Logic

Diana Gründlinger
Alexander Montag Johannes Niederhauser

Fabian Mitterwallner

Aart Middeldorp

Daniel Rainer

Drticify

with session ID 09929580 for anonymous questions ars.uibk.ac.at

Outline

1. Summary of Previous Lecture
2. Semantics of Predicate Logic
3. Intermezzo
4. Natural Deduction for Predicate Logic
5. Soundness and Completeness
6. Further Reading

BDD Algorithms

- reduce input: - OBDD
output: - equivalent reduced OBDD with compatible variable ordering
- restrict input: - OBDD B_{f}, variable $x, i \in\{0,1\}$
output: - reduced OBDD of $f[i / x]$ with compatible variable ordering
- apply input: - binary operation \star on boolean functions
- OBDDs B_{f} and B_{g} with compatible variable orderings
output: - reduced OBDD of $f \star g$ with compatible variable ordering

Theorem (Shannon expansion)

$f=\bar{x} \cdot f[0 / x]+x \cdot f[1 / x]$
for every boolean function f and variable x

BDD Algorithms

- reduce input: - OBDD
output: - equivalent reduced OBDD with compatible variable ordering
- restrict input: - OBDD B_{f}, variable $x, i \in\{0,1\}$
output: - reduced OBDD of $f[i / x]$ with compatible variable ordering
- apply input: - binary operation \star on boolean functions
- OBDDs B_{f} and B_{g} with compatible variable orderings
output: - reduced OBDD of $f \star g$ with compatible variable ordering

Theorem (Shannon expansion)

$f=\bar{x} \cdot f[0 / x]+x \cdot f[1 / x]=\bar{x} \cdot f[0 / x] \oplus x \cdot f[1 / x]$ for every boolean function f and variable x

Definition

quantification of boolean function f over variable x :

$$
\exists x . f=f[0 / x]+f[1 / x] \quad \forall x . f=f[0 / x] \cdot f[1 / x]
$$

BDD operations

function f	OBDD B_{f}	function f	OBDD B_{f}	function f	OBDD B_{f}
0	0	$g+h$	$\operatorname{apply}\left(+, B_{g}, B_{h}\right)$	$g[0 / x]$	$\operatorname{restrict}\left(0, x, B_{g}\right)$
1	1	$g \oplus h$	$\operatorname{apply}\left(\oplus, B_{g}, B_{h}\right)$	$g[1 / x]$	$\operatorname{restrict}\left(1, x, B_{g}\right)$
x	\times	$g \cdot h$	$\operatorname{apply}\left(\cdot, B_{g}, B_{h}\right)$	$\exists x . g$	$\operatorname{apply}\left(+, B_{g[0 / x]}, B_{g[1 / x]}\right)$
	\therefore	\bar{g}	$\operatorname{apply}\left(\oplus, B_{g}, B_{1}\right)$	$\forall x . g$	$\operatorname{apply}\left(\cdot, B_{g[0 / x]}, B_{g[1 / x]}\right)$

Remark

(reduced ordered) BDDs are not always efficient representation

Definitions

- terms in predicate logic are built from function symbols and variables according to BNF grammar $t::=x|c| f(t, \ldots, t)$
- formulas in predicate logic are built according to BNF grammar

$$
\varphi::=P|P(t, \ldots, t)| t=t|\perp| \top|(\neg \varphi)|(\varphi \wedge \varphi)|(\varphi \vee \varphi)|(\varphi \rightarrow \varphi)|(\forall x \varphi)|(\exists x \varphi)
$$

- occurrence of variable x in formula φ is free in φ if it is leaf node in parse tree of φ such that there is no node $\forall x$ or $\exists x$ on path to root node; all other occurrences of x are bound
- $\varphi[t / x]$ is result of replacing all free occurrences of x in φ by t
- t is free for x in φ if variables in t do not become bound in $\varphi[t / x]$
- sentence is formula without free variables

Part I: Propositional Logic

algebraic normal forms, binary decision diagrams, conjunctive normal forms, DPLL, Horn formulas, natural deduction, Post's adequacy theorem, resolution, SAT, semantics, sorting networks, soundness and completeness, syntax, Tseitin's transformation

Part II: Predicate Logic

natural deduction, quantifier equivalences, resolution, semantics, Skolemization, syntax, undecidability, unification

Part III: Model Checking

adequacy, branching-time temporal logic, CTL*, fairness, linear-time temporal logic, model checking algorithms, symbolic model checking

Part I: Propositional Logic

algebraic normal forms, binary decision diagrams, conjunctive normal forms, DPLL, Horn formulas, natural deduction, Post's adequacy theorem, resolution, SAT, semantics, sorting networks, soundness and completeness, syntax, Tseitin's transformation

Part II: Predicate Logic

natural deduction, quantifier equivalences, resolution, semantics, Skolemization, syntax, undecidability, unification

Part III: Model Checking

adequacy, branching-time temporal logic, CTL*, fairness, linear-time temporal logic, model checking algorithms, symbolic model checking

Outline

1. Summary of Previous Lecture

2. Semantics of Predicate Logic
3. Intermezzo
4. Natural Deduction for Predicate Logic
5. Soundness and Completeness
6. Further Reading

Definition

model \mathcal{M} for pair $(\mathcal{F}, \mathcal{P})$
\mathcal{F} set of function symbols
\mathcal{P} set of predicate symbols
consists of

Definition

model \mathcal{M} for pair $(\mathcal{F}, \mathcal{P})$
\mathcal{F} set of function symbols
\mathcal{P} set of predicate symbols
consists of
(1) non-empty set A (universe of concrete values)

Definition

model \mathcal{M} for pair $(\mathcal{F}, \mathcal{P})$
\mathcal{F} set of function symbols
\mathcal{P} set of predicate symbols
consists of
(1) non-empty set A (universe of concrete values)
(2) function $f^{\mathcal{M}}: A^{n} \rightarrow A$ for every n-ary function symbol $f \in \mathcal{F}$

Definition

model \mathcal{M} for pair $(\mathcal{F}, \mathcal{P})$
\mathcal{F} set of function symbols
\mathcal{P} set of predicate symbols
consists of
(1) non-empty set A (universe of concrete values)
(2) function $f^{\mathcal{M}}: A^{n} \rightarrow A$ for every n-ary function symbol $f \in \mathcal{F}$
(3) subset $P^{\mathcal{M}} \subseteq A^{n} \quad$ for every n-ary predicate symbol $P \in \mathcal{P}$

Definition

model \mathcal{M} for pair $(\mathcal{F}, \mathcal{P})$
\mathcal{F} set of function symbols
\mathcal{P} set of predicate symbols
consists of
(1) non-empty set A (universe of concrete values)
(2) function $f^{\mathcal{M}}: A^{n} \rightarrow A$ for every n-ary function symbol $f \in \mathcal{F}$
(3) subset $P^{\mathcal{M}} \subseteq A^{n} \quad$ for every n-ary predicate symbol $P \in \mathcal{P}$
" P holds for all tuples $\left(a_{1}, \ldots, a_{n}\right)$ in $P^{\mathcal{M} "}$

SS 2024
Logic
lecture 6
2. Semantics of Predicate Logic

Definition

model \mathcal{M} for pair $(\mathcal{F}, \mathcal{P})$
\mathcal{F} set of function symbols
\mathcal{P} set of predicate symbols
consists of
(1) non-empty set A (universe of concrete values)
(2) function $f^{\mathcal{M}}: A^{n} \rightarrow A$ for every n-ary function symbol $f \in \mathcal{F}$
(3) subset $P^{\mathcal{M}} \subseteq A^{n} \quad$ for every n-ary predicate symbol $P \in \mathcal{P}$
" P holds for all tuples $\left(a_{1}, \ldots, a_{n}\right)$ in $P^{\mathcal{M} "}$

Remark

if P is constant then $P^{\mathcal{M}} \subseteq A^{0}=\{()\}$

Definition

model \mathcal{M} for pair $(\mathcal{F}, \mathcal{P})$
\mathcal{F} set of function symbols
\mathcal{P} set of predicate symbols
consists of
(1) non-empty set A (universe of concrete values)
(2) function $f^{\mathcal{M}}: A^{n} \rightarrow A$ for every n-ary function symbol $f \in \mathcal{F}$
(3) subset $P^{\mathcal{M}} \subseteq A^{n} \quad$ for every n-ary predicate symbol $P \in \mathcal{P}$
" P holds for all tuples $\left(a_{1}, \ldots, a_{n}\right)$ in $P^{\mathcal{M} "}$

Remark

if P is constant then $P^{\mathcal{M}} \subseteq A^{0}=\{()\}: \quad P^{\mathcal{M}}=\varnothing \quad$ or $\quad P^{\mathcal{M}}=\{()\}$

Definition

model \mathcal{M} for pair $(\mathcal{F}, \mathcal{P})$
\mathcal{F} set of function symbols
\mathcal{P} set of predicate symbols
consists of
(1) non-empty set A (universe of concrete values)
(2) function $f^{\mathcal{M}}: A^{n} \rightarrow A$ for every n-ary function symbol $f \in \mathcal{F}$
(3) subset $P^{\mathcal{M}} \subseteq A^{n} \quad$ for every n-ary predicate symbol $P \in \mathcal{P}$
" P holds for all tuples $\left(a_{1}, \ldots, a_{n}\right)$ in $P^{\mathcal{M} "}$

Remark

if P is constant then $P^{\mathcal{M}} \subseteq A^{0}=\{()\}: \quad P^{\mathcal{M}}=\varnothing \simeq F \quad$ or $\quad P^{\mathcal{M}}=\{()\} \simeq \mathrm{T}$

Definition

model \mathcal{M} for pair $(\mathcal{F}, \mathcal{P})$
\mathcal{F} set of function symbols
\mathcal{P} set of predicate symbols
consists of
(1) non-empty set A (universe of concrete values)
(2) function $f^{\mathcal{M}}: A^{n} \rightarrow A$ for every n-ary function symbol $f \in \mathcal{F}$
(3) subset $P^{\mathcal{M}} \subseteq A^{n} \quad$ for every n-ary predicate symbol $P \in \mathcal{P}$
" P holds for all tuples $\left(a_{1}, \ldots, a_{n}\right)$ in $P^{\mathcal{M} "}$
(4) $=\mathcal{M}$ is identity relation on A

Remark

if P is constant then $P^{\mathcal{M}} \subseteq A^{0}=\{()\}: \quad P^{\mathcal{M}}=\varnothing \simeq F \quad$ or $\quad P^{\mathcal{M}}=\{()\} \simeq \mathrm{T}$

Examples

function and predicate symbols

- $\mathcal{P} \quad A, B$: arity $2 \quad P, S, L$: arity $1 \quad \mathcal{F} \quad m$: arity 0

Examples

function and predicate symbols

- $\mathcal{P} \quad$ A, B: arity 2
P, S, L : arity 1
$\mathcal{F} \quad m$: arity 0
(1) model \mathcal{M}_{1}
- universe A_{1} : set of computer science students and professors of University of Innsbruck together with all lectures offered in SS 2024 in bachelor program computer science
$-A^{\mathcal{M}_{1}}=\{(x, y) \mid x$ admires $y\} \quad P^{\mathcal{M}_{1}}=\{x \mid x$ is professor $\} \quad L^{\mathcal{M}_{1}}=\{x \mid x$ is lecture $\}$
$B^{\mathcal{M}_{1}}=\{(x, y) \mid x$ attended $y\} \quad S^{\mathcal{M}_{1}}=\{x \mid x$ is student $\} \quad m^{\mathcal{M}_{1}}=$ Aki Suzuki

Examples

function and predicate symbols
$\rightarrow \mathcal{P} \quad A, B$: arity $2 \quad P, S, L$: arity $1 \quad \mathcal{F} \quad m$: arity 0
(1) model \mathcal{M}_{1} is well-defined only if Aki Suzuki $\in A_{1}$

- universe A_{1} : set of computer science students and professors of University of Innsbruck together with all lectures offered in SS 2024 in bachelor program computer science
$\Rightarrow A^{\mathcal{M}_{1}}=\{(x, y) \mid x$ admires $y\} \quad P^{\mathcal{M}_{1}}=\{x \mid x$ is professor $\} \quad L^{\mathcal{M}_{1}}=\{x \mid x$ is lecture $\}$
$B^{\mathcal{M}_{1}}=\{(x, y) \mid x$ attended $y\} \quad S^{\mathcal{M}_{1}}=\{x \mid x$ is student $\} \quad m^{\mathcal{M}_{1}}=$ Aki Suzuki

Examples

function and predicate symbols
$\Rightarrow \mathcal{P} \quad A, B$: arity $2 \quad P, S, L$: arity $1 \quad \mathcal{F} \quad m$: arity 0
(1) model \mathcal{M}_{1} is well-defined only if Aki Suzuki $\in A_{1}$

- universe A_{1} : set of computer science students and professors of University of Innsbruck together with all lectures offered in SS 2024 in bachelor program computer science
$\Rightarrow A^{\mathcal{M}_{1}}=\{(x, y) \mid x$ admires $y\} \quad P^{\mathcal{M}_{1}}=\{x \mid x$ is professor $\} \quad L^{\mathcal{M}_{1}}=\{x \mid x$ is lecture $\}$ $B^{\mathcal{M}_{1}}=\{(x, y) \mid x$ attended $y\} \quad S^{\mathcal{M}_{1}}=\{x \mid x$ is student $\} \quad m^{\mathcal{M}_{1}}=$ Aki Suzuki
(2) model \mathcal{M}_{2}
- universe A_{2} : set of natural numbers
$\begin{aligned} A^{\mathcal{M}_{2}} & =\{(x, y) \mid x>y\} & P^{\mathcal{M}_{2}}=\{x \mid x \text { is prime number }\} & L^{\mathcal{M}_{2}}=\{2,7,111\} \\ B^{\mathcal{M}_{2}} & =\{(x, y) \mid x+y=5\} & S^{\mathcal{M}_{2}}=\left\{x^{2} \mid x>1\right\} & m^{\mathcal{M}_{2}}=13\end{aligned}$

Examples

function and predicate symbols
$\Rightarrow \mathcal{P} \quad A, B$: arity $2 \quad P, S, L$: arity $1 \quad \mathcal{F} \quad m$: arity 0
(1) model \mathcal{M}_{1} is well-defined only if Aki Suzuki $\in A_{1}$ ("natural" model)

- universe A_{1} : set of computer science students and professors of University of Innsbruck together with all lectures offered in SS 2024 in bachelor program computer science
$\Rightarrow A^{\mathcal{M}_{1}}=\{(x, y) \mid x$ admires $y\} \quad P^{\mathcal{M}_{1}}=\{x \mid x$ is professor $\} \quad L^{\mathcal{M}_{1}}=\{x \mid x$ is lecture $\}$ $B^{\mathcal{M}_{1}}=\{(x, y) \mid x$ attended $y\} \quad S^{\mathcal{M}_{1}}=\{x \mid x$ is student $\} \quad m^{\mathcal{M}_{1}}=$ Aki Suzuki
(2) model \mathcal{M}_{2}
- universe A_{2} : set of natural numbers
$\begin{aligned} A^{\mathcal{M}_{2}} & =\{(x, y) \mid x>y\} & P^{\mathcal{M}_{2}}=\{x \mid x \text { is prime number }\} & L^{\mathcal{M}_{2}}=\{2,7,111\} \\ B^{\mathcal{M}_{2}} & =\{(x, y) \mid x+y=5\} & S^{\mathcal{M}_{2}}=\left\{x^{2} \mid x>1\right\} & m^{\mathcal{M}_{2}}=13\end{aligned}$

Definitions

- environment (look-up table) for model $\mathcal{M}=\left(A,\left\{f^{\mathcal{M}}\right\}_{f \in \mathcal{F}},\left\{P^{\mathcal{M}}\right\}_{P \in \mathcal{P}}\right)$ is mapping $/$ from variables to elements of A

Definitions

- environment (look-up table) for model $\mathcal{M}=\left(A,\left\{f^{\mathcal{M}}\right\}_{f \in \mathcal{F}},\left\{P^{\mathcal{M}}\right\}_{P \in \mathcal{P}}\right)$ is mapping $/$ from variables to elements of A
- value $t^{\mathcal{M}, I}$ of term t in model \mathcal{M} relative to environment I is defined inductively:

$$
t^{\mathcal{M}, I}= \begin{cases}I(t) & \text { if } t \text { is variable } \\ \end{cases}
$$

Definitions

- environment (look-up table) for model $\mathcal{M}=\left(A,\left\{f^{\mathcal{M}}\right\}_{f \in \mathcal{F}},\left\{P^{\mathcal{M}}\right\}_{P \in \mathcal{P}}\right)$ is mapping $/$ from variables to elements of A
- value $t^{\mathcal{M}, I}$ of term t in model \mathcal{M} relative to environment I is defined inductively:

$$
t^{\mathcal{M}, I}= \begin{cases}I(t) & \text { if } t \text { is variable } \\ f^{\mathcal{M}}\left(t_{1}^{\mathcal{M}, I}, \ldots, t_{n}^{\mathcal{M}, I}\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)\end{cases}
$$

Definitions

- environment (look-up table) for model $\mathcal{M}=\left(A,\left\{f^{\mathcal{M}}\right\}_{f \in \mathcal{F}},\left\{P^{\mathcal{M}}\right\}_{P \in \mathcal{P}}\right)$ is mapping $/$ from variables to elements of A
- value $t^{\mathcal{M}, I}$ of term t in model \mathcal{M} relative to environment I is defined inductively:

$$
t^{\mathcal{M}, I}= \begin{cases}I(t) & \text { if } t \text { is variable } \\ f^{\mathcal{M}}\left(t_{1}^{\mathcal{M}, I}, \ldots, t_{n}^{\mathcal{M}, I}\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)\end{cases}
$$

- given environment I, variable x, and element $a \in A$, environment $I[x \mapsto a]$ is defined as

$$
I[x \mapsto a](y)= \begin{cases}a & \text { if } y=x \\ I(y) & \text { if } y \neq x\end{cases}
$$

Example

function symbols \mathcal{F}

- f : arity 2 g, h: arity $1 \quad a$: arity 0
model \mathcal{M}
- universe A : set of natural numbers
- $f^{\mathcal{M}}(x, y)=x \times y \quad g^{\mathcal{M}}(x)=x+1 \quad h^{\mathcal{M}}(x)=x^{2} \quad a^{\mathcal{M}}=2$ environment I
- $I(x)=3 \quad I(y)=5 \quad \ldots$

Example

function symbols \mathcal{F}

- f : arity 2 g, h: arity $1 \quad a$: arity 0
model \mathcal{M}
- universe A : set of natural numbers
- $f^{\mathcal{M}}(x, y)=x \times y \quad g^{\mathcal{M}}(x)=x+1 \quad h^{\mathcal{M}}(x)=x^{2} \quad a^{\mathcal{M}}=2$ environment I
- $I(x)=3 \quad I(y)=5 \quad \ldots$

$$
f(x, g(y))^{\mathcal{M}, I}=18
$$

Example

function symbols \mathcal{F}

- f : arity 2 g, h: arity 1 a: arity 0
model \mathcal{M}
- universe A : set of natural numbers
- $f^{\mathcal{M}}(x, y)=x \times y \quad g^{\mathcal{M}}(x)=x+1 \quad h^{\mathcal{M}}(x)=x^{2} \quad a^{\mathcal{M}}=2$ environment I
$-I(x)=3 \quad I(y)=5 \quad \ldots$

$$
f(x, g(y))^{\mathcal{M}, I}=18 \quad f(x, g(f(x, h(x))))^{\mathcal{M}, I}=84
$$

Example

function symbols \mathcal{F}

- f : arity 2 g, h: arity $1 \quad a$: arity 0
model \mathcal{M}
- universe A : set of natural numbers
- $f^{\mathcal{M}}(x, y)=x \times y \quad g^{\mathcal{M}}(x)=x+1 \quad h^{\mathcal{M}}(x)=x^{2} \quad a^{\mathcal{M}}=2$
environment I
$-I(x)=3 \quad I(y)=5 \quad \ldots$

$$
f(x, g(y))^{\mathcal{M}, I}=18 \quad f(x, g(f(x, h(x))))^{\mathcal{M}, I}=84 \quad f(h(a), g(f(a, h(h(a)))))^{\mathcal{M}, I}=?
$$

Example

function symbols \mathcal{F}

- f : arity 2 g, h: arity $1 \quad a$: arity 0
model \mathcal{M}
- universe A : set of natural numbers
- $f^{\mathcal{M}}(x, y)=x \times y \quad g^{\mathcal{M}}(x)=x+1 \quad h^{\mathcal{M}}(x)=x^{2} \quad a^{\mathcal{M}}=2$
environment I
$-I(x)=3 \quad I(y)=5 \quad \ldots$

$$
f(x, g(y))^{\mathcal{M}, I}=18 \quad f(x, g(f(x, h(x))))^{\mathcal{M}, I}=84 \quad f(h(a), g(f(a, h(h(a)))))^{\mathcal{M}, I}=132
$$

satisfaction relation $\mathcal{M} \vDash_{l} \varphi($ model \mathcal{M}, enviroment I, formula φ) is defined inductively

Definition

satisfaction relation $\mathcal{M} \vDash_{/} \varphi($ model \mathcal{M}, enviroment I, formula $\varphi)$ is defined inductively:

Definition

satisfaction relation $\mathcal{M} \vDash_{\text {I }} \varphi($ model \mathcal{M}, enviroment I, formula φ) is defined inductively:

Definition

satisfaction relation $\mathcal{M} \vDash_{\text {I }} \varphi($ model \mathcal{M}, enviroment I, formula φ) is defined inductively:

Definition

satisfaction relation $\mathcal{M} \vDash_{\text {I }} \varphi($ model \mathcal{M}, enviroment I, formula φ) is defined inductively:

$$
\mathcal{M} \vDash_{1} \top \begin{array}{ll}
\mathcal{M} \not \vDash^{\prime} \perp \varphi & \text { if } \varphi=P\left(t_{1}, \ldots, t_{n}\right) \\
\left.t_{1}^{\mathcal{M}, I}, \ldots, t_{n}^{\mathcal{M}, I}\right) \in P^{\mathcal{M}} & \text { if } \varphi=\left(t_{1}=t_{2}\right) \\
t_{1}^{\mathcal{M}, I}=t_{2}^{\mathcal{M}, I} \\
\mathcal{M} \not \vDash_{1} \psi & \text { if } \varphi=\neg \psi \\
&
\end{array}
$$

Notation

$\mathcal{M} \not \vDash_{l} \psi$ denotes $" \operatorname{not} \mathcal{M} \vDash_{l} \psi "$

Definition

satisfaction relation $\mathcal{M} \vDash_{/} \varphi($ model \mathcal{M}, enviroment I, formula φ) is defined inductively:

Notation

$\mathcal{M} \not \models_{\boldsymbol{\prime}} \psi$ denotes $" \operatorname{not} \mathcal{M} \vDash_{\text {I }} \psi "$

Definition

satisfaction relation $\mathcal{M} \vDash_{\text {I }} \varphi($ model \mathcal{M}, enviroment I, formula φ) is defined inductively:

Notation

$\mathcal{M} \not \vDash_{l} \psi$ denotes $" \operatorname{not} \mathcal{M} \vDash_{I} \psi "$

Definition

satisfaction relation $\mathcal{M} \vDash_{\text {I }} \varphi($ model \mathcal{M}, enviroment I, formula φ) is defined inductively:

Notation

$\mathcal{M} \not \models_{\boldsymbol{\prime}} \psi$ denotes $" \operatorname{not} \mathcal{M} \vDash_{\text {I }} \psi "$

Definition

satisfaction relation $\mathcal{M} \vDash_{\text {I }} \varphi($ model \mathcal{M}, enviroment I, formula φ) is defined inductively:

Notation

$\mathcal{M} \not \models_{\boldsymbol{\prime}} \psi$ denotes $" \operatorname{not} \mathcal{M} \vDash_{\text {I }} \psi "$

Definition

satisfaction relation $\mathcal{M} \vDash_{\text {I }} \varphi($ model \mathcal{M}, enviroment I, formula φ) is defined inductively:

Notation

$\mathcal{M} \not \models_{\boldsymbol{\prime}} \psi$ denotes $" \operatorname{not} \mathcal{M} \vDash_{\text {I }} \psi "$
sentence is formula without free variables
sentence is formula without free variables

Lemma

if φ is sentence then

$$
\mathcal{M} \vDash_{1} \varphi \quad \Longleftrightarrow \mathcal{M} \vDash_{1, \varphi}
$$

for all environments I and I^{\prime}

Definition

sentence is formula without free variables

Lemma

if φ is sentence then

$$
\mathcal{M} \vDash_{l \varphi} \quad \Longleftrightarrow \quad \mathcal{M} \vDash_{l, \varphi}
$$

for all environments I and I^{\prime}
truth value of sentence does not depend on environment

Definition

sentence is formula without free variables

Lemma

if φ is sentence then

$$
\mathcal{M} \vDash_{l \varphi} \quad \Longleftrightarrow \quad \mathcal{M} \vDash_{l, \varphi}
$$

for all environments I and I^{\prime}
truth value of sentence does not depend on environment

Notation

$\mathcal{M} \vDash \varphi$ instead of $\mathcal{M} \vDash$, φ for sentences φ

Example

- function and predicate symbols
$\mathcal{P} \quad R$: arity $2 \mathcal{F} \quad f$: arity $1 \quad a$: arity 0

Example

- function and predicate symbols
\Rightarrow model $\mathcal{M}_{1}: \quad$ universe $A_{1}=\mathbb{N}$

$$
\begin{gathered}
\mathcal{P} \quad R: \text { arity } 2 \quad \mathcal{F} \quad f: \text { arity } 1 \quad a: \text { arity } 0 \\
R^{\mathcal{M}_{1}}=\{(x, y) \mid x<y\} \quad f^{\mathcal{M}_{1}}(x)=2 x \quad a^{\mathcal{M}_{1}}=0
\end{gathered}
$$

Example

- function and predicate symbols
\Rightarrow model $\mathcal{M}_{1}: \quad$ universe $A_{1}=\mathbb{N}$
\Rightarrow model \mathcal{M}_{2} : universe $A_{2}=\mathbb{R}$
$\mathcal{P} \quad R$: arity $2 \quad \mathcal{F} \quad f$: arity $1 \quad a$: arity 0

$$
\begin{array}{lll}
R^{\mathcal{M}_{1}}=\{(x, y) \mid x<y\} & f^{\mathcal{M}_{1}}(x)=2 x & a^{\mathcal{M}_{1}}=0 \\
R^{\mathcal{M}_{2}}=\{(x, y) \mid x<y\} & f^{\mathcal{M}_{2}}(x)=2 x & a^{\mathcal{M}_{2}}=0
\end{array}
$$

Example

- function and predicate symbols
- model \mathcal{M}_{1} : universe $A_{1}=\mathbb{N}$
- model \mathcal{M}_{2} : universe $A_{2}=\mathbb{R}$
$\mathcal{P} \quad R$: arity $2 \quad \mathcal{F} \quad f$: arity $1 \quad$ a: arity 0
- model $\mathcal{M}_{3}: \quad$ universe $A_{3}=\{0,1\} \quad R^{\mathcal{M}_{3}}=\{(x, y) \mid x<y\} \quad f^{\mathcal{M}_{3}}(x)=\bar{x} \quad a^{\mathcal{M}_{3}}=0$

Example

- function and predicate symbols
- model \mathcal{M}_{1} : universe $A_{1}=\mathbb{N}$
- model \mathcal{M}_{2} : universe $A_{2}=\mathbb{R}$ $\mathcal{P} \quad R$: arity $2 \quad \mathcal{F} \quad f:$ arity $1 \quad$ a: arity 0
- model $\mathcal{M}_{3}: \quad$ universe $A_{3}=\{0,1\} \quad R^{\mathcal{M}_{3}}=\{(x, y) \mid x<y\} \quad f^{\mathcal{M}_{3}}(x)=\bar{x} \quad a^{\mathcal{M}_{3}}=0$
- formulas

$$
\varphi_{1}=\exists x R(a, x)
$$

$$
\begin{array}{lll}
R^{\mathcal{M}_{1}}=\{(x, y) \mid x<y\} & f \mathcal{M}_{1}(x)=2 x & a^{\mathcal{M}_{1}}=0 \\
R^{\mathcal{M}_{2}}=\{(x, y) \mid x<y\} & f \mathcal{M}_{2}(x)=2 x & a^{\mathcal{M}_{2}}=0 \\
R^{\mathcal{M}_{3}}=\{(x, y) \mid x<y\} & f^{\mathcal{M}_{3}}(x)=\bar{x} & a^{\mathcal{M}_{3}}=0
\end{array}
$$

Example

- function and predicate symbols
\Rightarrow model $\mathcal{M}_{1}: \quad$ universe $A_{1}=\mathbb{N}$
- model \mathcal{M}_{2} : universe $A_{2}=\mathbb{R}$
$\mathcal{P} \quad R$: arity $2 \quad \mathcal{F} \quad f$: arity $1 \quad a:$ arity 0
$\triangleright \operatorname{model} \mathcal{M}_{3}: \quad$ universe $A_{3}=\{0,1\} \quad R^{\mathcal{M}_{3}}=\{(x, y) \mid x<y\} \quad f^{\mathcal{M}_{3}}(x)=\bar{x} \quad a^{\mathcal{M}_{3}}=0$
- formulas

$$
\varphi_{1}=\exists x R(a, x) \quad \mathcal{M}_{1} \vDash \varphi_{1} \quad \mathcal{M}_{2} \vDash \varphi_{1} \quad \mathcal{M}_{3} \vDash \varphi_{1}
$$

Example

- function and predicate symbols
\Rightarrow model $\mathcal{M}_{1}: \quad$ universe $A_{1}=\mathbb{N}$
- model \mathcal{M}_{2} : universe $A_{2}=\mathbb{R}$
$\mathcal{P} \quad R$: arity $2 \quad \mathcal{F} \quad f$: arity $1 \quad a$: arity 0
\triangleright model $\mathcal{M}_{3}: \quad$ universe $A_{3}=\{0,1\} \quad R^{\mathcal{M}_{3}}=\{(x, y) \mid x<y\} \quad f^{\mathcal{M}_{3}}(x)=\bar{x} \quad a^{\mathcal{M}_{3}}=0$
- formulas

$$
\begin{array}{rlrl}
\varphi_{1} & =\exists x R(a, x) & \mathcal{M}_{1} \vDash \varphi_{1} & \mathcal{M}_{2} \vDash \varphi_{1} \\
\varphi_{2}=\forall x(R(x, f(x)) \vee x=a) & & \mathcal{M}_{3} \vDash \varphi_{1}
\end{array}
$$

$$
\begin{array}{lll}
R^{\mathcal{M}_{1}}=\{(x, y) \mid x<y\} & f \mathcal{M}_{1} \\
(x)=2 x & a^{\mathcal{M}_{1}}=0 \\
R^{\mathcal{M}_{2}}=\{(x, y) \mid x<y\} & f^{\mathcal{M}_{2}}(x)=2 x & a^{\mathcal{M}_{2}}=0 \\
R^{\mathcal{M}_{3}}=\{(x, y) \mid x<y\} & f^{\mathcal{M}_{3}}(x)=\bar{x} & a^{\mathcal{M}_{3}}=0
\end{array}
$$

Example

- function and predicate symbols
- model $\mathcal{M}_{1}:$ universe $A_{1}=\mathbb{N}$
- model \mathcal{M}_{2} : universe $A_{2}=\mathbb{R}$
\Rightarrow model $\mathcal{M}_{3}: \quad$ universe $A_{3}=\{0,1\} \quad R^{\mathcal{M}_{3}}=\{(x, y) \mid x<y\} \quad f^{\mathcal{M}_{3}}(x)=\bar{x} \quad a^{\mathcal{M}_{3}}=0$
- formulas

$$
\begin{array}{llll}
\varphi_{1}=\exists x R(a, x) & \mathcal{M}_{1} \vDash \varphi_{1} & \mathcal{M}_{2} \vDash \varphi_{1} & \mathcal{M}_{3} \vDash \varphi_{1} \\
\varphi_{2}=\forall x(R(x, f(x)) \vee x=a) & \mathcal{M}_{1} \vDash \varphi_{2} & \mathcal{M}_{2} \not \vDash \varphi_{2} & \mathcal{M}_{3} \not \vDash \varphi_{2}
\end{array}
$$

$\mathcal{P} \quad R$: arity $2 \quad \mathcal{F} \quad f$: arity $1 \quad a:$ arity 0

$$
\begin{array}{lll}
R^{\mathcal{M}_{1}}=\{(x, y) \mid x<y\} & f \mathcal{M}_{1} \\
(x)=2 x & a^{\mathcal{M}_{1}}=0 \\
R^{\mathcal{M}_{2}}=\{(x, y) \mid x<y\} & f^{\mathcal{M}_{2}}(x)=2 x & a^{\mathcal{M}_{2}}=0 \\
R^{\mathcal{M}_{3}}=\{(x, y) \mid x<y\} & f^{\mathcal{M}_{3}}(x)=\bar{x} & a^{\mathcal{M}_{3}}=0
\end{array}
$$

Example

- function and predicate symbols
- model $\mathcal{M}_{1}: \quad$ universe $A_{1}=\mathbb{N}$
- model \mathcal{M}_{2} : universe $A_{2}=\mathbb{R}$
$\mathcal{P} \quad R$: arity $2 \quad \mathcal{F} \quad f$: arity $1 \quad a$: arity 0

$$
R^{\mathcal{M}_{1}}=\{(x, y) \mid x<y\} \quad f \mathcal{M}_{1}(x)=2 x \quad a^{\mathcal{M}_{1}}=0
$$

$$
R^{\mathcal{M}_{2}}=\{(x, y) \mid x<y\} \quad f^{\mathcal{M}_{2}}(x)=2 x \quad a^{\mathcal{M}_{2}}=0
$$

$$
R^{\mathcal{M}_{3}}=\{(x, y) \mid x<y\} \quad f^{\mathcal{M}_{3}}(x)=\bar{x} \quad a^{\mathcal{M}_{3}}=0
$$

\triangleright model $\mathcal{M}_{3}: \quad$ universe $A_{3}=\{0,1\} \quad R^{\mathcal{M}_{3}}=\{(x, y) \mid x<y\} \quad f^{\mathcal{M}_{3}}(x)=\bar{x} \quad a^{\mathcal{M}_{3}}=0$

- formulas

$$
\begin{array}{llll}
\varphi_{1}=\exists x R(a, x) & \mathcal{M}_{1} \vDash \varphi_{1} & \mathcal{M}_{2} \vDash \varphi_{1} & \mathcal{M}_{3} \vDash \varphi_{1} \\
\varphi_{2} & =\forall x(R(x, f(x)) \vee x=a) & \mathcal{M}_{1} \vDash \varphi_{2} & \mathcal{M}_{2} \not \vDash \varphi_{2}
\end{array} \mathcal{M}_{3} \not \vDash \varphi_{2},
$$

Example

- function and predicate symbols
- model $\mathcal{M}_{1}: \quad$ universe $A_{1}=\mathbb{N}$
$\mathcal{P} \quad R$: arity $2 \quad \mathcal{F} \quad f$: arity $1 \quad a$: arity 0
- model $\mathcal{M}_{2}:$ universe $A_{2}=\mathbb{R} \quad R^{\mathcal{M}_{2}}=\{(x, y) \mid x<y\} \quad f^{\mathcal{M}_{2}}(x)=2 x \quad a^{\mathcal{M}_{2}}=0$
\Rightarrow model $\mathcal{M}_{3}: \quad$ universe $A_{3}=\{0,1\} \quad R^{\mathcal{M}_{3}}=\{(x, y) \mid x<y\} \quad f^{\mathcal{M}_{3}}(x)=\bar{x} \quad a^{\mathcal{M}_{3}}=0$
- formulas

$$
\begin{array}{llll}
\varphi_{1}=\exists x R(a, x) & \mathcal{M}_{1} \vDash \varphi_{1} & \mathcal{M}_{2} \vDash \varphi_{1} & \mathcal{M}_{3} \vDash \varphi_{1} \\
\varphi_{2}=\forall x(R(x, f(x)) \vee x=a) & \mathcal{M}_{1} \vDash \varphi_{2} & \mathcal{M}_{2} \not \vDash \varphi_{2} & \mathcal{M}_{3} \not \vDash \varphi_{2} \\
\varphi_{3}=\forall x \forall y(R(x, y) \rightarrow \exists z(R(x, z) \wedge R(z, y))) & \mathcal{M}_{1} \not \vDash \varphi_{3} & \mathcal{M}_{2} \vDash \varphi_{3} & \mathcal{M}_{3} \not \vDash \varphi_{3}
\end{array}
$$

Example

some professor admires Mary

Example

some professor admires Mary

$$
\varphi=\exists x(P(x) \wedge A(x, m))
$$

Example

some professor admires Mary

$$
\varphi=\exists x(P(x) \wedge A(x, m))
$$

$$
\psi=\exists x(P(x) \rightarrow A(x, m))
$$

Example

some professor admires Mary

$$
\varphi=\exists x(P(x) \wedge A(x, m)) \quad \psi=\exists x(P(x) \rightarrow A(x, m))
$$

- model \mathcal{M} : universe is set of persons living in Innsbruck

Example

some professor admires Mary

$$
\varphi=\exists x(P(x) \wedge A(x, m)) \quad \psi=\exists x(P(x) \rightarrow A(x, m))
$$

- model \mathcal{M} : universe is set of persons living in Innsbruck

$$
P^{\mathcal{M}}=\varnothing \quad A^{\mathcal{M}}=\varnothing \quad m^{\mathcal{M}}=\text { Diana }
$$

Example

some professor admires Mary

$$
\varphi=\exists x(P(x) \wedge A(x, m)) \quad \psi=\exists x(P(x) \rightarrow A(x, m))
$$

- model \mathcal{M} : universe is set of persons living in Innsbruck

$$
P^{\mathcal{M}}=\varnothing \quad A^{\mathcal{M}}=\varnothing \quad m^{\mathcal{M}}=\text { Diana }
$$

- $\mathcal{M} \not \models \varphi$

Example

some professor admires Mary

$$
\varphi=\exists x(P(x) \wedge A(x, m)) \quad \psi=\exists x(P(x) \rightarrow A(x, m))
$$

- model \mathcal{M} : universe is set of persons living in Innsbruck

$$
P^{\mathcal{M}}=\varnothing \quad A^{\mathcal{M}}=\varnothing \quad m^{\mathcal{M}}=\text { Diana }
$$

- $\mathcal{M} \not \models \varphi$
- $\mathcal{M} \vDash \psi$

Definitions

formula ψ

- ψ is satisfiable if $\mathcal{M} \vDash$, ψ for some model \mathcal{M} and environment I

Definitions

formula ψ, (possibly infinite) set of formulas 「

- ψ is satisfiable if $\mathcal{M} \vDash_{,} \psi$ for some model \mathcal{M} and environment /
- 「 is satisfiable (consistent) if $\mathcal{M} \vDash^{\prime} \varphi$ for all $\varphi \in \Gamma$, for some model \mathcal{M} and environment /

Definitions

formula ψ, (possibly infinite) set of formulas 「

- ψ is satisfiable if $\mathcal{M} \vDash_{\|} \psi$ for some model \mathcal{M} and environment I
- 「 is satisfiable (consistent) if $\mathcal{M} \vDash_{\boldsymbol{\prime}} \varphi$ for all $\varphi \in \Gamma$, for some model \mathcal{M} and environment /

Example

$$
\begin{aligned}
\Gamma=\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}\right\} \text { with } \varphi_{1} & =\exists x R(a, x) \\
\varphi_{2} & =\forall x(R(x, f(x)) \vee x=a) \\
\varphi_{3} & =\forall x \forall y(R(x, y) \rightarrow \exists z(R(x, z) \wedge R(z, y)))
\end{aligned}
$$

is satisfiable

Definitions

formula ψ, (possibly infinite) set of formulas 「

- ψ is satisfiable if $\mathcal{M} \vDash_{\|} \psi$ for some model \mathcal{M} and environment I
- 「 is satisfiable (consistent) if $\mathcal{M} \vDash_{\boldsymbol{\prime}} \varphi$ for all $\varphi \in \Gamma$, for some model \mathcal{M} and environment /

Example

$$
\begin{aligned}
\Gamma=\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}\right\} \text { with } \varphi_{1} & =\exists x R(a, x) \\
\varphi_{2} & =\forall x(R(x, f(x)) \vee x=a) \\
\varphi_{3} & =\forall x \forall y(R(x, y) \rightarrow \exists z(R(x, z) \wedge R(z, y)))
\end{aligned}
$$

is satisfiable in model \mathcal{M} :

- universe A : set of natural numbers
- $R^{\mathcal{M}}=\{(x, y) \mid x \leqslant y\} \quad f^{\mathcal{M}}(x)=x \quad a^{\mathcal{M}}=0$

Definitions

formula ψ, (possibly infinite) set of formulas「

- 「 $\vDash \psi$ (semantic entailment) if $\mathcal{M} \vDash_{,} \psi$ whenever $\mathcal{M} \vDash_{,} \varphi$ for all $\varphi \in \Gamma$, for all (appropriate) models \mathcal{M} and environments I

Definitions

formula ψ, (possibly infinite) set of formulas「

- 「 $\vDash \psi$ (semantic entailment) if $\mathcal{M} \vDash_{\|} \psi$ whenever $\mathcal{M} \vDash_{\|} \varphi$ for all $\varphi \in \Gamma$, for all (appropriate) models \mathcal{M} and environments I

Example

$\triangleright \Gamma \vDash \neg R(a, a) \rightarrow \exists x \neg(x=a)$ for $\Gamma=\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}\right\}$ with

$$
\begin{aligned}
& \varphi_{1}=\exists x R(a, x) \\
& \varphi_{2}=\forall x(R(x, f(x)) \vee x=a) \\
& \varphi_{3}=\forall x \forall y(R(x, y) \rightarrow \exists z(R(x, z) \wedge R(z, y)))
\end{aligned}
$$

Definitions

formula ψ, (possibly infinite) set of formulas 「

- 「 $\vDash \psi$ (semantic entailment) if $\mathcal{M} \vDash_{,} \psi$ whenever $\mathcal{M} \vDash_{,} \varphi$ for all $\varphi \in \Gamma$, for all (appropriate) models \mathcal{M} and environments I
- ψ is valid if $\mathcal{M} \vDash_{/} \psi$ for all (appropriate) models \mathcal{M} and environments /

Example

$\triangleright \Gamma \vDash \neg R(a, a) \rightarrow \exists x \neg(x=a)$ for $\Gamma=\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}\right\}$ with

$$
\begin{aligned}
& \varphi_{1}=\exists x R(a, x) \\
& \varphi_{2}=\forall x(R(x, f(x)) \vee x=a) \\
& \varphi_{3}=\forall x \forall y(R(x, y) \rightarrow \exists z(R(x, z) \wedge R(z, y)))
\end{aligned}
$$

Definitions

formula ψ, (possibly infinite) set of formulas 「

- 「 $\vDash \psi$ (semantic entailment) if $\mathcal{M} \vDash_{,} \psi$ whenever $\mathcal{M} \vDash_{,} \varphi$ for all $\varphi \in \Gamma$, for all (appropriate) models \mathcal{M} and environments /
- ψ is valid if $\mathcal{M} \vDash_{/} \psi$ for all (appropriate) models \mathcal{M} and environments /

Example

$\triangleright \Gamma \vDash \neg R(a, a) \rightarrow \exists x \neg(x=a)$ for $\Gamma=\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}\right\}$ with

$$
\begin{aligned}
& \varphi_{1}=\exists x R(a, x) \\
& \varphi_{2}=\forall x(R(x, f(x)) \vee x=a) \\
& \varphi_{3}=\forall x \forall y(R(x, y) \rightarrow \exists z(R(x, z) \wedge R(z, y)))
\end{aligned}
$$

- $\forall x \forall y(x=y \rightarrow f(x)=f(y))$ is valid

Outline

1. Summary of Previous Lecture
2. Semantics of Predicate Logic

3. Intermezzo

4. Natural Deduction for Predicate Logic
5. Soundness and Completeness
6. Further Reading

Drticify with session ID 09929580

Question

Which of the following statements are true ?
A The semantic entailment $\forall x \varphi \vDash \exists x \varphi$ holds for all formulas φ.
B The formulas $\exists x \forall y Q(x, y)$ and $\forall y Q(a, y)$ are equisatisfiable.
C The set $\{\forall x(P(x) \rightarrow \perp), \exists y P(y)\}$ is consistent.
D The semantic entailment $x=y \vDash f(x)=f(y)$ holds.

Outline

1. Summary of Previous Lecture
2. Semantics of Predicate Logic
3. Intermezzo
4. Natural Deduction for Predicate Logic

Equality Universal Quantification Existential Quantification
5. Soundness and Completeness
6. Further Reading

Proof Rules of Natural Deduction 1

Proof Rules of Natural Deduction 2

Outline

1. Summary of Previous Lecture
2. Semantics of Predicate Logic
3. Intermezzo
4. Natural Deduction for Predicate Logic

Equality
Universal Quantification
Existential Quantification
5. Soundness and Completeness
6. Further Reading

- equality introduction

$$
\overline{t=t}=\mathrm{i}
$$

Definitions

- equality introduction

$$
\overline{t=t}=\mathrm{i}
$$

- equality elimination "replace equals by equals"

$$
\frac{t_{1}=t_{2} \quad \varphi\left[t_{1} / x\right]}{\varphi\left[t_{2} / x\right]}=\mathrm{e}
$$

provided t_{1} and t_{2} are free for x in φ

Examples

(1) $s=t \vdash t=s$ is valid:
$1 \quad s=t$ premise
$2 \quad s=s=\mathrm{i}$
$3 t=s=\mathrm{e} 1,2$

Examples

(1) $s=t \vdash t=s$ is valid:
$1 \quad s=t$ premise
$2 \quad s=s=i$
$3 t=s=\mathrm{e} 1,2$ with $\varphi=(x=s), t_{1}=s, t_{2}=t$

Examples

(1) $s=t \vdash t=s$ is valid:
$1 \quad s=t$ premise
$2 \quad s=s=i$
$3 t=s=e 1,2$ with $\varphi=(x=s), t_{1}=s, t_{2}=t$
(2) $s=t, t=u \vdash s=u$ is valid:
$1 \quad s=t$ premise
$2 t=u$ premise
$3 \quad s=u=\mathrm{e} 2,1$ with $\varphi=(s=x), t_{1}=t, t_{2}=u$

Outline

1. Summary of Previous Lecture
2. Semantics of Predicate Logic
3. Intermezzo
4. Natural Deduction for Predicate Logic

Equality Universal Quantification Existential Quantification
5. Soundness and Completeness
6. Further Reading

- \forall elimination

$$
\frac{\forall x \varphi}{\varphi[t / x]} \forall \mathrm{e}
$$

provided t is free for x in φ

Definitions

- \forall elimination

$$
\frac{\forall x \varphi}{\varphi[t / x]} \forall \mathrm{e}
$$

provided t is free for x in φ

- \forall introduction

where x_{0} is fresh variable that is used only inside box

Example

$\forall x(P(x) \rightarrow Q(x)), \forall x P(x) \vdash \forall x Q(x)$ is valid:
$1 \quad \forall x(P(x) \rightarrow Q(x)) \quad$ premise
$2 \forall x P(x) \quad$ premise

$$
\forall x Q(x)
$$

Example

$\forall x(P(x) \rightarrow Q(x)), \forall x P(x) \vdash \forall x Q(x)$ is valid:
$1 \quad \forall x(P(x) \rightarrow Q(x)) \quad$ premise
$2 \forall x P(x) \quad$ premise
3

x_{0}		
	$Q\left(x_{0}\right)$	
	$\forall x Q(x)$	$\forall i$

Example

$\forall x(P(x) \rightarrow Q(x)), \forall x P(x) \vdash \forall x Q(x)$ is valid:
1
$\forall x(P(x) \rightarrow Q(x)) \quad$ premise
2
3 $\forall x P(x) \quad$ premise

	$\forall x(P(x) \rightarrow Q(x))$
	$\forall x P(x)$
$x_{0} \quad P\left(x_{0}\right) \rightarrow Q\left(x_{0}\right)$	premise
	$\forall \mathrm{e} 1$
$Q\left(x_{0}\right)$	
$\forall x Q(x)$	$\forall \mathrm{i}$

Example

$\forall x(P(x) \rightarrow Q(x)), \forall x P(x) \vdash \forall x Q(x)$ is valid:
1
$\forall x(P(x) \rightarrow Q(x)) \quad$ premise
2
3
4

	$\begin{aligned} & \forall x(P(x) \rightarrow Q(x)) \\ & \forall x P(x) \end{aligned}$	premise premise
x_{0}	$P\left(x_{0}\right) \rightarrow Q\left(x_{0}\right)$	$\forall \mathrm{e} 1$
	$P\left(x_{0}\right)$	$\forall \mathrm{e} 2$
	$Q\left(x_{0}\right)$	
	$\forall x Q(x)$	$\forall \mathrm{i}$

Example

$\forall x(P(x) \rightarrow Q(x)), \forall x P(x) \vdash \forall x Q(x)$ is valid:
1
$\forall x(P(x) \rightarrow Q(x)) \quad$ premise
2
3
4
5

	$\forall x(P(x) \rightarrow Q(x))$	premise
	$\forall x P(x)$	premise
x_{0}	$P\left(x_{0}\right) \rightarrow Q\left(x_{0}\right)$	$\forall \mathrm{e} 1$
	$P\left(x_{0}\right)$	$\forall \mathrm{e} 2$
	$Q\left(x_{0}\right)$	$\rightarrow \mathrm{e} \mathrm{3,4}$
$\forall x Q(x)$	$\forall \mathrm{i}$	

Example

$\forall x(P(x) \rightarrow Q(x)), \forall x P(x) \vdash \forall x Q(x)$ is valid:
1
$\forall x(P(x) \rightarrow Q(x)) \quad$ premise
2 $\forall x P(x) \quad$ premise
3
4
5
6

	$\forall x(P(x) \rightarrow Q(x))$	premise
	$\forall x P(x)$	premise
x_{0}	$P\left(x_{0}\right) \rightarrow Q\left(x_{0}\right)$	\forall e 1
	$P\left(x_{0}\right)$	\forall e 2
	$Q\left(x_{0}\right)$	\rightarrow e 3, 4
$\forall x Q(x)$	\forall i 3-5	

Example

$P \rightarrow \forall x Q(x) \vdash \forall x(P \rightarrow Q(x))$ is valid:
1

$$
P \rightarrow \forall x Q(x) \quad \text { premise }
$$

$$
2
$$

$$
3
$$

$$
4
$$

$$
5
$$

6

x_{0}	
	P
	$\forall x Q(x)$
$Q\left(x_{0}\right)$	\rightarrow assumption 1,3
$P \rightarrow Q\left(x_{0}\right)$	$\forall \mathrm{e} 4$
	$\rightarrow \mathrm{i} 3-5$

Outline

1. Summary of Previous Lecture
2. Semantics of Predicate Logic
3. Intermezzo
4. Natural Deduction for Predicate Logic

Equality
Universal Quantification
Existential Quantification
5. Soundness and Completeness
6. Further Reading

- \exists introduction

$$
\frac{\varphi[t / x]}{\exists x \varphi} \exists \mathrm{i}
$$

provided t is free for x in φ

Definitions

- \exists introduction

$$
\frac{\varphi[t / x]}{\exists x \varphi} \exists \mathrm{i}
$$

provided t is free for x in φ

- \exists elimination

where x_{0} is fresh variable that is used only inside box

Example

$\forall x(P(x) \rightarrow Q(x)), \exists x P(x) \vdash \exists x Q(x)$ is valid:
$1 \quad \forall x(P(x) \rightarrow Q(x)) \quad$ premise
2 $\exists x P(x) \quad$ premise
$\exists x Q(x)$

Example

$\forall x(P(x) \rightarrow Q(x)), \exists x P(x) \vdash \exists x Q(x)$ is valid:
1 $\forall x(P(x) \rightarrow Q(x)) \quad$ premise
2
3

	$\begin{aligned} & \forall x(P(x) \rightarrow Q(x)) \\ & \exists x P(x) \end{aligned}$	premise premise
x_{0}	$P\left(x_{0}\right)$	assumption
	$\exists x Q(x)$	
	$\exists x Q(x)$	$\exists \mathrm{e} 2$

Example

$\forall x(P(x) \rightarrow Q(x)), \exists x P(x) \vdash \exists x Q(x)$ is valid:
1 $\forall x(P(x) \rightarrow Q(x)) \quad$ premise
2
3
4

	$\forall x(P(x) \rightarrow Q(x))$	premise
	$\exists x P(x)$	premise
x_{0}	$P\left(x_{0}\right)$	assumption
	$P\left(x_{0}\right) \rightarrow Q\left(x_{0}\right)$	$\forall \mathrm{e} 1$
	$\exists x Q(x)$	
	$\exists x Q(x)$	$\exists \mathrm{e} 2$

Example

$\forall x(P(x) \rightarrow Q(x)), \exists x P(x) \vdash \exists x Q(x)$ is valid:
$1 \quad \forall x(P(x) \rightarrow Q(x)) \quad$ premise
2
3
4
5

	$\exists x P(x)$	premise
x_{0}	$P\left(x_{0}\right)$	assumption
	$P\left(x_{0}\right) \rightarrow Q\left(x_{0}\right)$	$\forall \mathrm{e} 1$
	$Q\left(x_{0}\right)$	\rightarrow e 4,3
	$\exists x Q(x)$	
	$\exists x Q(x)$	$\exists \mathrm{e} 2$

Example

$\forall x(P(x) \rightarrow Q(x)), \exists x P(x) \vdash \exists x Q(x)$ is valid:
$1 \quad \forall x(P(x) \rightarrow Q(x)) \quad$ premise

2	$\exists x P(x)$	premise
3	$x_{0} \quad P\left(x_{0}\right)$	assumption
4	$P\left(x_{0}\right) \rightarrow Q\left(x_{0}\right)$	$\forall \mathrm{e} 1$
5	$Q\left(x_{0}\right)$	\rightarrow e 4, 3
6	$\exists x Q(x)$	$\exists \mathrm{i} 5$
	$\exists x Q(x)$	$\exists \mathrm{e} 2$

Example

$\forall x(P(x) \rightarrow Q(x)), \exists x P(x) \vdash \exists x Q(x)$ is valid:

1 $\forall x(P(x) \rightarrow Q(x)) \quad$ premise
2
3
4
5
6
7
$\exists x P(x) \quad$ premise

x_{0}	$P\left(x_{0}\right)$	assumption
	$P\left(x_{0}\right) \rightarrow Q\left(x_{0}\right)$	$\forall \mathrm{e} 1$
	$Q\left(x_{0}\right)$	\rightarrow e 4,3
	$\exists x Q(x)$	$\exists \mathrm{i} 5$
	$\exists x Q(x)$	$\exists \mathrm{e} 2,3-6$

Lemma

$\forall x \varphi \vdash \exists x \varphi$ is valid

Lemma

$\forall x \varphi \vdash \exists x \varphi$ is valid

Proof

$1 \quad \forall x \varphi \quad$ premise

Lemma

$\forall x \varphi \vdash \exists x \varphi$ is valid

Proof

$1 \quad \forall x \varphi \quad$ premise
$2 \varphi[x / x] \quad \forall \mathrm{e} 1$

Lemma

$\forall x \varphi \vdash \exists x \varphi$ is valid

Proof

$1 \quad \forall x \varphi \quad$ premise
$2 \varphi[x / x] \quad \forall \mathrm{e} 1$
$3 \quad \exists x \varphi \quad \exists \mathrm{i} 2$

Example

$\exists x P(x), \forall x \forall y(P(x) \rightarrow Q(y)) \vdash \forall y Q(y)$ is valid:

1

$$
\exists x P(x)
$$

$$
\forall x \forall y(P(x) \rightarrow Q(y)) \quad \text { premise }
$$

3	y_{0}	
4	$x_{0} \quad P\left(x_{0}\right)$	assumption
5	$\forall y\left(P\left(x_{0}\right) \rightarrow Q(y)\right)$	$\forall \mathrm{e} 2$
6	$P\left(x_{0}\right) \rightarrow Q\left(y_{0}\right)$	$\forall \mathrm{e} 5$
7	$Q\left(y_{0}\right)$	\rightarrow e 6, 4
8	$Q\left(y_{0}\right)$	$\exists \mathrm{e} 1,4-7$
9	$\forall y Q(y)$	$\forall \mathrm{i} 3-8$

Example

$\exists x P(x), \forall x \forall y(P(x) \rightarrow Q(y)) \vdash \forall y Q(y)$ is valid:

1

$$
\exists x P(x)
$$

$$
\forall x \forall y(P(x) \rightarrow Q(y)) \quad \text { premise }
$$

Example

$\exists x P(x), \forall x \forall y(P(x) \rightarrow Q(y)) \vdash \forall y Q(y)$ is valid:

1

$$
\exists x P(x)
$$

$$
\forall x \forall y(P(x) \rightarrow Q(y)) \quad \text { premise }
$$

Lemma

$\neg \forall x \varphi \vdash \exists x \neg \varphi$ is valid

Lemma

$\neg \forall x \varphi \vdash \exists x \neg \varphi$ is valid

Proof

1	$\neg \forall x \varphi$	premise
2	$\neg \exists x \neg \varphi$	assumption
3	x_{0}	
4	$\neg \varphi\left[x_{0} / x\right]$	assumption
5	$\exists x \neg \varphi$	$\exists \mathrm{i} 4$
6	\perp	$\neg \mathrm{e} 5,2$
7	$\varphi\left[x_{0} / x\right]$	PBC 4-6
8	$\forall x \varphi$	$\forall \mathrm{i} 3-7$
9	\perp	$\neg \mathrm{e} 8,1$
10	$\exists x \neg \varphi$	PBC 2-9

Example

$\forall x \exists y P(x, y), \forall x \forall y(P(x, y) \rightarrow Q(x, y)) \vdash \exists y \forall x Q(x, y)$ is valid:

1		$\forall x \exists y P(x, y)$	premise
2		$\forall x \forall y(P(x, y) \rightarrow Q(x, y))$	premise
3	x_{0}	$\exists y P\left(x_{0}, y\right)$	$\forall \mathrm{e} 1$
4		$\forall y\left(P\left(x_{0}, y\right) \rightarrow Q\left(x_{0}, y\right)\right)$	$\forall \mathrm{e} 2$
5	y_{0}	$P\left(x_{0}, y_{0}\right)$	assumption
6		$P\left(x_{0}, y_{0}\right) \rightarrow Q\left(x_{0}, y_{0}\right)$	$\forall \mathrm{e} 4$
7		$Q\left(x_{0}, y_{0}\right)$	\rightarrow e 6, 5
8		$Q\left(x_{0}, y_{0}\right)$	$\exists \mathrm{e} 3,5-7$
9		$\forall x Q\left(x, y_{0}\right)$	$\forall \mathrm{i} 3-8$
10		$\exists y \forall x Q(x, y)$	$\exists \mathrm{i} 9$

Example

$\forall x \exists y P(x, y), \forall x \forall y(P(x, y) \rightarrow Q(x, y)) \vdash \exists y \forall x Q(x, y)$ is not valid:

1		$\forall x \exists y P(x, y)$	premise
2		$\forall x \forall y(P(x, y) \rightarrow Q(x, y))$	premise
3	x_{0}	$\exists y P\left(x_{0}, y\right)$	$\forall \mathrm{e} 1$
4		$\forall y\left(P\left(x_{0}, y\right) \rightarrow Q\left(x_{0}, y\right)\right)$	$\forall \mathrm{e} 2$
5	y_{0}	$P\left(x_{0}, y_{0}\right)$	assumption
6		$P\left(x_{0}, y_{0}\right) \rightarrow Q\left(x_{0}, y_{0}\right)$	$\forall \mathrm{e} 4$
7		$Q\left(x_{0}, y_{0}\right)$	\rightarrow e 6, 5
8		$Q\left(x_{0}, y_{0}\right)$	$\exists \mathrm{e} 3,5-7$
9		$\forall x Q\left(x, y_{0}\right)$	$\forall \mathrm{i} 3-8$
10		$\exists y \forall x Q(x, y)$	$\exists \mathrm{i} 9$

Example

$$
\forall x \exists y P(x, y), \forall x \forall y(P(x, y) \rightarrow Q(x, y)) \not \models \exists y \forall x Q(x, y)
$$

Example

$$
\forall x \exists y P(x, y), \forall x \forall y(P(x, y) \rightarrow Q(x, y)) \not \models \exists y \forall x Q(x, y)
$$

model \mathcal{M}

- universe A : set of natural numbers
- $P^{\mathcal{M}}=Q^{\mathcal{M}}=\{(x, y) \mid x<y\}$

Example

$$
\forall x \exists y P(x, y), \forall x \forall y(P(x, y) \rightarrow Q(x, y)) \not \models \exists y \forall x Q(x, y)
$$

model \mathcal{M}

- universe A : set of natural numbers
- $P^{\mathcal{M}}=Q^{\mathcal{M}}=\{(x, y) \mid x<y\}$
$\mathcal{M} \vDash \forall x \exists y P(x, y)$

Example

$$
\forall x \exists y P(x, y), \forall x \forall y(P(x, y) \rightarrow Q(x, y)) \not \models \exists y \forall x Q(x, y)
$$

model \mathcal{M}

- universe A : set of natural numbers
- $P^{\mathcal{M}}=Q^{\mathcal{M}}=\{(x, y) \mid x<y\}$
$\mathcal{M} \vDash \forall x \exists y P(x, y)$
$\mathcal{M} \vDash \forall x \forall y(P(x, y) \rightarrow Q(x, y))$

Example

$$
\forall x \exists y P(x, y), \forall x \forall y(P(x, y) \rightarrow Q(x, y)) \not \models \exists y \forall x Q(x, y)
$$

model \mathcal{M}

- universe A : set of natural numbers
- $P^{\mathcal{M}}=Q^{\mathcal{M}}=\{(x, y) \mid x<y\}$
$\mathcal{M} \vDash \forall x \exists y P(x, y)$
$\mathcal{M} \vDash \forall x \forall y(P(x, y) \rightarrow Q(x, y))$
$\mathcal{M} \not \models \exists y \forall x Q(x, y)$

Outline

1. Summary of Previous Lecture
2. Semantics of Predicate Logic
3. Intermezzo
4. Natural Deduction for Predicate Logic
5. Soundness and Completeness
6. Further Reading

Definition

(possibly infinite) set of formulas 「, formula ψ

- sequent $\Gamma \vdash \psi$ is valid if there exists (finite) natural deduction proof of ψ in which all premises are from Γ

Definition

(possibly infinite) set of formulas 「, formula ψ

- sequent $\Gamma \vdash \psi$ is valid if there exists (finite) natural deduction proof of ψ in which all premises are from Γ

Theorem

natural deduction for predicate logic is sound and complete:

$$
\Gamma \vDash \psi \quad \Longleftrightarrow \quad \Gamma \vdash \psi \text { is valid }
$$

SS 2024
Logic
lecture 6
5. Soundness and Completeness

Definition

(possibly infinite) set of formulas 「, formula ψ

- sequent $\Gamma \vdash \psi$ is valid if there exists (finite) natural deduction proof of ψ in which all premises are from 「

Theorem (Gödel's Completeness Theorem)

natural deduction for predicate logic is sound and complete:

$$
\ulcorner\vDash \psi \quad \Longleftrightarrow \quad\ulcorner\vdash \psi \text { is valid }
$$

SS 2024
Logic

Definition

(possibly infinite) set of formulas「, formula ψ

- sequent $\Gamma \vdash \psi$ is valid if there exists (finite) natural deduction proof of ψ in which all premises are from 「

Theorem (Gödel's Completeness Theorem)

natural deduction for predicate logic is sound and complete:

$$
\ulcorner\vDash \psi \quad \Longleftrightarrow \quad\ulcorner\vdash \psi \text { is valid }
$$

Decision Problem

instance: set of formulas Г, first-order formula φ
question: $\Gamma \vDash \varphi$?

Definition

（possibly infinite）set of formulas「，formula ψ
－sequent $\Gamma \vdash \psi$ is valid if there exists（finite）natural deduction proof of ψ in which all premises are from 「

Theorem（Gödel＇s Completeness Theorem）

natural deduction for predicate logic is sound and complete：

$$
\Gamma \vDash \psi \quad \Longleftrightarrow \quad \Gamma \vdash \psi \text { is valid }
$$

Decision Problem

instance：set of formulas 「，first－order formula φ
question：$\Gamma \vDash \varphi$ ？
is undecidable

SS 2024
Logic
lecture 6
5．Soundness and Completeness

Definition

(possibly infinite) set of formulas 「, formula ψ

- sequent $\Gamma \vdash \psi$ is valid if there exists (finite) natural deduction proof of ψ in which all premises are from Γ

Theorem (Gödel's Completeness Theorem)

natural deduction for predicate logic is sound and complete:

$$
\Gamma \vDash \psi \quad \Longleftrightarrow \quad \Gamma \vdash \psi \text { is valid }
$$

Decision Problem (Church's Theorem)

instance: set of formulas Γ, first-order formula φ
question: $\Gamma \vDash \varphi$?
is undecidable even when $\Gamma=\varnothing \quad$ (lecture 8)

SS 2024
Logic
lecture 6
5. Soundness and Completeness

Outline

```
1. Summary of Previous Lecture
2. Semantics of Predicate Logic
3. Intermezzo
4. Natural Deduction for Predicate Logic
5. Soundness and Completeness
```


6. Further Reading

Huth and Ryan

- Section 2.3
- Section 2.4

Huth and Ryan

- Section 2.3
- Section 2.4

Gödel's Completeness Theorem

- Wikipedia
[accessed January 24, 2024]

Important Concepts

- \forall elimination
- \forall introduction
- \exists elimination
- \exists introduction
- consistency
- environment
- equality
- equality elimination
- equality introduction
- Gödel's completeness theorem
- look-up table
- model
satisfaction relation
- satisfiability
- semantic entailment
- universe
- validity of formulas
- validity of sequents

Important Concepts

- \forall elimination	- equality	- satisfaction relation
- \forall introduction	- equality elimination	- satisfiability
- \exists elimination	- equality introduction	- semantic entailment
- \exists introduction	- Gödel's completeness theorem	- universe
- consistency	- look-up table	- validity of formulas
- environment	- model	- validity of sequents

homework for April 25

