {ℓ1, . . . , ℓn}
▶ 2 denotes empty clause

▶ clausal form is set of clauses {C1, . . . , Cm}

▶ literals ℓ1 and ℓ2 are complementary if ℓ1 = ℓc2 =

{
¬p if ℓ2 = p

p if ℓ2 = ¬p
▶ clauses C1 and C2 clash on literal ℓ if ℓ ∈ C1 and ℓc ∈ C2

▶ resolvent of clashing clauses C1 and C2 on literal ℓ is clause (C1 \ {ℓ}) ∪ (C2 \ {ℓc})

SS 2024 Logic lecture 5 1. Summary of Previous Lecture 4/48

Resolution

input: clausal form S

output: yes if S is satisfiable no if S is unsatisfiable

1 repeatedly add resolvent of clashing clauses in S

2 return no as soon as empty clause is derived

3 return yes if all clashing clauses have been resolved

Definition

refutation of S is resolution derivation of 2 from S

Theorem

▶ resolution is terminating

▶ resolution is sound and complete: S admits refutation ⇐⇒ clausal form S is unsatisfiable

SS 2024 Logic lecture 5 1. Summary of Previous Lecture 5/48

Remark

binary decision diagram (BDD) is directed acyclic graph (dag) representing boolean function

Definitions

▶ BDD is reduced if C1, C2, C3 are not applicable

C1 remove duplicate terminals

C2 remove redundant tests

C3 remove duplicate non-terminals

▶ BDD B is ordered if there exists order [x1, . . . , xn] of variables in B such that

i < j for all edges

xi

xj

and

xi

xj

in B

▶ orders o1 and o2 are compatible if o1 and o2 are subsequences of some order o

SS 2024 Logic lecture 5 1. Summary of Previous Lecture 6/48

Theorem

reduced OBDD representation of boolean function for given order is unique

Corollary

checking

▶ satisfiability

▶ validity

▶ equivalence

is trivial for reduced OBDDs (with compatible variable orderings)

SS 2024 Logic lecture 5 1. Summary of Previous Lecture 7/48

Part I: Propositional Logic

algebraic normal forms, binary decision diagrams, conjunctive normal forms, DPLL, Horn

formulas, natural deduction, Post’s adequacy theorem, resolution, SAT, semantics, sorting

networks, soundness and completeness, syntax, Tseitin’s transformation

Part II: Predicate Logic

natural deduction, quantifier equivalences, resolution, semantics, Skolemization, syntax,

undecidability, unification

Part III: Model Checking

adequacy, branching-time temporal logic, CTL∗, fairness, linear-time temporal logic, model

checking algorithms, symbolic model checking

SS 2024 Logic lecture 5 1. Summary of Previous Lecture Overview 8/48

Example (Cardinality Constraints using BDDs)

2 ⩽ x1 + · · ·+ x9 ⩽ 3

x1 x2 x3 x4 x5 x6 x7 x8 x9 0

x2 x3 x4 x5 x6 x7 x8 x9 0

x3 x4 x5 x6 x7 x8 x9 1

x4 x5 x6 x7 x8 x9 1

0 0 0 0 0 0

SS 2024 Logic lecture 5 2. Algorithms for Binary Decision Diagrams 9/48

Outline

1. Summary of Previous Lecture

2. Algorithms for Binary Decision Diagrams

Reduce Restrict Apply Quantification

3. Intermezzo

4. Hidden Weighted Bit Function

5. Predicate Logic

6. Further Reading

SS 2024 Logic lecture 5 2. Algorithms for Binary Decision Diagrams 10/48

Reduce Algorithm

input: • OBDD

output: • equivalent reduced OBDD with compatible variable ordering

Idea

assign natural number id(n) to every node n while traversing input BDD layer by layer in

bottom-up manner

Notation

BDD Bf of boolean function f has root node rf x rf

lo(rf) hi(rf)

SS 2024 Logic lecture 5 2. Algorithms for Binary Decision Diagrams Reduce 11/48

Reduce Algorithm

input: • OBDD

output: • equivalent reduced OBDD with compatible variable ordering

▶ assign #0 to all terminal nodes labelled 0

▶ assign #1 to all terminal nodes labelled 1

▶ non-terminal node n with variable x :

1 if id(lo(n)) = id(hi(n)) then id(n) = id(lo(n))

2 if there exists node m ̸= n with same variable x and id(m) defined such that

id(lo(m)) = id(lo(n)) and id(hi(m)) = id(hi(n))

then id(n) = id(m)

3 otherwise id(n) = next unused natural number

▶ share nodes with same label

SS 2024 Logic lecture 5 2. Algorithms for Binary Decision Diagrams Reduce 12/48

Example

x
#5

y
#3

y
#4

z
#0

z
#2

z
#2

z
#1

0

#0
0

#0
0

#0
1

#1
0

#0
1

#1
1

#1
1

#1

=⇒ x
#5

y
#3

y
#4

z
#2

0

#0
1

#1

SS 2024 Logic lecture 5 2. Algorithms for Binary Decision Diagrams Reduce 13/48

Outline

1. Summary of Previous Lecture

2. Algorithms for Binary Decision Diagrams

Reduce Restrict Apply Quantification

3. Intermezzo

4. Hidden Weighted Bit Function

5. Predicate Logic

6. Further Reading

SS 2024 Logic lecture 5 2. Algorithms for Binary Decision Diagrams Restrict 14/48

Definition

restriction of boolean function f with respect to variable x :

f [0/x] replace all occurrences of x in f by 0

f [1/x] replace all occurrences of x in f by 1

Example

f = x · (y+ x)

▶ f [0/x] = 0 · (y+ 0) = 0

▶ f [1/x] = 1 · (y+ 1) = y

▶ f [0/y] = x · (0 + x) = 0

▶ f [1/y] = x · (1 + x) = x

SS 2024 Logic lecture 5 2. Algorithms for Binary Decision Diagrams Restrict 15/48

Theorem (Shannon expansion)

f = x · f [0/x] + x · f [1/x] for every boolean function f and variable x

Notational Convention

operator precedence · > ⊕, +

Restrict Algorithm

input: • OBDD Bf , variable x, value i ∈ {0,1}
output: • reduced OBDD of f [i/x] with compatible variable ordering

1 redirect every incoming edge of node n labelled with x to

▶ lo(n) if i = 0

▶ hi(n) if i = 1

2 reduce resulting OBDD

SS 2024 Logic lecture 5 2. Algorithms for Binary Decision Diagrams Restrict 16/48

Example

x

y y

z

0 1

x

y y

z

0 1

x

y y

z

0 1

f = xyz + x(y+ z) f [0/y] f [1/y]

inaccessible nodes are taken care of by garbage collector

SS 2024 Logic lecture 5 2. Algorithms for Binary Decision Diagrams Restrict 17/48

Outline

1. Summary of Previous Lecture

2. Algorithms for Binary Decision Diagrams

Reduce Restrict Apply Quantification

3. Intermezzo

4. Hidden Weighted Bit Function

5. Predicate Logic

6. Further Reading

SS 2024 Logic lecture 5 2. Algorithms for Binary Decision Diagrams Apply 18/48

Notation

BDD Bf of boolean function f has root node rf x rf

lo(rf)f [0/x] hi(rf) f [1/x]

Apply Algorithm

input: • binary operation ⋆ on boolean functions

• OBDDs Bf and Bg with compatible variable orderings

output: • reduced OBDD of f ⋆g with compatible variable ordering

f ⋆g = x · (f ⋆g)[0/x] + x · (f ⋆g)[1/x]
= x · (f [0/x] ⋆g[0/x])︸ ︷︷ ︸ + x · (f [1/x] ⋆g[1/x])︸ ︷︷ ︸

simpler than f ⋆g

SS 2024 Logic lecture 5 2. Algorithms for Binary Decision Diagrams Apply 19/48

Apply Algorithm apply(⋆,Bf ,Bg)

case I rf , rg terminal nodes with labels ℓf , ℓg

return ℓf ⋆ ℓg

case II rf , rg non-terminal nodes with same label x

return x rf

apply(⋆, lo(rf), lo(rg)) apply(⋆,hi(rf),hi(rg))

SS 2024 Logic lecture 5 2. Algorithms for Binary Decision Diagrams Apply 20/48

Apply Algorithm apply(⋆,Bf ,Bg)

case III rf non-terminal node with label x

rg terminal node or non-terminal node with label y > x

return x rf

apply(⋆, lo(rf), rg) apply(⋆,hi(rf), rg)

case IV rg non-terminal node with label x

rf terminal node or non-terminal node with label y > x

return x rg

apply(⋆, rf , lo(rg)) apply(⋆, rf ,hi(rg))

followed by application of reduce algorithm

SS 2024 Logic lecture 5 2. Algorithms for Binary Decision Diagrams Apply 21/48

Example

apply(+, x1 R1

x2R2

x3 R3

x4R4

0R5 1 R6

, x1 S1

x3 S2

x4S3

0S4 1 S5

) R1,S1

R2,S3

R3,S3 R3,S2

R6,S3 R4,S3

R6,S4 R6,S5 R5,S4

SS 2024 Logic lecture 5 2. Algorithms for Binary Decision Diagrams Apply 22/48

Outline

1. Summary of Previous Lecture

2. Algorithms for Binary Decision Diagrams

Reduce Restrict Apply Quantification

3. Intermezzo

4. Hidden Weighted Bit Function

5. Predicate Logic

6. Further Reading

SS 2024 Logic lecture 5 2. Algorithms for Binary Decision Diagrams Quantification 23/48

Definition

quantification of boolean function f over variable x :

▶ ∃ x.f f [0/x] + f [1/x]

▶ ∀ x.f f [0/x] · f [1/x]

Summary

function f OBDD Bf function f OBDD Bf function f OBDD Bf

0 0 g + h apply(+,Bg,Bh) g[0/x] restrict(0, x,Bg)

1 1 g ⊕ h apply(⊕,Bg,Bh) g[1/x] restrict(1, x,Bg)

x x

0 1

g · h apply(· ,Bg,Bh) ∃ x.g apply(+,Bg [0/x],Bg [1/x])

g apply(⊕,Bg,B1) ∀ x.g apply(· ,Bg [0/x],Bg [1/x])

SS 2024 Logic lecture 5 2. Algorithms for Binary Decision Diagrams Quantification 24/48

Demo

BoolTool

by Patrick Muxel (2004), Philipp Ruff (2006), Caroline Terzer (2006), Markus Plattner (2007),

Elias Zischg (2012)

BoolTool Reloaded

by Martin Neuner (2023)

SS 2024 Logic lecture 5 2. Algorithms for Binary Decision Diagrams Demo 25/48

http://cl-informatik.uibk.ac.at/software/booltool/
https://booltool-informatik.uibk.ac.at/

Outline

1. Summary of Previous Lecture

2. Algorithms for Binary Decision Diagrams

3. Intermezzo

4. Hidden Weighted Bit Function

5. Predicate Logic

6. Further Reading

SS 2024 Logic lecture 5 3. Intermezzo 26/48

with session ID 0992 9580

Questions

Which of the following statements are true ?

A The output of restrict has fewer nodes than the input.

B The number of edges in a reduced OBDD depends on the order.

C An OBDD for a formula with n variables has at most 2n+1 − 1 nodes.

D Negating a reduced OBDD does not change the number of nodes.

E A reduced OBDD with 12 nodes containing up to 4 variables exists.

SS 2024 Logic lecture 5 3. Intermezzo 27/48

https://ars.uibk.ac.at/p/09929580
https://ars.uibk.ac.at/p/09929580
https://ars.uibk.ac.at/p/09929580

Outline

1. Summary of Previous Lecture

2. Algorithms for Binary Decision Diagrams

3. Intermezzo

4. Hidden Weighted Bit Function

5. Predicate Logic

6. Further Reading

SS 2024 Logic lecture 5 4. Hidden Weighted Bit Function 28/48

Definitions

▶ wt(x1, . . . , xn) =
n∑

i=1

xi

▶ HWBn(x1, . . . , xn) =

{
0 if wt(x1, . . . , xn) = 0

xwt(x1,...,xn) otherwise

Example

x1 x2 x3 x4 HWB4 x1 x2 x3 x4 HWB4 x1 x2 x3 x4 HWB4 x1 x2 x3 x4 HWB4

0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 1

0 0 0 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 1 0

0 0 1 0 0 0 1 1 0 1 1 0 1 0 0 1 1 1 0 1

0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1

SS 2024 Logic lecture 5 4. Hidden Weighted Bit Function 29/48

Example

x1

x2 x2

x3 x3 x3

x4 x4

0 1

x4

x3 x1

x1 x2 x3

0 1

reduced OBDD free (read-1) BDD

Theorem

▶ every reduced OBDD computing HWBn has size exponential in n

▶ some reduced BDD computing HWBn has size quadratic in n

SS 2024 Logic lecture 5 4. Hidden Weighted Bit Function 30/48

Outline

1. Summary of Previous Lecture

2. Algorithms for Binary Decision Diagrams

3. Intermezzo

4. Hidden Weighted Bit Function

5. Predicate Logic

Introduction Syntax Free and Bound Variables Substitution

6. Further Reading

SS 2024 Logic lecture 5 5. Predicate Logic 31/48

Definition

propositional formulas are built from

▶ atoms p, q, r, p1, p2, . . .

▶ bottom ⊥
▶ top ⊤
▶ negation ¬ ¬p "not p"

▶ conjunction ∧ p ∧ q "p and q"

▶ disjunction ∨ p ∨ q "p or q"

▶ implication → p → q "if p then q"

according to following Backus – Naur Form:

φ ::= p | ⊥ | ⊤ | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ)

SS 2024 Logic lecture 5 5. Predicate Logic Introduction 32/48

Propositional Logic is Not Very Expressive

statements like

▶ Mary admires every professor

▶ some professor admires Mary

▶ Mary admires herself

▶ no student attended every lecture

▶ no lecture was attended by every student

▶ no lecture was attended by any student

cannot be expressed adequately in propositional logic

SS 2024 Logic lecture 5 5. Predicate Logic Introduction 33/48

concept notation intended meaning

predicate symbols P, Q, R, A, B, . . . relations over domain

function symbols f , g, h, a, b, . . . functions over domain

variables x, y, z, . . . (unspecified) elements of domain

quantifiers ∀, ∃ for all, for some

connectives ¬, ∧, ∨, →

Remarks

▶ function and predicate symbols take fixed number of arguments (arity)

▶ function and predicate symbols of arity 0 are called constants

▶ = (equality) is designated predicate symbol of arity 2

SS 2024 Logic lecture 5 5. Predicate Logic Introduction 34/48

Example (Exercise 2.1.1)

▶ Mary admires every professor

▶ some professor admires Mary

▶ Mary admires herself

▶ no student attended every lecture

▶ no lecture was attended by every student

▶ no lecture was attended by any student

A(x, y) x admires y P(x) x is professor L(x) x is lecture

B(x, y) x attended y S(x) x is student m Mary

A, B binary predicate symbols

P, S, L unary predicate symbols

m function symbol of arity 0

SS 2024 Logic lecture 5 5. Predicate Logic Introduction 35/48

https://www.cambridge.org/core/services/aop-cambridge-core/content/view/C08A8571887234409733F5B95AF5A07C/9780511810275c2_p93-171_CBO.pdf/predicate_logic.pdf#page=65

Outline

1. Summary of Previous Lecture

2. Algorithms for Binary Decision Diagrams

3. Intermezzo

4. Hidden Weighted Bit Function

5. Predicate Logic

Introduction Syntax Free and Bound Variables Substitution

6. Further Reading

SS 2024 Logic lecture 5 5. Predicate Logic Syntax 36/48

Definitions

▶ terms are built from function symbols and variables according to following BNF grammar:

t ::= x | c | f(t, . . . , t)

▶ formulas are built from predicate symbols, terms, connectives and quantifiers according to

following BNF grammar:

φ ::= P | P(t, . . . , t) | (t = t) | ⊥ | ⊤ | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ) | (∀ x φ) | (∃ x φ)

▶ notational conventions:

▶ binding precedence = > ¬, ∀, ∃ > ∧, ∨ > →

▶ omit outer parentheses

▶ →, ∧, ∨ are right-associative

SS 2024 Logic lecture 5 5. Predicate Logic Syntax 37/48

Example (Exercise 2.1.1, cont’d)

A(x, y) x admires y P(x) x is professor L(x) x is lecture

B(x, y) x attended y S(x) x is student m Mary

▶ Mary admires every professor ∀ x (P(x) → A(m, x))

▶ some professor admires Mary ∃ x (P(x) ∧ A(x,m))

▶ Mary admires herself A(m,m)

▶ no student attended every lecture ¬∃ x (S(x) ∧ ∀ y (L(y) → B(x, y)))

▶ no lecture was attended by every student ¬∃ x (L(x) ∧ ∀ y (S(y) → B(y, x)))

▶ no lecture was attended by any student ∀ x ∀ y (L(x) ∧ S(y) → ¬B(y, x))

SS 2024 Logic lecture 5 5. Predicate Logic Syntax 38/48

https://www.cambridge.org/core/services/aop-cambridge-core/content/view/C08A8571887234409733F5B95AF5A07C/9780511810275c2_p93-171_CBO.pdf/predicate_logic.pdf#page=65

Parse Tree

∃ x (∃ y ((A(y,m) ∨ A(m, y)) ∧ B(x, y)) ∧ ∃ y (B(x, y) ∧ ∃ z (A(y, z) ∨ B(y, z))))

∃ x

∧

∃ y

∧

∨

A

y m

A

m y

B

x y

∃ y

∧

B

x y

∃ z

∨

A

y z

B

y z

SS 2024 Logic lecture 5 5. Predicate Logic Syntax 39/48

Outline

1. Summary of Previous Lecture

2. Algorithms for Binary Decision Diagrams

3. Intermezzo

4. Hidden Weighted Bit Function

5. Predicate Logic

Introduction Syntax Free and Bound Variables Substitution

6. Further Reading

SS 2024 Logic lecture 5 5. Predicate Logic Free and Bound Variables 40/48

Definitions

▶ occurrence of variable x in formula φ is free in φ if it is leaf node in parse tree of φ such

that there is no node ∀ x or ∃ x on path to root node

▶ occurrence of variable x in formula φ is bound if this occurrence is not free in φ

▶ scope of occurrence of ∀ x (∃ x) in formula ∀ x φ (∃ x φ) is φ except any subformula of φ

of form ∀ x ψ or ∃ x ψ

SS 2024 Logic lecture 5 5. Predicate Logic Free and Bound Variables 41/48

Example

∀ x

→

∃ y

∧

∨

P

y z

P

y y

Q

x

∃ z

∧

Q

y

∃ x

∨

P

y x

P

x z

bound occurrences of variables

SS 2024 Logic lecture 5 5. Predicate Logic Free and Bound Variables 42/48

Example

∀ x

→

∃ y

∧

∨

P

y z

P

y y

Q

x

∃ z

∧

Q

y

∃ x

∨

P

y x

P

x z

scope of ∀ x

SS 2024 Logic lecture 5 5. Predicate Logic Free and Bound Variables 42/48

Outline

1. Summary of Previous Lecture

2. Algorithms for Binary Decision Diagrams

3. Intermezzo

4. Hidden Weighted Bit Function

5. Predicate Logic

Introduction Syntax Free and Bound Variables Substitution

6. Further Reading

SS 2024 Logic lecture 5 5. Predicate Logic Substitution 43/48

Definition

φ[t/x] is result of replacing all free occurrences of x in φ by t

Example

φ = ∀ x (P(x) ∧ Q(y)) → ¬P(x) ∨ ∃ y Q(y)
t = f(a,g(x))

φ[t/x] = ∀ x (P(x) ∧ Q(y)) → ¬P(f(a,g(x))) ∨ ∃ y Q(y)

φ[t/y] = ∀ x (P(x) ∧ Q(f(a,g(x)))) → ¬P(x) ∨ ∃ y Q(y)

undesired effect: x is captured by ∀ x

SS 2024 Logic lecture 5 5. Predicate Logic Substitution 44/48

Definition

term t is free for x in φ if variables in t do not become bound in φ[t/x]

Example

φ = ∀ x ((∀ z (P(z) ∧ Q(y))) → ¬P(x) ∨ Q(z))

t = f(y, z)

▶ t is free for x in φ

▶ t is not free for y in φ

▶ t is free for z in φ

Definition

sentence is formula without free variables

SS 2024 Logic lecture 5 5. Predicate Logic Substitution 45/48

Outline

1. Summary of Previous Lecture

2. Algorithms for Binary Decision Diagrams

3. Intermezzo

4. Hidden Weighted Bit Function

5. Predicate Logic

6. Further Reading

SS 2024 Logic lecture 5 6. Further Reading 46/48

Huth and Ryan

▶ Section 2.1

▶ Section 2.2

▶ Section 6.2

Extensions and Variants of OBDDs

▶ Algorithms and Data Structures in VLSI Design

Christoph Meinel and Thorsten Theobald

Springer-Verlag 1998

www.hpi.uni-potsdam.de/fileadmin/hpi/FG_ITS/books/OBDD-Book.pdf

▶ Zero-Suppressed BDDs and Their Applications

Shin-ichi Minato

International Journal on Software Tools for Technology Transfer 3, pp. 156 – 170, 2001

doi: 10.1007/s100090100038

SS 2024 Logic lecture 5 6. Further Reading 47/48

https://www.cambridge.org/core/services/aop-cambridge-core/content/view/C08A8571887234409733F5B95AF5A07C/9780511810275c2_p93-171_CBO.pdf/predicate_logic.pdf#page=1
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/C08A8571887234409733F5B95AF5A07C/9780511810275c2_p93-171_CBO.pdf/predicate_logic.pdf#page=6
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/35F1E00AB217F00ED1CA4F9C6D659BB0/9780511810275c6_p358-413_CBO.pdf/binary_decision_diagrams.pdf#page=15
http://www.hpi.uni-potsdam.de/fileadmin/hpi/FG_ITS/books/OBDD-Book.pdf
http://www.hpi.uni-potsdam.de/fileadmin/hpi/FG_ITS/books/OBDD-Book.pdf
http://www.hpi.uni-potsdam.de/fileadmin/hpi/FG_ITS/books/OBDD-Book.pdf
http://www.hpi.uni-potsdam.de/fileadmin/hpi/FG_ITS/books/OBDD-Book.pdf
https://doi.org/10.1007/s100090100038
https://doi.org/10.1007/s100090100038
https://doi.org/10.1007/s100090100038
https://doi.org/10.1007/s100090100038

Important Concepts

▶ apply algorithm

▶ bound occurrence

▶ existential quantifier

▶ free BDD

▶ free occurrence

▶ function symbol

▶ hidden weighted bit function

▶ predicate symbol

▶ quantification

▶ quantifier

▶ reduce algorithm

▶ restrict algorithm

▶ restriction

▶ sentence

▶ scope

▶ Shannon expansion

▶ universal quantifier

▶ variable

homework for April 18

SS 2024 Logic lecture 5 6. Further Reading 48/48

http://cl-informatik.uibk.ac.at/teaching/ss24/lics/exercises/05.pdf

	lecture 5
	Summary of Previous Lecture
	Overview

	Algorithms for Binary Decision Diagrams
	Reduce
	Restrict
	Apply
	Quantification
	Demo

	Intermezzo
	Hidden Weighted Bit Function
	Predicate Logic
	Introduction
	Syntax
	Free and Bound Variables
	Substitution

	Further Reading

