

lecture 5

Logic

Diana Gründlinger Aart Middeldorp Fabian Mitterwallner

Alexander Montag Johannes Niederhauser Daniel Rainer

 ität ck
 SS 2024 Logic lecture 5
 2/48

Outline

- 1. Summary of Previous Lecture
- 2. Algorithms for Binary Decision Diagrams
- 3. Intermezzo
- 4. Hidden Weighted Bit Function
- 5. Predicate Logic
- 6. Further Reading

Theorem

□rticify

ars.uibk.ac.at

natural deduction is **complete**: $\varphi_1, \varphi_2, \dots, \varphi_n \models \psi \implies \varphi_1, \varphi_2, \dots, \varphi_n \vdash \psi$ is valid

Definitions

- ▶ clause is set of literals $\{\ell_1, \ldots, \ell_n\}$
- ► □ denotes empty clause
- ▶ clausal form is set of clauses $\{C_1, ..., C_m\}$
- ▶ literals ℓ_1 and ℓ_2 are complementary if $\ell_1 = \ell_2^c = \begin{cases} \neg p & \text{if } \ell_2 = p \\ p & \text{if } \ell_2 = \neg p \end{cases}$
- ▶ clauses C_1 and C_2 clash on literal ℓ if $\ell \in C_1$ and $\ell^c \in C_2$
- lacktriangle resolvent of clashing clauses C_1 and C_2 on literal ℓ is clause $\left(C_1\setminus\{\ell\}\right)\cup\left(C_2\setminus\{\ell^c\}\right)$

Resolution

input: clausal form S

output: yes if S is satisfiable no if S is unsatisfiable

- 1 repeatedly add resolvent of clashing clauses in S
- 2 return no as soon as empty clause is derived
- 3 return yes if all clashing clauses have been resolved

Definition

refutation of S is resolution derivation of \square from S

Theorem

- resolution is terminating
- ▶ resolution is sound and complete: S admits refutation ⇔ clausal form S is unsatisfiable

SS

Logic

lecture !

cture 5 1. Summary of Previous Lecture

Remark

binary decision diagram (BDD) is directed acyclic graph (dag) representing boolean function

Definitions

- ▶ BDD is reduced if C1, C2, C3 are not applicable
 - **C1** remove duplicate terminals
 - C2 remove redundant tests
 - C3 remove duplicate non-terminals
- ▶ BDD B is ordered if there exists order $[x_1, ..., x_n]$ of variables in B such that

 $AM_$

 ΔM_{-}

 \triangleright orders o_1 and o_2 are compatible if o_1 and o_2 are subsequences of some order o

niversität SS 2024 Logic lecture 5 1. **Summary of Previous Lecture**

Theorem

reduced OBDD representation of boolean function for given order is unique

Part I: Propositional Logic

algebraic normal forms, binary decision diagrams, conjunctive normal forms, DPLL, Horn formulas, natural deduction, Post's adequacy theorem, resolution, SAT, semantics, sorting networks, soundness and completeness, syntax, Tseitin's transformation

Corollary

checking

- satisfiability
- validity
- equivalence

is trivial for reduced OBDDs (with compatible variable orderings)

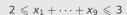
Part II: Predicate Logic

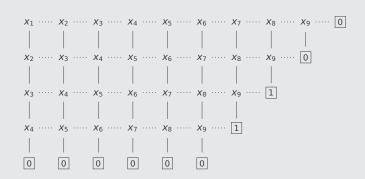
natural deduction, quantifier equivalences, resolution, semantics, Skolemization, syntax, undecidability, unification

Part III: Model Checking

adequacy, branching-time temporal logic, CTL*, fairness, linear-time temporal logic, model checking algorithms, symbolic model checking

Example (Cardinality Constraints using BDDs)





- 2. Algorithms for Binary Decision Diagrams

Outline

- 1. Summary of Previous Lecture
- 2. Algorithms for Binary Decision Diagrams

Reduce Restrict Apply Ouantification

- 3. Intermezzo
- 4. Hidden Weighted Bit Function
- 5. Predicate Logic
- 6. Further Reading

- 2. Algorithms for Binary Decision Diagrams

$AM_$

Reduce Algorithm

 OBDD input:

- output: equivalent reduced OBDD with compatible variable ordering

Idea

assign natural number id(n) to every node n while traversing input BDD layer by layer in bottom-up manner

Notation

BDD B_f of boolean function f has root node r_f

$lo(r_f)$

Reduce Algorithm

input: • OBDD

output: • equivalent reduced OBDD with compatible variable ordering

- ▶ assign #0 to all terminal nodes labelled 0
- ▶ assign #1 to all terminal nodes labelled 1
- ▶ non-terminal node *n* with variable *x*:
 - ① if id(lo(n)) = id(hi(n)) then id(n) = id(lo(n))
 - ② if there exists node $m \neq n$ with same variable x and id(m) defined such that

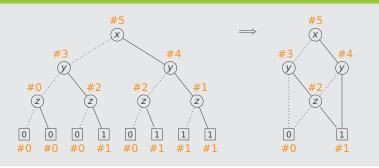
$$id(lo(m)) = id(lo(n))$$
 and $id(hi(m)) = id(hi(n))$

then
$$id(n) = id(m)$$

- 3 otherwise id(n) = next unused natural number
- share nodes with same label

 ΔM_{-}

Example



Outline

- 1. Summary of Previous Lecture
- 2. Algorithms for Binary Decision Diagrams

Restrict

- 3. Intermezzo
- 4. Hidden Weighted Bit Function
- 5. Predicate Logic
- 6. Further Reading

 ΔM_{-}

 ΔM_{\perp}

 $AM_$

Definition

restriction of boolean function *f* with respect to variable *x*:

f[0/x]replace all occurrences of x in f by 0

replace all occurrences of x in f by 1 f[1/x]

$$f = x \cdot (y + \overline{x})$$

$$f[0/x] = 0 \cdot (y + \overline{0}) = 0$$

$$f[1/x] = 1 \cdot (y + \overline{1}) = y$$

$$f[0/y] = x \cdot (0 + \overline{x}) = 0$$

$$f[1/y] = x \cdot (1+\overline{x}) = x$$

Theorem (Shannon expansion)

 $f = \overline{x} \cdot f[0/x] + x \cdot f[1/x]$ for every boolean function f and variable x

Notational Convention

operator precedence $\cdot > \oplus, +$

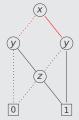
Restrict Algorithm

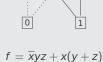
input: • OBDD B_f , variable x, value $i \in \{0, 1\}$

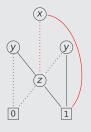
output: • reduced OBDD of f[i/x] with compatible variable ordering

① redirect every incoming edge of node n labelled with x to

- ightharpoonup lo(n) if i = 0
- ▶ hi(n) if i = 1
- 2 reduce resulting OBDD







f[1/y]

inaccessible nodes are taken care of by garbage collector

Outline

- 1. Summary of Previous Lecture
- 2. Algorithms for Binary Decision Diagrams

Apply

- 3. Intermezzo
- 4. Hidden Weighted Bit Function
- 5. Predicate Logic
- 6. Further Reading

Notation

BDD B_f of boolean function f has root node r_f

 $hi(r_f)$ f[1/x]

Apply Algorithm

input:

- binary operation ★ on boolean functions
- OBDDs B_f and B_q with compatible variable orderings
- output: reduced OBDD of $f \star g$ with compatible variable ordering

$$f \star g = \overline{x} \cdot (f \star g)[0/x] + x \cdot (f \star g)[1/x]$$
$$= \overline{x} \cdot \underbrace{(f[0/x] \star g[0/x])}_{} + x \cdot \underbrace{(f[1/x] \star g[1/x])}_{}$$

simpler than $f \star q$

Apply Algorithm $apply(\star, B_f, B_g)$

case I r_f , r_q terminal nodes with labels ℓ_f , ℓ_q

return

 $\ell_f \star \ell_a$

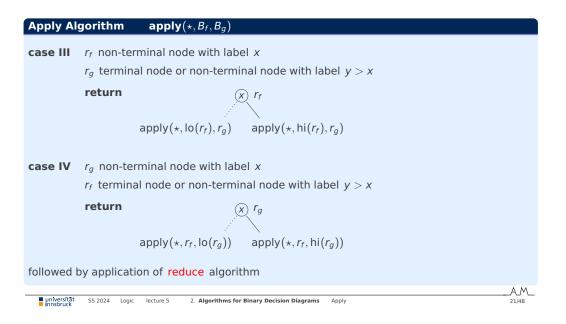
case II r_f , r_q non-terminal nodes with same label x

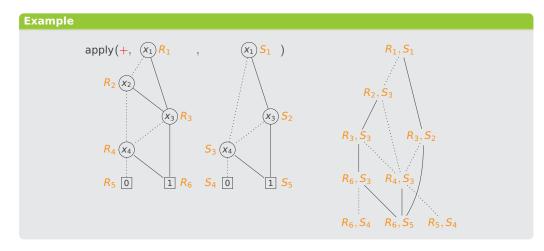
return

apply $(\star, lo(r_f), lo(r_g))$ apply $(\star, hi(r_f), hi(r_g))$

 ΔM_{-}

 $AM_$





Outline

- 1. Summary of Previous Lecture
- 2. Algorithms for Binary Decision Diagrams

Ouantification

- 3. Intermezzo
- 4. Hidden Weighted Bit Function
- 5. Predicate Logic
- 6. Further Reading

Definition

quantification of boolean function f over variable x:

- $\rightarrow \exists x.f$ f[0/x] + f[1/x]
- $f[0/x] \cdot f[1/x]$ $\rightarrow \forall x.f$

Summary						
function f	OBDD B_f	function f	OBDD B_f	function f	OBDD B_f	
0	0	g + h	$apply(+,B_g,B_h)$	g[0/x]	$restrict(0, x, B_g)$	
1	1	$g \oplus h$	$apply(\oplus, B_g, B_h)$	g[1/x]	$restrict(1, x, B_g)$	
X	(X)	g · h	$apply(\;\cdot\;,B_g,B_h)$	$\exists x.g$	$apply(+,B_{g[0/x]},B_{g[1/x]})$	
[0 1	g	$apply(\oplus, B_g, B_1)$	$\forall x.g$	$apply\big(\cdot,B_{g[0/x]},B_{g[1/x]}\big)$	

 $AM_$

Demo

BoolTool

by Patrick Muxel (2004), Philipp Ruff (2006), Caroline Terzer (2006), Markus Plattner (2007), Elias Zischg (2012)

BoolTool Reloaded

by Martin Neuner (2023)

Inviversität Insbruck SS 2024 Logic lecture 5 2. Algorithms for Binary Decision Diagrams Demo 25/48

Particify with session ID 0992 9580

Questions

Which of the following statements are true?

- A The output of restrict has fewer nodes than the input.
- B The number of edges in a reduced OBDD depends on the order.
- An OBDD for a formula with n variables has at most $2^{n+1} 1$ nodes.
- Negating a reduced OBDD does not change the number of nodes.
- A reduced OBDD with 12 nodes containing up to 4 variables exists.

Outline

- 1. Summary of Previous Lecture
- 2. Algorithms for Binary Decision Diagrams
- 3. Intermezzo
- 4. Hidden Weighted Bit Function
- 5. Predicate Logic
- 6. Further Reading

universität SS 2024 Logic lecture 5 3. Intermezzo 26

Outline

- 1. Summary of Previous Lecture
- 2. Algorithms for Binary Decision Diagrams
- 3. Intermezzo
- 4. Hidden Weighted Bit Function
- 5. Predicate Logic
- 6. Further Reading

 ΔM_{-}

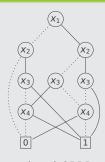
Definitions

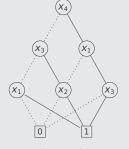
$$\mathbf{wt}(x_1,\ldots,x_n) = \sum_{i=1}^n x_i$$

$X_1 X_2 X_3 X_4$	HWB ₄	$X_1 X_2 X_3 X_4$	HWB ₄	x ₁ x ₂ x ₃ x ₄	HWB ₄	$X_1 X_2 X_3 X_4$	HWB ₄
0 0 0 0	0	0 1 0 0	0	1 0 0 0	1	1 1 0 0	1
0 0 0 1	0	0 1 0 1	1	1 0 0 1	0	1 1 0 1	0
0 0 1 0	0	0 1 1 0	1	1 0 1 0	0	1 1 1 0	1
0 0 1 1	0	0 1 1 1	1	1 0 1 1	1	1 1 1 1	1

 ΔM_{-}

Example





reduced OBDD

free (read-1) BDD

Theorem

- \triangleright every reduced OBDD computing HWB_n has size exponential in n
- \triangleright some reduced BDD computing HWB_n has size quadratic in n

4. Hidden Weighted Bit Function

Outline

- 1. Summary of Previous Lecture
- 2. Algorithms for Binary Decision Diagrams
- 3. Intermezzo
- 4. Hidden Weighted Bit Function

5. Predicate Logic

Introduction Free and Bound Variables Substitution Syntax

6. Further Reading

Definition

propositional formulas are built from

- ▶ atoms
- p, q, r, p_1, p_2, \dots
- ▶ bottom
- ► top
- negation
- $\neg p$
- "not *p*"

- conjunction
- \wedge
- $p \wedge q$ $p \vee q$

 $p \rightarrow q$

"p and q" "p or q"

- disjunction ▶ implication
- \vee

"if p then q"

according to following Backus - Naur Form:

$$\varphi ::= p \mid \bot \mid \top \mid (\neg \varphi) \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi) \mid (\varphi \to \varphi)$$

Propositional Logic is Not Very Expressive

statements like

- ► Mary admires every professor
- ► some professor admires Mary
- ► Mary admires herself
- ▶ no student attended every lecture
- ▶ no lecture was attended by every student
- ▶ no lecture was attended by any student

cannot be expressed adequately in propositional logic

universität SS 2024 Logic lecture 5 5. Predicate Logic Introduction 33/48

concept notation intended meaning

predicate symbols P, Q, R, A, B, ... relations over domain

function symbols f, g, h, a, b, \ldots functions over domain

variables x, y, z, \dots (unspecified) elements of domain

quantifiers \forall , \exists for all, for some

connectives \neg , \wedge , \vee , \rightarrow

Remarks

- ▶ function and predicate symbols take fixed number of arguments (arity)
- ▶ function and predicate symbols of arity 0 are called constants
- ► = (equality) is designated predicate symbol of arity 2

universität SS 2024 Logic lecture 5 5. **Predicate Logic** Introduction 34/48

Example (Exercise 2.1.1)

- Mary admires every professor
- some professor admires Mary
- Mary admires herself
- ▶ no student attended every lecture
- no lecture was attended by every student
- no lecture was attended by any student

A(x,y) x admires y P(x) x is professor L(x) x is lecture B(x,y) x attended y S(x) x is student y Mary

A, B binary predicate symbols

P, S, L unary predicate symbols

m function symbol of arity 0

Outline

- 1. Summary of Previous Lecture
- 2. Algorithms for Binary Decision Diagrams
- 3. Intermezzo
- 4. Hidden Weighted Bit Function

5. Predicate Logic

Introduction Syntax Free and Bound Variables Substitution

6. Further Reading

Definitions

terms are built from function symbols and variables according to following BNF grammar:

$$t ::= x | c | f(t, ..., t)$$

formulas are built from predicate symbols, terms, connectives and quantifiers according to following BNF grammar:

$$\varphi ::= P \mid P(t, \dots, t) \mid (t = t) \mid \bot \mid \top \mid (\neg \varphi) \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi) \mid (\varphi \to \varphi) \mid (\forall x \varphi) \mid (\exists x \varphi)$$

- notational conventions:
- ▶ binding precedence $= > \neg, \forall, \exists > \land, \lor > \rightarrow$
- omit outer parentheses
- ightharpoonup ightharpoonup, ightharpoonup, ightharpoonup are right-associative

Example (Exercise 2.1.1, cont'd)

A(x,y) x admires y P(x) x is professor L(x) x is lecture

B(x,y) x attended y S(x) x is student m Mary

▶ Mary admires every professor $\forall x (P(x) \rightarrow A(m,x))$

▶ some professor admires Mary $\exists x (P(x) \land A(x,m))$

Mary admires herself A(m,m)

▶ no student attended every lecture $\neg \exists x (S(x) \land \forall y (L(y) \rightarrow B(x,y)))$

▶ no lecture was attended by every student $\neg \exists x (L(x) \land \forall y (S(y) \rightarrow B(y,x)))$

▶ no lecture was attended by any student $\forall x \forall y (L(x) \land S(y) \rightarrow \neg B(y, x))$

Outline

AM

- 1. Summary of Previous Lecture
- 2. Algorithms for Binary Decision Diagrams
- 3. Intermezzo
- 4. Hidden Weighted Bit Function

5. Predicate Logic

Introduction Syntax Free and Bound Variables Substitution

6. Further Reading

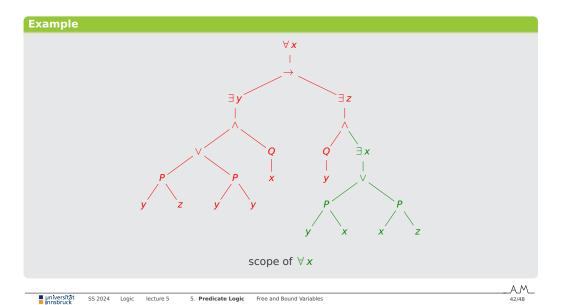
niversität SS 2024 Logic lecture 5 5. Predicate Logic Syntax

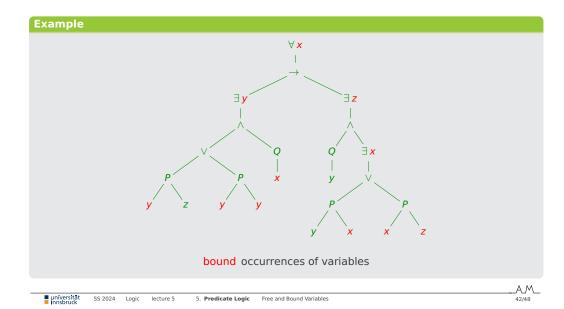
universität SS 2024 Logic lecture 5 5 Predicate Logic Free and Round Variables

 $AM_$

Definitions

- ightharpoonup occurrence of variable x in formula φ is free in φ if it is leaf node in parse tree of φ such that there is no node $\forall x$ or $\exists x$ on path to root node
- \blacktriangleright occurrence of variable x in formula φ is **bound** if this occurrence is not free in φ
- ▶ scope of occurrence of $\forall x \ (\exists x)$ in formula $\forall x \varphi \ (\exists x \varphi)$ is φ except any subformula of φ of form $\forall x \psi$ or $\exists x \psi$





Outline

- **1. Summary of Previous Lecture**
- 2. Algorithms for Binary Decision Diagrams
- 3. Intermezzo
- 4. Hidden Weighted Bit Function
- 5. Predicate Logic

Introduction Syntax Free and Bound Variables Substitution

6. Further Reading

Definition

 $\varphi[t/x]$ is result of replacing all free occurrences of x in φ by t

Example

$$\varphi = \forall x (P(x) \land Q(y)) \rightarrow \neg P(x) \lor \exists y Q(y)$$

$$t = f(a, g(x))$$

$$\varphi[t/x] = \forall x (P(x) \land Q(y)) \rightarrow \neg P(f(a, g(x))) \lor \exists y Q(y)$$

$$\varphi[t/y] = \forall x (P(x) \land Q(f(a, g(x)))) \rightarrow \neg P(x) \lor \exists y Q(y)$$

undesired effect: x is captured by $\forall x$

5. Predicate Logic

Definition

term t is free for x in φ if variables in t do not become bound in $\varphi[t/x]$

Example

$$\varphi = \forall x ((\forall z (P(z) \land Q(y))) \rightarrow \neg P(x) \lor Q(z))$$

$$t = f(y, z)$$

- ightharpoonup t is free for x in φ
- ightharpoonup t is not free for y in φ
- ightharpoonup t is free for z in φ

Definition

sentence is formula without free variables

SS 2024 Logic lecture 5

5. Predicate Logic Substitution

Outline

- 1. Summary of Previous Lecture
- 2. Algorithms for Binary Decision Diagrams
- 3. Intermezzo
- 4. Hidden Weighted Bit Function
- 5. Predicate Logic
- 6. Further Reading

Huth and Ryan

- ► Section 2.1
- ► Section 2.2
- ► Section 6.2

Extensions and Variants of OBDDs

► Algorithms and Data Structures in VLSI Design Christoph Meinel and Thorsten Theobald Springer-Verlag 1998

www.hpi.uni-potsdam.de/fileadmin/hpi/FG ITS/books/OBDD-Book.pdf

Zero-Suppressed BDDs and Their Applications Shin-ichi Minato

International Journal on Software Tools for Technology Transfer 3, pp. 156-170, 2001 doi: 10.1007/s100090100038

 ΔM_{-}

Important Concepts

- ► hidden weighted bit function apply algorithm
- bound occurrence predicate symbol
- existential quantifier
- ▶ free BDD
- ► reduce algorithm free occurrence
- function symbol
- quantification quantifier

► restrict algorithm

- ► Shannon expansion
- universal quantifier
- variable

restriction

sentence

scope

homework for April 18

