

Logic

Diana Gründlinger Aart Middeldorp Fabian Mitterwallner

Alexander Montag Johannes Niederhauser Daniel Rainer

Outline

- 1. Summary of Previous Lecture
- 2. Resolution
- 3. Intermezzo
- 4. Undecidability
- 5. Functional Completeness
- 6. Algebraic Normal Forms
- 7. Further Reading

Theorem

$$\neg \forall x \varphi \dashv \vdash \exists x \neg \varphi$$

$$\forall x \varphi \land \forall x \psi \dashv \vdash \forall x (\varphi \land \psi)$$

$$\forall x \forall y \varphi \dashv \vdash \forall y \forall x \varphi$$

$$\neg\exists x \varphi \dashv \vdash \forall x \neg \varphi$$

$$\exists x \varphi \lor \exists x \psi \dashv \vdash \exists x (\varphi \lor \psi)$$

$$\exists x \exists y \varphi \dashv \vdash \exists y \exists x \varphi$$

if x is not free in ψ then

$$\forall x \varphi \wedge \psi \dashv \vdash \forall x (\varphi \wedge \psi)$$

$$\exists x \varphi \wedge \psi \dashv \vdash \exists x (\varphi \wedge \psi)$$

$$\psi \rightarrow \forall x \varphi \dashv \vdash \forall x (\psi \rightarrow \varphi)$$

$$\psi \rightarrow \exists x \varphi \dashv \vdash \exists x (\psi \rightarrow \varphi)$$

$$\forall x \varphi \lor \psi \dashv \vdash \forall x (\varphi \lor \psi)$$

$$\exists x \varphi \lor \psi \dashv \vdash \exists x (\varphi \lor \psi)$$

$$\exists x \varphi \to \psi \dashv \vdash \forall x (\varphi \to \psi)$$

$$\forall x \varphi \to \psi \dashv \vdash \exists x (\varphi \to \psi)$$

- ▶ substitution is set of variable bindings $\theta = \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$ with pairwise different variables x_1, \dots, x_n and terms t_1, \dots, t_n
- ▶ given substitution $\theta = \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$ and expression E, instance $E\theta$ of E is obtained by simultaneously replacing each occurrence of x_i in E by t_i
- ▶ composition of substitutions $\theta = \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$ and $\sigma = \{y_1 \mapsto s_1, \dots, y_k \mapsto s_k\}$ is substitution $\theta \sigma = \{x_1 \mapsto t_1 \sigma, \dots, x_n \mapsto t_n \sigma\} \cup \{y_i \mapsto s_i \mid y_i \neq x_j \text{ for all } 1 \leqslant j \leqslant n\}$
- substitution θ is at least as general as substitution σ if $\theta\mu=\sigma$ for some substitution μ
- unifier of terms s and t is substitution θ such that $s\theta = t\theta$
- ▶ most general unifier (mgu) is at least as general as any other unifier

Theorem

unifiable terms have mgu which can be computed by unification algorithm

Unification Algorithm

removal of trivial equations

v variable elimination

decomposition

uations
$$\frac{E_1, t \approx t, E_2}{E_1, E_2}$$

Theorem

▶ there are no infinite derivations
$$U \Rightarrow_{\theta_1} V \Rightarrow_{\theta_2} \cdots$$

if s and t are unifiable then for every maximal derivation $s \approx t \Rightarrow_{\theta_1} E_1 \Rightarrow_{\theta_2} \cdots \Rightarrow_{\theta_n} E_n$ $E_n = \square$ and $\theta_1 \theta_2 \cdots \theta_n$ is mgu of s and t

if x does not occur in t (occurs check)

 $E_1, f(s_1, ..., s_n) \approx f(t_1, ..., t_n), E_2$

 $E_1. S_1 \approx t_1, \ldots, s_n \approx t_n, E_2$

 $\frac{E_1, x \approx t, E_2}{(E_1, E_2)\{x \mapsto t\}} \quad \text{and} \quad \frac{E_1, t \approx x, E_2}{(E_1, E_2)\{x \mapsto t\}}$

prenex normal form is predicate logic formula

$$Q_1 x_1 Q_2 x_2 \dots Q_n x_n \varphi$$

with $Q_i \in \{ \forall, \exists \}$ and φ quantifier-free

► Skolem normal form is closed (no free variables) prenex normal form

$$\forall x_1 \forall x_2 \ldots \forall x_n \varphi$$

with φ quantifier-free CNF

Theorem

for every formula φ there exists prenex normal form ψ such that $\varphi \equiv \psi$

Theorem

for every sentence φ there exists Skolem normal form ψ such that $\varphi \approx \psi$

Proof (Skolemization)

- ① transform φ into closed prenex normal form $Q_1x_1Q_2x_2\dots Q_nx_n\chi$ with χ in CNF
- ② repeatedly replace $\forall x_1 \ldots \forall x_{i-1} \exists x_i \ Q_{i+1}x_{i+1} \ldots Q_nx_n \ \psi$ by

$$\forall x_1 \ldots \forall x_{i-1} Q_{i+1} x_{i+1} \ldots Q_n x_n \psi[\mathbf{f}(x_1, \ldots, x_{i-1})/\mathbf{x}_i]$$

where f is new function symbol of arity i-1

SS 2024

Part I: Propositional Logic

algebraic normal forms, binary decision diagrams, conjunctive normal forms, DPLL, Horn formulas, natural deduction, Post's adequacy theorem, resolution. SAT. semantics. sorting networks, soundness and completeness, syntax, Tseitin's transformation

Part II: Predicate Logic

natural deduction, quantifier equivalences, resolution, semantics, Skolemization, syntax, undecidability, unification

Part III: Model Checking

55 2024

adequacy, branching-time temporal logic, CTL*, fairness, linear-time temporal logic, model checking algorithms, symbolic model checking

Part I: Propositional Logic

algebraic normal forms, binary decision diagrams, conjunctive normal forms, DPLL, Horn formulas, natural deduction, Post's adequacy theorem, resolution, SAT, semantics, sorting networks, soundness and completeness, syntax, Tseitin's transformation

Part II: Predicate Logic

natural deduction, quantifier equivalences, **resolution**, semantics, Skolemization, syntax, **undecidability**, unification

Part III: Model Checking

adequacy, branching-time temporal logic, CTL*, fairness, linear-time temporal logic, model checking algorithms, symbolic model checking

Outline

1. Summary of Previous Lecture

2. Resolution

Propositional Logic Predicate Logic

- 3. Intermezzo
- 4. Undecidability
- 5. Functional Completeness
- 6. Algebraic Normal Forms
- 7. Further Reading

- ▶ literal is atom p or negation of atom $\neg p$
- ▶ clause is set of literals $\{\ell_1, \ldots, \ell_n\}$
- ▶ □ denotes empty clause
- ▶ clausal form is set of clauses $\{C_1, ..., C_m\}$
- ▶ clauses C_1 and C_2 clash on literal ℓ if $\ell \in C_1$ and $\ell^c \in C_2$
- ▶ resolvent of clauses C_1 and C_2 clashing on literal ℓ is clause $(C_1 \setminus \{\ell\}) \cup (C_2 \setminus \{\ell^c\})$

Resolution

- input: clausal form S
- if S is satisfiable no if S is unsatisfiable output: ves
- repeatedly add (new) resolvents of clashing clauses in S
- return no as soon as empty clause is derived
- return yes if all clashing clauses have been resolved

Definition

refutation of S is resolution derivation of \square from S

Theorem

resolution is sound and complete for propositional logic:

clausal form *S* is unsatisfiable if and only if *S* admits refutation

2 Resolution

SS 2024

Outline

1. Summary of Previous Lecture

2. Resolution

Propositional Logic Predicate Logic

- 3. Intermezzo
- 4. Undecidability
- **5. Functional Completeness**
- 6. Algebraic Normal Forms
- 7. Further Reading

▶ atomic formula: $P \mid P(t, ..., t) \mid t = t$

- ▶ atomic formula: $P \mid P(t, ..., t) \mid t = t$
- ▶ literal is atomic formula or negation of atomic formula

2. Resolution

- ▶ atomic formula: $P \mid P(t, ..., t) \mid t = t$
- ▶ literal is atomic formula or negation of atomic formula
- ▶ clause is set of literals $\{\ell_1, \ldots, \ell_n\}$

SS 2024

2. Resolution

- ▶ atomic formula: $P \mid P(t, ..., t) \mid t = t$
- ▶ literal is atomic formula or negation of atomic formula
- clause is set of literals $\{\ell_1, \ldots, \ell_n\}$
- ▶ clausal form is set of clauses $\{C_1, \ldots, C_m\}$, representing $\forall (C_1 \land \cdots \land C_m)$

SS 2024

- ▶ atomic formula: $P \mid P(t, ..., t) \mid t = t$
- ▶ literal is atomic formula or negation of atomic formula
- clause is set of literals $\{\ell_1, \ldots, \ell_n\}$
- ▶ clausal form is set of clauses $\{C_1, \ldots, C_m\}$, representing $\forall (C_1 \land \cdots \land C_m)$
- ▶ clauses C_1 and C_2 without common variables clash on literals $\ell_1 \in C_1$ and $\ell_2 \in C_2$ if ℓ_1 and ℓ_2 are unifiable

- ▶ atomic formula: $P \mid P(t, ..., t) \mid t = t$
- ▶ literal is atomic formula or negation of atomic formula
- ▶ clause is set of literals $\{\ell_1, \ldots, \ell_n\}$
- ▶ clausal form is set of clauses $\{C_1, \ldots, C_m\}$, representing $\forall (C_1 \land \cdots \land C_m)$
- ▶ clauses C_1 and C_2 without common variables clash on literals $\ell_1 \in C_1$ and $\ell_2 \in C_2$ if ℓ_1 and ℓ_2 are unifiable

SS 2024

- ▶ atomic formula: $P \mid P(t, ..., t) \mid t = t$
- ▶ literal is atomic formula or negation of atomic formula
- clause is set of literals $\{\ell_1, \ldots, \ell_n\}$
- ▶ clausal form is set of clauses $\{C_1, \ldots, C_m\}$, representing $\forall (C_1 \land \cdots \land C_m)$
- ▶ clauses C_1 and C_2 without common variables clash on literals $\ell_1 \in C_1$ and $\ell_2 \in C_2$ if ℓ_1 and ℓ_2 are unifiable
- ▶ resolvent of clauses C_1 and C_2 clashing on literals $\ell_1 \in C_1$ and $\ell_2 \in C_2$ is clause

$$((C_1 \setminus \{\ell_1\}) \cup (C_2 \setminus \{\ell_2\}))\theta$$

where θ is mgu of ℓ_1 and ℓ_2^c

SS 2024

- 1 $\{\neg P(x), Q(x), R(x, f(x))\}$
- 2 { $\neg P(x), Q(x), S(f(x))$ }
- $3 \{T(a)\}$
- $4 \{P(a)\}$
- 5 $\{\neg R(a, y), T(y)\}$
- 6 $\{\neg T(x), \neg Q(x)\}$
- 7 $\{\neg T(x), \neg S(x)\}$

2. Resolution

- 1 $\{\neg P(x), Q(x), R(x, f(x))\}$
- 2 { $\neg P(x), Q(x), S(f(x))$ }
 - $3 \{T(a)\}$
 - $4 \{P(a)\}$
 - 5 $\{\neg R(a, y), T(y)\}$ 6 $\{\neg T(x), \neg Q(x)\}$
 - 7 $\{\neg T(x), \neg S(x)\}$ 8 $\{\neg Q(a)\}$

2. Resolution

resolve 3, 6 $\{x \mapsto a\}$

A M 14/40

SS 2024

- 1 $\{\neg P(x), Q(x), R(x, f(x))\}$
- 2 { $\neg P(x)$, Q(x), S(f(x))}
 - $3 \{T(a)\}$
 - $4 \{P(a)\}$
 - 5 $\{\neg R(a, y), T(y)\}$ 6 $\{\neg T(x), \neg Q(x)\}$
 - 7 $\{\neg T(x), \neg S(x)\}$

SS 2024

- 8 $\{\neg Q(a)\}$
- 9 $\{Q(a), S(f(a))\}$

universität

resolve 3, 6 $\{x \mapsto a\}$ resolve 2, 4 $\{x \mapsto a\}$

Logic

lecture 8

Predicate Logic

AM14/40

- 1 $\{\neg P(x), Q(x), R(x, f(x))\}$
- 2 { $\neg P(x), Q(x), S(f(x))$ }
 - $3 \{T(a)\}$
 - $4 \{P(a)\}$ 5 $\{\neg R(a, y), T(y)\}$
 - 6 $\{\neg T(x), \neg Q(x)\}$
 - 7 $\{\neg T(x), \neg S(x)\}$
 - 8 $\{\neg Q(a)\}$
 - 9 $\{Q(a), S(f(a))\}$

2. Resolution

- 10 $\{Q(a), R(a, f(a))\}$
- resolve 3, 6 $\{x \mapsto a\}$

Predicate Logic

- resolve 2, 4 $\{x \mapsto a\}$
- resolve 1. 4 $\{x \mapsto a\}$

```
1 \{\neg P(x), Q(x), R(x, f(x))\}
 2 {\neg P(x), Q(x), S(f(x))}
 3 \{T(a)\}
 4 \{P(a)\}
 5 \{\neg R(a, y), T(y)\}
 6 \{\neg T(x), \neg Q(x)\}
 7 \{\neg T(x), \neg S(x)\}
 8 \{\neg Q(a)\}
                                     resolve 3. 6
                                                      \{x \mapsto a\}
 9 {Q(a), S(f(a))}
                                     resolve 2, 4 \{x \mapsto a\}
10 \{Q(a), R(a, f(a))\}
                                     resolve 1. 4 \{x \mapsto a\}
11 \{S(f(a))\}
                                     resolve 8.9
```

2. Resolution

```
1 \{\neg P(x), Q(x), R(x, f(x))\}

2 \{\neg P(x), Q(x), S(f(x))\}

3 \{T(a)\}

4 \{P(a)\}

5 \{\neg R(a, y), T(y)\}

6 \{\neg T(x), \neg Q(x)\}
```

7 $\{\neg T(x), \neg S(x)\}$

9 {Q(a), S(f(a))} 10 {Q(a), R(a, f(a))}

8 $\{\neg Q(a)\}$

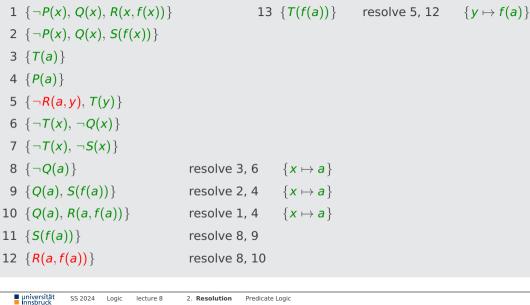
11 $\{S(f(a))\}$

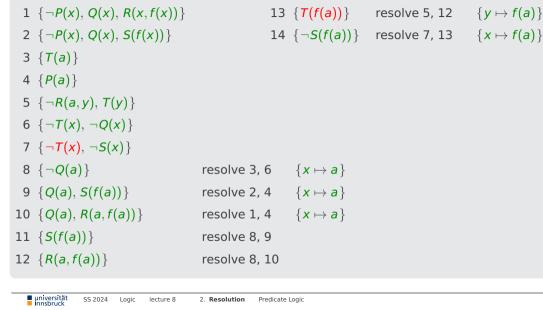
resolve 2, 4
$$\{x \mapsto a\}$$

resolve 1, 4 $\{x \mapsto a\}$

 $\{x \mapsto a\}$

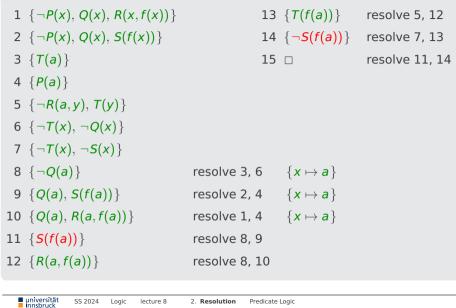
12
$$\{R(a,f(a))\}$$





A M

14/40



 $\{y\mapsto f(a)\}$

 $\{x \mapsto f(a)\}$

- $1 \{\neg P(x,y), P(y,x)\}$
- 2 $\{\neg P(x,y), \neg P(y,z), P(x,z)\}$
- $3 \{P(x,f(x))\}$
- $4 \left\{ \neg P(x,x) \right\}$

$$\forall \ x \ \forall \ y \ \forall \ z \ \big((\neg P(x,y) \lor P(y,x)) \land (\neg P(x,y) \lor \neg P(y,z) \lor P(x,z)) \land P(x,f(x)) \land \neg P(x,x) \big)$$

2. Resolution

- $1 \{\neg P(x,y), P(y,x)\}$
- 2 { $\neg P(x,y), \neg P(y,z), P(x,z)$ }
- 3 $\{P(x, f(x))\}$
 - $4 \left\{ \neg P(x,x) \right\}$
- $3' \{P(x', f(x'))\}$ rename 3

$$\forall x \forall y \forall z ((\neg P(x,y) \lor P(y,x)) \land (\neg P(x,y) \lor \neg P(y,z) \lor P(x,z)) \land P(x,f(x)) \land \neg P(x,x))$$

- $1 \left\{ \neg P(x,y), P(y,x) \right\}$
- $2 \{\neg P(x,y), \neg P(y,z), P(x,z)\}$
- 3 $\{P(x, f(x))\}$ 4 $\{\neg P(x, x)\}$
 - $\{\neg P(X,X)\}$
- $3' \{P(x', f(x'))\}$ rename 3
- 5 {P(f(x),x)} resolve 1, 3' { $y \mapsto f(x), x' \mapsto x$ }

 $\forall x \forall y \forall z ((\neg P(x,y) \lor P(y,x)) \land (\neg P(x,y) \lor \neg P(y,z) \lor P(x,z)) \land P(x,f(x)) \land \neg P(x,x))$

2. Resolution

- 1 $\{\neg P(x,y), P(y,x)\}$ 2 $\{\neg P(x, y), \neg P(y, z), P(x, z)\}$ $3 \{P(x, f(x))\}$
- 4 $\{ \neg P(x,x) \}$ rename 3
- $3' \{P(x', f(x'))\}$ 5 {P(f(x), x)}
 - resolve 1, 3' $\{y \mapsto f(x), x' \mapsto x\}$
- 6 $\{\neg P(f(x), z), P(x, z)\}$ resolve 2, 3' $\{v \mapsto f(x), x' \mapsto x\}$

$$\forall x \forall y \forall z ((\neg P(x,y) \lor P(y,x)) \land (\neg P(x,y) \lor \neg P(y,z) \lor P(x,z)) \land P(x,f(x)) \land \neg P(x,x))$$

- 1 $\{\neg P(x,y), P(y,x)\}$
- 2 { $\neg P(x, y), \neg P(y, z), P(x, z)$ }
- $3 \{P(x, f(x))\}$ 4 $\{ \neg P(x,x) \}$
- $3' \{P(x', f(x'))\}$ rename 3
- 5 {P(f(x), x)} resolve 1, 3' $\{y \mapsto f(x), x' \mapsto x\}$
- 6 $\{\neg P(f(x), z), P(x, z)\}$ resolve 2, 3' $\{v \mapsto f(x), x' \mapsto x\}$ $5' \{ P(f(x'), x') \}$ rename 5

 $\forall x \forall y \forall z ((\neg P(x,y) \lor P(y,x)) \land (\neg P(x,y) \lor \neg P(y,z) \lor P(x,z)) \land P(x,f(x)) \land \neg P(x,x))$

2 Resolution

- 1 $\{\neg P(x,y), P(y,x)\}$ $2 \{ \neg P(x,y), \neg P(y,z), P(x,z) \}$ $3 \{P(x, f(x))\}$
- 4 $\{ \neg P(x,x) \}$
- $3' \{P(x', f(x'))\}$ rename 3
- 5 {P(f(x),x)} resolve 1, 3' $\{y \mapsto f(x), x' \mapsto x\}$
- 6 $\{\neg P(f(x), z), P(x, z)\}$ resolve 2, 3' $\{v \mapsto f(x), x' \mapsto x\}$
- $5' \{ P(f(x'), x') \}$ rename 5
- 7 $\{P(z,z)\}$ resolve 6. 5' $\{x \mapsto z, x' \mapsto z\}$

2 Resolution

$$\forall x \forall y \forall z ((\neg P(x,y) \lor P(y,x)) \land (\neg P(x,y) \lor \neg P(y,z) \lor P(x,z)) \land P(x,f(x)) \land \neg P(x,x))$$

- 1 $\{\neg P(x,y), P(y,x)\}$ $2 \{ \neg P(x,y), \neg P(y,z), P(x,z) \}$ $3 \{P(x, f(x))\}$
- $4 \left\{ \neg P(x,x) \right\}$ $3' \{ P(x', f(x')) \}$ rename 3
- 5 {P(f(x),x)} resolve 1, 3' $\{y \mapsto f(x), x' \mapsto x\}$
- 6 $\{\neg P(f(x), z), P(x, z)\}$ resolve 2, 3' $\{v \mapsto f(x), x' \mapsto x\}$
- $5' \{ P(f(x'), x') \}$ rename 5
- $7 \{P(z,z)\}$ resolve 6. 5' $\{x \mapsto z, x' \mapsto z\}$
- 8 🗆 resolve 4. 7 $\{x \mapsto z\}$

2 Resolution

$$\forall x \forall y \forall z ((\neg P(x,y) \lor P(y,x)) \land (\neg P(x,y) \lor \neg P(y,z) \lor P(x,z)) \land P(x,f(x)) \land \neg P(x,x))$$

SS 2024

resolution is sound for predicate logic: clausal form S is unsatisfiable if S admits refutation

resolution is sound for predicate logic: clausal form S is unsatisfiable if S admits refutation

Problem

resolution is incomplete for predicate logic

resolution is sound for predicate logic: clausal form S is unsatisfiable if S admits refutation

Problem

resolution is incomplete for predicate logic

Example

- 1 $\{P(x), P(y)\}$ 2 $\{\neg P(x'), \neg P(y')\}$
- unsatisfiable

SS 2024

resolution is sound for predicate logic: clausal form S is unsatisfiable if S admits refutation

Problem

resolution is incomplete for predicate logic

Example

- 1 {P(x), P(y)}
- $\{\neg P(x'), \neg P(y')\}$ 3 $\{P(y), \neg P(y')\}$ resolve 1, 2 $\{x \mapsto x'\}$
- unsatisfiable

SS 2024

resolution is sound for predicate logic: clausal form S is unsatisfiable if S admits refutation

Problem

resolution is incomplete for predicate logic

Example

- 1 $\{P(x), P(y)\}$
- $\{ \neg P(x'), \neg P(y') \}$ 3 $\{P(y), \neg P(y')\}$ resolve 1, 2 $\{x \mapsto x'\}$
- unsatisfiable but no refutation

SS 2024

incorporate factoring: $C\theta$ is factor of C if two or more literals in C have mgu θ

incorporate factoring: $C\theta$ is factor of C if two or more literals in C have mgu θ

Example

- 1 $\{P(x), P(y)\}$
- $\{ \neg P(x'), \neg P(y') \}$

incorporate factoring: $C\theta$ is factor of C if two or more literals in C have mgu θ

Example

- 1 $\{P(x), P(y)\}$
- $2 \{ \neg P(x'), \neg P(y') \}$
- $3 \{P(x)\}$ factor 1

_A_M_

incorporate factoring: $C\theta$ is factor of C if two or more literals in C have mgu θ

Example

- 1 $\{P(x), P(y)\}$ $\{ \neg P(x'), \neg P(y') \}$
- $3 \{P(x)\}$ factor 1
- 4 $\{ \neg P(x') \}$ factor 2

SS 2024

incorporate factoring: $C\theta$ is factor of C if two or more literals in C have mgu θ

Example

 $3 \{P(x)\}$

- 1 {P(x), P(y)} 2 { $\neg P(x')$, $\neg P(y')$ }
 - factor 1
- 4 $\{\neg P(x')\}$ factor 2
- 5 □ resolve 3, 4

input: clausal form S

if S is satisfiable output: yes

> if S is unsatisfiable no

input: clausal form S

output: yes if S is satisfiable

no if S is unsatisfiable

① repeatedly add resolvents (renaming clauses if necessary) and factors

SS 2024

input: clausal form S

output: yes if S is satisfiable

no if S is unsatisfiable

① repeatedly add resolvents (renaming clauses if necessary) and factors

② return no as soon as empty clause □ is derived

input: clausal form S

if S is satisfiable output: ves

> if S is unsatisfiable nο

- repeatedly add resolvents (renaming clauses if necessary) and factors
- return no as soon as empty clause □ is derived
- return yes if all clashing clauses have been resolved and factoring produces no new clauses (modulo renaming)

input: clausal form S

if S is satisfiable output: ves

> if S is unsatisfiable nο

if S is satisfiable or unsatisfiable ∞

- repeatedly add resolvents (renaming clauses if necessary) and factors
- return no as soon as empty clause □ is derived
- return yes if all clashing clauses have been resolved and factoring produces no new clauses (modulo renaming)

input: clausal form S

if S is satisfiable output: ves

> if S is unsatisfiable nο

if *S* is satisfiable (or unsatisfiable) ∞

- repeatedly add resolvents (renaming clauses if necessary) and factors
- return no as soon as empty clause □ is derived
- return yes if all clashing clauses have been resolved and factoring produces no new clauses (modulo renaming)

SS 2024

- 1 $\{R(x), Q(f(x))\}$
- 2 $\{\neg R(f(x)), Q(f(y))\}$ $3 \left\{ \neg Q(f(f(f(a)))) \right\}$

universität SS 2024 Logic lecture 8 2. Resolution Predicate Logic 19/40

- 1 $\{R(x), Q(f(x))\}$ 2 $\{\neg R(f(x)), Q(f(y))\}$
- $3 \left\{ \neg Q(f(f(f(a)))) \right\}$
- $1' \{R(x'), Q(f(x'))\}$ rename 1

SS 2024

- 2 { $\neg R(f(x)), Q(f(y))$ }
- $3 \left\{ \neg Q(f(f(f(a)))) \right\}$

1 $\{R(x), Q(f(x))\}$

- $1' \{ R(x'), Q(f(x')) \}$ rename 1
- 4 {Q(f(y)), Q(f(f(x)))} resolve 1', 2 $\{x' \mapsto f(x)\}$

SS 2024

- 1 $\{R(x), Q(f(x))\}$ 2 { $\neg R(f(x)), Q(f(y))$ }
- $3 \left\{ \neg Q(f(f(f(a)))) \right\}$
- $1' \{ R(x'), Q(f(x')) \}$ rename 1
- 4 {Q(f(y)), Q(f(f(x)))} resolve 1', 2 $\{x' \mapsto f(x)\}$
- 5 {Q(f(f(x)))} factor 4 $\{y \mapsto f(x)\}$

SS 2024

2 { $\neg R(f(x)), Q(f(y))$ }

1 $\{R(x), Q(f(x))\}$

- $3 \left\{ \neg Q(f(f(f(a)))) \right\}$
- $1' \{R(x'), Q(f(x'))\}$ rename 1
- resolve 1', 2 $\{x' \mapsto f(x)\}$ 4 {Q(f(y)), Q(f(f(x)))}
- 5 {Q(f(f(x)))} factor 4 $\{y \mapsto f(x)\}$
- 6 □ resolve 3, 5 $\{x \mapsto f(a)\}$

SS 2024

resolution with factoring is sound and complete:

clausal form S is unsatisfiable if and only if S admits refutation

resolution with factoring is sound and complete:

clausal form S is unsatisfiable if and only if S admits refutation

Example

- $1 \{\neg P(x), P(f(x))\}$
- 2 {*P*(*a*)}

SS 2024

resolution with factoring is sound and complete:

clausal form *S* is unsatisfiable if and only if *S* admits refutation

Example

```
1 \{\neg P(x), P(f(x))\}
```

resolve 1, 2 $\{x \mapsto a\}$

resolution with factoring is sound and complete:

clausal form *S* is unsatisfiable if and only if *S* admits refutation

Example

```
1 \{\neg P(x), P(f(x))\}
2 \{P(a)\}
```

$$3 \{P(f(a))\}$$
 resolve 1, $2 \{x \mapsto a\}$

4
$$\{P(f(f(a)))\}$$
 resolve 1, 3 $\{x \mapsto f(a)\}$

SS 2024

resolution with factoring is sound and complete:

clausal form S is unsatisfiable if and only if S admits refutation

Example

```
1 \{\neg P(x), P(f(x))\}
2 \{ P(a) \}
```

3
$$\{P(f(a))\}$$
 resolve 1, 2 $\{x \mapsto a\}$

4
$$\{P(f(f(a)))\}$$
 resolve 1, 3 $\{x \mapsto f(a)\}$

5
$$\{P(f(f(a)))\}$$
 resolve 1, 4 $\{x \mapsto f(f(a))\}$

SS 2024

resolution with factoring is sound and complete:

clausal form S is unsatisfiable if and only if S admits refutation

Example

```
1 \{\neg P(x), P(f(x))\}
2 \{P(a)\}
```

- 3 $\{P(f(a))\}$ resolve 1, 2 $\{x \mapsto a\}$
- 4 {P(f(f(a)))} resolve 1, 3 { $x \mapsto f(a)$ }
- 5 $\{P(f(f(a)))\}$ resolve 1, 4 $\{x \mapsto f(f(a))\}$
- 6 $\{P(f(f(f(a))))\}$ resolve 1, 5 $\{x \mapsto f(f(f(a)))\}$

resolution with factoring is sound and complete:

clausal form S is unsatisfiable if and only if S admits refutation

Example

```
1 \{\neg P(x), P(f(x))\}
2 \{ P(a) \}
```

- $3 \{ P(f(a)) \}$ resolve 1, 2 $\{x \mapsto a\}$
- 4 $\{P(f(f(a)))\}$ resolve 1, 3 $\{x \mapsto f(a)\}$
- 5 {P(f(f(f(a))))} resolve 1, 4 $\{x \mapsto f(f(a))\}$
- resolve 1, 5 $\{x \mapsto f(f(f(a)))\}$ 6 {*P*(*f*(*f*(*f*(*f*(*a*)))))}

SS 2024

- $1 \{a=b\}$
- 2 $\{b = c\}$
- $3 \{a \neq c\}$

- $1 \{a=b\}$
- 2 $\{b = c\}$ 3 $\{a \neq c\}$

unsatisfiable

- $1 \{a=b\}$
- 2 $\{b = c\}$
- $\{a \neq c\}$

unsatisfiable but no refutation

- $1 \{a = b\}$
- 2 $\{b = c\}$ $3 \{a \neq c\}$
- unsatisfiable but no refutation

Remark

equality needs special treatment

SS 2024 Logic

- $1 \{a=b\}$
- 2 $\{b = c\}$ 3 $\{a \neq c\}$

unsatisfiable but no refutation

Remark

equality needs special treatment: add equality axioms, e.g.

$$\{x \neq y, y \neq z, x = z\}$$

 $1 \{a=b\}$

 $4 \{x \neq y, y \neq z, x = z\}$

2 $\{b = c\}$ 3 $\{a \neq c\}$

unsatisfiable

Remark

equality needs special treatment: add equality axioms, e.g.

$$\{x \neq y, y \neq z, x = z\}$$

3 $\{a \neq c\}$

unsatisfiable

Remark

 $1 \{a = b\}$ $\{b = c\}$

4 $\{x \neq y, y \neq z, x = z\}$

2. Resolution

5 $\{b \neq z, a = z\}$ resolve 1, 4 $\{x \mapsto a, y \mapsto b\}$

equality needs special treatment: add equality axioms, e.g.

Predicate Logic

$$\{x \neq y, y \neq z, x = z\}$$

Example $1 \{a = b\}$

 $\{b = c\}$

unsatisfiable

Remark

3 $\{a \neq c\}$

resolve 1, 4 $\{x \mapsto a, y \mapsto b\}$

$$\{z\mapsto c\}$$

resolve 2, 5
$$\{z \mapsto c\}$$

4 $\{x \neq y, y \neq z, x = z\}$

5 { $b \neq z, a = z$ }

6 { a = c }

equality needs special treatment: add equality axioms, e.g.

$$\{x \neq y, y \neq z, x = z\}$$

Example $1 \{a = b\}$

 $\{b = c\}$

3 $\{a \neq c\}$

unsatisfiable

4 { $x \neq y, y \neq z, x = z$ }

5 { $b \neq z, a = z$ }

6 $\{a = c\}$

7 🗆

resolve 1, 4 $\{x \mapsto a, y \mapsto b\}$

$$\{z\mapsto c\}$$

$$\{z\mapsto c\}$$

resolve 2, 5
$$\{z \mapsto c\}$$

for transitivity

 $\{x \neq y, y \neq z, x = z\}$

sentence φ

Validity Procedure

sentence φ

Validity Procedure

sentence φ \quad $\ \, \mbox{\Large 1} \mbox{\Large transform} \ \neg \varphi$ into Skolem normal form ψ

2. Resolution

① transform φ into Skolem normal form ψ

(2) extract clausal form S from ψ

Validity Procedure

sentence φ

1) transform $\neg \varphi$ into Skolem normal form ψ sentence φ

(2) extract clausal form S from ψ

2. Resolution

- ① transform φ into Skolem normal form ψ sentence φ
 - (2) extract clausal form S from ψ
 - 3 apply resolution (with factoring) to S

Validity Procedure

- 1) transform $\neg \varphi$ into Skolem normal form ψ sentence φ
 - (2) extract clausal form S from ψ
 - 3 apply resolution (with factoring) to S

2. Resolution

- ① transform φ into Skolem normal form ψ sentence φ
 - (2) extract clausal form S from ψ
 - 3 apply resolution (with factoring) to S
 - (4) φ is satisfiable if and only if empty clause cannot be derived

Validity Procedure

- 1) transform $\neg \varphi$ into Skolem normal form ψ sentence φ
 - (2) extract clausal form S from ψ
 - 3 apply resolution (with factoring) to S

2. Resolution

 Φ φ is valid if and only if empty clause can be derived

Outline

- 1. Summary of Previous Lecture
- 2. Resolution
- 3. Intermezzo
- 4. Undecidability
- 5. Functional Completeness
- 6. Algebraic Normal Forms
- 7. Further Reading

Question

Which of the following statements are true?

- $\{P(a,b)\}\$ is a factor of $\{P(x,b), \neg P(a,y)\}.$
- В The literals R(x, x, a) and $\neg R(f(b), g(y), y)$ do not clash.
- ${Q(f(x)), R(y,z)}$ is a resolvent of ${\neg Q(y), R(y,z)}$ and ${Q(x), Q(f(x))}$.
- A clause cannot have a factor if it contains at least two literals which are not unifiable.

Outline

- 1. Summary of Previous Lecture
- 2. Resolution
- 3. Intermezzo
- 4. Undecidability
- 5. Functional Completeness
- **6. Algebraic Normal Forms**
- 7. Further Reading

validity in predicate logic is undecidable

validity in predicate logic is undecidable:

there is no algorithm

input: formula φ in predicate logic

output: yes if $\vDash \varphi$ holds

 $\quad \text{no} \quad \text{if} \ \vDash \varphi \ \text{does not hold} \\$

validity in predicate logic is undecidable:

there is no algorithm

input: formula φ in predicate logic

output: yes if $\vDash \varphi$ holds

no if $\vDash \varphi$ does not hold

Idea

reduction from Post correspondence problem

validity in predicate logic is undecidable: there is no algorithm

output: ves if $\models \varphi$ holds

no if $\models \varphi$ does not hold

Idea

reduction from Post correspondence problem

input: formula φ in predicate logic

Post Correspondence Problem

finite sequence of pairs $(s_1, t_1), \ldots, (s_k, t_k)$ of non-empty bit strings instance: question: is there sequence (i_1, i_2, \ldots, i_n) with $n \ge 1$ such that $s_{i_1}, s_{i_2}, \ldots, s_{i_n} = t_{i_1}, t_{i_2}, \ldots, t_{i_n}$?

1 2 3

 s_i : 1 10111 10 t_i : 11 101 01

4. Undecidability

3 solution 2 1 10111 10 10111 1 S t_i : 11 101 01

= 1011111t 101 $11 \ 11 = 1011111$

- 1 2 3 solution 2 1 1 s_i : 1 10111 10 s 10111 1 1
- t_i : 11 101 01 t 101 11 11 = 1011111

1011111

 s_i : 10 011 101 t_i : 101 11 011

3 solution 1 10111 10 10111 1 S t_i : 11 101 01 t 101 11 11 = 1011111

4. Undecidability

1011111

- no solution
 - 10 011 101 t_i : 101 11 011

3 solution 1 10111 10 10111 1 S t_i : 11 101 01 t 101 11 11

1011111

= 1011111

- no solution
- 10 011 101 t_i : 101 11 011
- 3 s_i : 01 0 0 101 1

27/40

- 3 solution 10111 10 10111 1 S
- 1011111 t_i : 11 101 01 101 11 11 1011111
- no solution
 - t_i : 101 11 011

10 011 101

- - Si: 01 0 0 101
- solution 1311313113112112213321 1312113312111321212232

 s_i : 1 10111

 t_i : 11

- 1 10111 10 1 101 01
 - 1

solution

S

no solution

solution

10111 1

11 11

101

1011111

= 1011111

1311313113112112213321

1312113312111321212232

- 01
- 10 011 101 01 11 011
- t_i: 101 11 011
- s_i : 01 1 0 t_i : 0 101 1
- Theorem (Post, 1946)

Post correspondence problem is undecidable

Theorem (Church, 1936)

validity in predicate logic is undecidable

Idea

translate PCP instance C into predicate logic formula φ such that

$$\vDash \varphi \quad \Longleftrightarrow \quad \textit{C} \ \ \text{has solution}$$

$$C = ((s_1, t_1), (s_2, t_2), \dots, (s_k, t_k))$$

▶ function symbols e: constant f_0 , f_1 : arity 1 predicate symbol P: arity 2

$$C = ((s_1, t_1), (s_2, t_2), \dots, (s_k, t_k))$$

- ▶ function symbols e: constant f_0 , f_1 : arity 1 predicate symbol P: arity 2
- lacksquare if $b_1,b_2,\ldots,b_n\in\{0,1\}$ then $f_{b_1b_2\cdots b_n}(t)$ denotes $f_{b_n}(\cdots(f_{b_2}(f_{b_1}(t)))\cdots)$

_A_M_

$$C = ((s_1, t_1), (s_2, t_2), \dots, (s_k, t_k))$$

- ▶ function symbols e: constant f_0 , f_1 : arity 1 predicate symbol P: arity 2
- ▶ if $b_1, b_2, ..., b_n \in \{0, 1\}$ then $f_{b_1b_2...b_n}(t)$ denotes $f_{b_n}(\cdots (f_{b_2}(f_{b_1}(t)))\cdots)$

_A_M_

$$C = ((s_1, t_1), (s_2, t_2), \dots, (s_k, t_k))$$

- ▶ function symbols e: constant f_0 , f_1 : arity 1 predicate symbol P: arity 2
- ▶ if $b_1, b_2, \ldots, b_n \in \{0, 1\}$ then $f_{b_1b_2 \cdots b_n}(t)$ denotes $f_{b_n}(\cdots (f_{b_2}(f_{b_1}(t)))\cdots)$
- $arphi=arphi_1\wedgearphi_2 oarphi_3$ with $arphi_1=\bigwedge^k P(f_{s_i}(e),f_{t_i}(e))$

$$C = ((s_1, t_1), (s_2, t_2), \dots, (s_k, t_k))$$

- function symbols e: constant f_0 , f_1 : arity 1 predicate symbol P: arity 2
- if $b_1, b_2, \ldots, b_n \in \{0, 1\}$ then $f_{b_1 b_2 \cdots b_n}(t)$ denotes $f_{b_n}(\cdots (f_{b_n}(f_{b_1}(t)))\cdots)$
- $\varphi = \varphi_1 \wedge \varphi_2 \rightarrow \varphi_3$ with

$$\varphi_1 = \bigwedge_{i=1}^k P(f_{s_i}(e), f_{t_i}(e))$$

$$\varphi_2 = \forall v \forall w \left(P(v, w) \to \bigwedge_{i=1}^k P(f_{s_i}(v), f_{t_i}(w)) \right)$$

Logic

$$C = ((s_1, t_1), (s_2, t_2), \dots, (s_k, t_k))$$

- ► function symbols e: constant f_0 , f_1 : arity 1 predicate symbol P: arity 2
- if $b_1, b_2, \ldots, b_n \in \{0, 1\}$ then $f_{b_1 b_2 \cdots b_n}(t)$ denotes $f_{b_n}(\cdots (f_{b_2}(f_{b_1}(t)))\cdots)$
- $ho \varphi = \varphi_1 \wedge \varphi_2 \rightarrow \varphi_3$ with

$$\varphi_{1} = \bigwedge_{i=1}^{k} P(f_{s_{i}}(e), f_{t_{i}}(e))$$

$$\varphi_{2} = \forall v \forall w \left(P(v, w) \to \bigwedge_{i=1}^{k} P(f_{s_{i}}(v), f_{t_{i}}(w)) \right)$$

$$\varphi_{3} = \exists z P(z, z)$$

$$C = ((s_1, t_1), (s_2, t_2), \ldots, (s_k, t_k))$$

- ▶ function symbols e: constant f_0 , f_1 : arity 1 predicate symbol P: arity 2
- ▶ if $b_1, b_2, \ldots, b_n \in \{0, 1\}$ then $f_{b_1b_2 \cdots b_n}(t)$ denotes $f_{b_n}(\cdots (f_{b_2}(f_{b_1}(t)))\cdots)$

$$\varphi = \varphi_1 \land \varphi_2 \to \varphi_3 \text{ with}$$

$$\varphi_1 = \bigwedge_{i=1}^k P(f_{s_i}(e), f_{t_i}(e))$$

$$\varphi_2 = \forall v \forall w \left(P(v, w) \to \bigwedge_{i=1}^k P(f_{s_i}(v), f_{t_i}(w)) \right)$$

$$\varphi_3 = \exists z P(z, z)$$

 $\blacktriangleright \models \varphi \iff C \text{ has solution}$

ightharpoonup C = ((10, 101), (011, 11), (10, 0))

- ightharpoonup C = ((10, 101), (011, 11), (10, 0))
- $ho = P(f_0(f_1(e)), f_1(f_0(f_1(e))))$

- C = ((10, 101), (011, 11), (10, 0))

- C = ((10, 101), (011, 11), (10, 0))

- C = ((10, 101), (011, 11), (10, 0))
- $\varphi = P(f_0(f_1(e)), f_1(f_0(f_1(e)))) \land P(f_1(f_1(f_0(e))), f_1(f_1(e))) \land P(f_0(f_1(e)), f_0(e))$ $\wedge \forall v \forall w (P(v,w) \rightarrow P(f_0(f_1(v)), f_1(f_0(f_1(w))))$

$$\wedge P(f_1(f_1(f_0(v))), f_1(f_1(w)))$$

$$\wedge P(f_0(f_1(v)), f_0(w)))$$

- C = ((10, 101), (011, 11), (10, 0))
- $\varphi = P(f_0(f_1(e)), f_1(f_0(f_1(e)))) \land P(f_1(f_1(f_0(e))), f_1(f_1(e))) \land P(f_0(f_1(e)), f_0(e))$

 $\rightarrow \exists z P(z,z)$

Outline

- 1. Summary of Previous Lecture
- 2. Resolution
- 3. Intermezzo
- 4. Undecidability
- 5. Functional Completeness
- 6. Algebraic Normal Forms
- 7. Further Reading

Definition

set X of boolean functions is called adequate or functionally complete if every boolean function can be expressed using functions from X

set X of boolean functions is called adequate or functionally complete if every boolean function can be expressed using functions from X

Examples

 \vdash { \neg , \cdot , +} is adequate

set X of boolean functions is called adequate or functionally complete if every boolean function can be expressed using functions from X

Examples

set X of boolean functions is called adequate or functionally complete if every boolean function can be expressed using functions from X

Examples

Χ	У	f(x,y)
0	0	1
0	1	0
1	0	0
1	1	1

32/40

set X of boolean functions is called adequate or functionally complete if every boolean function can be expressed using functions from X

Examples

 $\{ -, \cdot, + \}$ is adequate: truth table gives rise to DNF

	X	У	f(x,y)	
	0	0	1	
	0	1	0	
	1	0	0	
	1	1	1	
$\overline{x}(x,y) = \overline{x} \cdot \overline{y}$				

$$= \overline{x} \cdot \overline{y}$$

set X of boolean functions is called adequate or functionally complete if every boolean function can be expressed using functions from X

Examples

 $\{-, \cdot, +\}$ is adequate: truth table gives rise to DNF

	Χ	У	f(x,y)
	0	0	1
	0	1	0
	1	0	0
	1	1	1
=(\	, ,)		- - ×

$$f(x,y) = \overline{x} \cdot \overline{y} + x \cdot y$$

set X of boolean functions is called adequate or functionally complete if every boolean function can be expressed using functions from X

Examples

- \vdash { \neg , \cdot , +} is adequate: truth table gives rise to DNF
- $\setminus \{ -, \cdot \}$ is adequate

set X of boolean functions is called adequate or functionally complete if every boolean function can be expressed using functions from X

Examples

- \vdash { \neg , \cdot , + } is adequate: truth table gives rise to DNF
- $\{ \bar{x}, \cdot \}$ is adequate: $x + y = \overline{x} \cdot \overline{y}$

set X of boolean functions is called adequate or functionally complete if every boolean function can be expressed using functions from X

Examples

- \vdash { \neg , \cdot , +} is adequate: truth table gives rise to DNF
- $\{ -, \cdot \}$ is adequate: $x + y = \overline{\overline{x} \cdot \overline{y}}$
- $\{\cdot, +, \rightarrow\}$ with $x \rightarrow y = \overline{x} + y$ is **not** adequate

 $x | y = \overline{x \cdot y}$

Examples

{|} is adequate

(nand)

Examples

▶ { | } is adequate

$$x | y = \overline{x \cdot y}$$

(nand)

Examples

$$\overline{x} = x \mid x$$

$$x \cdot y = (x \mid y) \mid (x \mid y)$$

 $\rightarrow x \mid y = \overline{x \cdot y}$

- (nand)
- ightharpoonup ite $(x,y,z)=(\overline{x}+y)\cdot(x+z)$

Examples

▶ { | } is adequate:

- $\overline{x} = x \mid x$
- $x \cdot y = (x \mid y) \mid (x \mid y)$
- ▶ { ite, 0, 1 } is adequate

 $ightharpoonup x \mid y = \overline{x \cdot y}$

- (nand)
- ▶ $ite(x, y, z) = (\overline{x} + y) \cdot (x + z)$ (if-then-else)

Examples

▶ { | } is adequate:

- $\bar{x} = x \mid x$
- $x\cdot y=(x\,|\,y)\,|\,(x\,|\,y)$

▶ { ite, 0, 1} is adequate

 $\triangleright x \mid y = \overline{x \cdot y}$

- (nand)
- ightharpoonup ite $(x,y,z)=(\overline{x}+y)\cdot(x+z)$ (if-then-else)

Examples

- ▶ { | } is adequate:
 - $\overline{x} = x \mid x$ $x \cdot y = (x \mid y) \mid (x \mid y)$
- ▶ { ite, 0, 1 } is adequate: $\overline{x} = ite(x, 0, 1)$
- $x \cdot y = ite(x, y, 0)$

 $\rightarrow x \mid y = \overline{x \cdot y}$

- (nand)
- ightharpoonup ite $(x, y, z) = (\overline{x} + y) \cdot (x + z)$ (if-then-else)

Examples

- {|} is adequate:
 - $\overline{x} = x \mid x$ $x \cdot y = (x \mid y) \mid (x \mid y)$
- $\overline{x} = ite(x, 0, 1)$ ▶ { ite, 0, 1 } is adequate:
- $\{ \overline{x}, \leftrightarrow \}$ with $x \leftrightarrow y = (\overline{x} + y) \cdot (x + \overline{y})$ is **not** adequate

universität innsbruck

 $x \cdot y = ite(x, y, 0)$

Outline

- 1. Summary of Previous Lecture
- 2. Resolution
- 3. Intermezzo
- 4. Undecidability
- 5. Functional Completeness
- 6. Algebraic Normal Forms
- 7. Further Reading

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

with $c_A \in \{0,1\}$ for all $A \subseteq \{1,\ldots,n\}$

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

with $c_A \in \{0,1\}$ for all $A \subseteq \{1,\ldots,n\}$

Corollary

every unary boolean function $f: \{0,1\} \rightarrow \{0,1\}$ can be uniquely written as

$$f(x) = a \oplus b \cdot x$$

with $a, b \in \{0, 1\}$

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

with $c_A \in \{0,1\}$ for all $A \subseteq \{1,\ldots,n\}$

Corollary

every unary boolean function $f: \{0,1\} \rightarrow \{0,1\}$ can be uniquely written as

$$f(x)=a\oplus bx$$

with $a, b \in \{0, 1\}$

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

with $c_A \in \{0,1\}$ for all $A \subseteq \{1,\ldots,n\}$

Corollary

every binary boolean function $f: \{0,1\}^2 \to \{0,1\}$ can be uniquely written as

$$f(x,y)=a\oplus bx\oplus cy\oplus dxy$$

with $a, b, c, d \in \{0, 1\}$

every boolean function $f \colon \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

with $c_A \in \{0,1\}$ for all $A \subseteq \{1,\ldots,n\}$

Corollary

every binary boolean function $f\colon \{0,1\}^2 o \{0,1\}$ can be uniquely written as

$$f(x_1,x_2)=c_{\varnothing}\oplus c_{\{1\}}x_1\oplus c_{\{2\}}x_2\oplus c_{\{1,2\}}x_1x_2$$

with $c_{\varnothing}, c_{\{1\}}, c_{\{2\}}, c_{\{1,2\}} \in \{0,1\}$

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

with $c_A \in \{0,1\}$ for all $A \subseteq \{1,\ldots,n\}$

Corollary

every binary boolean function $f: \{0,1\}^2 \to \{0,1\}$ can be uniquely written as

$$f(x_1, x_2) = c_{\varnothing} \oplus c_{\{1\}} x_1 \oplus c_{\{2\}} x_2 \oplus c_{\{1,2\}} x_1 x_2 = \bigoplus_{A \subseteq \{1,2\}} c_A \cdot \prod_{i \in A} x_i$$

with $c_{\varnothing}, c_{\{1\}}, c_{\{2\}}, c_{\{1,2\}} \in \{0,1\}$

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

with $c_A \in \{0,1\}$ for all $A \subseteq \{1,\ldots,n\}$

$$\begin{array}{c|c}
x & f(x) \\
\hline
0 & \\
1 & \\
\end{array}$$

every boolean function $f \colon \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

with $c_A \in \{0,1\}$ for all $A \subseteq \{1,\ldots,n\}$

Examples

$$\begin{array}{c|c} x & f(x) = \mathbf{0} = \mathbf{0} \oplus \mathbf{0} \cdot \mathbf{x} \\ \hline 0 & 0 \\ 1 & 0 \end{array}$$

SS 2024 Logic

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

with $c_A \in \{0,1\}$ for all $A \subseteq \{1,\ldots,n\}$

Examples

$$\begin{array}{c|c} x & f(x) = x = 0 \oplus 1 \cdot x \\ \hline 0 & 0 \\ 1 & 1 \end{array}$$

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,...,x_n) = \bigoplus_{A\subseteq\{1,...,n\}} c_A \cdot \prod_{i\in A} x_i$$

with $c_A \in \{0,1\}$ for all $A \subseteq \{1,\ldots,n\}$

Examples

$$\begin{array}{c|c} x & f(x) = 1 \oplus x = 1 \oplus 1 \cdot x \\ \hline 0 & 1 \\ 1 & 0 \end{array}$$

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,...,x_n) = \bigoplus_{A\subseteq\{1,...,n\}} c_A \cdot \prod_{i\in A} x_i$$

with $c_A \in \{0,1\}$ for all $A \subseteq \{1,\ldots,n\}$

Examples

$$\begin{array}{c|c} x & f(x) & = & 1 = 1 \oplus 0 \cdot x \\ \hline 0 & 1 & \\ 1 & 1 & \end{array}$$

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

X	f(x) = 1	X	У	f(x,y) =	= (
0	1	0	0	0	
1	1			0	
		1	0	0	
		1	1	0	

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

Χ	f(x)	= 1			f(x,y) = x	X.
0	1		0	0	0	
1	1		0	1	0	
			1	0	0	
			1	1	1	

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

X	f(x) = 1	X	У	$f(x,y) = x \oplus xy$
0	1	0	0	0
1	1	0	1	0
		1	0	1
		1	1	0

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

Χ	f(x) = 1			f(x,y) = x
0	1	0	0	0
1	1	0	1	0
		1	0	1
		1	1	1

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

X	f(x) = 1	X	У	$f(x,y) = y \oplus xy$
0	1	0	0	0
1	1	0	1	1
		1	0	0
		1	1	0

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

	f(x) = 1	Χ	У	f(x,y)	_= :
0	1	0	0	0	
1	1			1	
		1	0	0	
		1	1	1	

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

X	f(x) = 1	X	У	$f(x,y) = x \oplus y$
0	1			0
1	1			1
		1	0	1
		1	1	0

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

Χ	f(x) = 1	X	У	$f(x,y) = x \oplus y \oplus xy$
	1	0	0	0
1	1			1
		1	0	1
		1	1	1

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

with $c_A \in \{0,1\}$ for all $A \subseteq \{1,\ldots,n\}$

$\oplus x \oplus y$

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

with $c_A \in \{0,1\}$ for all $A \subseteq \{1,\ldots,n\}$

Χ	f(x) = 1	X	У	$f(x,y) = 1 \oplus y$
0	1	0	0	1
1	1	0	1	0
		1	0	1
		1	1	0

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

with $c_A \in \{0,1\}$ for all $A \subseteq \{1,\ldots,n\}$

X	f(x)	= 1	X	У	f(x,y)	=	1 ⊕ <i>y</i>	⊕ xy
0	1	_	0	0	1			
1	1		0	1	0			
			1	0	1			
			1	1	1			

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

with $c_A \in \{0,1\}$ for all $A \subseteq \{1,\ldots,n\}$

	f(x) = 1	X	У	f(x,y)	=	1 ⊕ <i>x</i>
0	1	0	0	1		
1	1	0	1	1		
				0		
		1	1	0		

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

with $c_A \in \{0,1\}$ for all $A \subseteq \{1,\ldots,n\}$

X	f(x) = 1	X	У	$f(x,y) = 1 \oplus x \oplus xy$
0	1	0	0	1
1	1	0	1	1
		1	0	0
		1	1	1

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

with $c_A \in \{0,1\}$ for all $A \subseteq \{1,\ldots,n\}$

X	f(x) = 1	X	У	$ f(x,y) = 1 \oplus xy$
0	1			1
1	1	0	1	1
		1	0	1
		1	1	0

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

with $c_A \in \{0,1\}$ for all $A \subseteq \{1,\ldots,n\}$

	f(x) = 1			f(x,y) = 1
0	1	0	0	1
1	1	0	1	1
		1	0	1
		1	1	1

every boolean function $f \colon \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

with $c_A \in \{0,1\}$ for all $A \subseteq \{1,\ldots,n\}$

Proof sketch

SS 2024 Logic lect

e 8 6. Algebraic Normal Forms

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

with $c_A \in \{0,1\}$ for all $A \subseteq \{1,\ldots,n\}$

Proof sketch

- $\rightarrow n = 0$: easy
- ▶ n > 0: $f = f[0/x] \oplus (f[0/x] \oplus f[1/x])x$

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

with $c_A \in \{0,1\}$ for all $A \subseteq \{1,\ldots,n\}$

Proof sketch

- $\rightarrow n = 0$: easy
- ▶ n > 0: $f = f[0/x] \oplus (f[0/x] \oplus f[1/x])x$ $f = \overline{x} f[0/x] + x f[1/x]$

36/40

(Shannon expansion)

SS 2024

Logic

every boolean function $f \colon \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

with $c_A \in \{0,1\}$ for all $A \subseteq \{1,\ldots,n\}$

Proof sketch

- n = 0: easy
- ▶ n > 0: $f = f[0/x] \oplus (f[0/x] \oplus f[1/x])x$ $f = \overline{x} f[0/x] + x f[1/x] = f[0/x] \overline{x} + f[1/x]x$

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

with $c_A \in \{0,1\}$ for all $A \subseteq \{1,\ldots,n\}$

Proof sketch

 $\rightarrow n = 0$: easy

Logic

▶ n > 0: $f = f[0/x] \oplus (f[0/x] \oplus f[1/x])x$

$$f = \overline{x}f[0/x] \oplus f[1/x]$$

$$f = \overline{x}f[0/x] + xf[1/x] = 0$$

 $f = \bar{x} f[0/x] + x f[1/x] = f[0/x]\bar{x} + f[1/x]x$ $= f[0/x]\overline{x} \oplus f[1/x]x \oplus f[0/x]\overline{x}f[1/x]x$

 $(y+z=y\oplus z\oplus yz)$

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

with $c_A \in \{0,1\}$ for all $A \subseteq \{1,\ldots,n\}$

Proof sketch

- \rightarrow n=0: easy
- ▶ n > 0: $f = f[0/x] \oplus (f[0/x] \oplus f[1/x])x$ $f = \bar{x} f[0/x] + x f[1/x] = f[0/x]\bar{x} + f[1/x]x$ $= f[0/x]\overline{x} \oplus f[1/x]x \oplus f[0/x]\overline{x}f[1/x]x$
 - $= f[0/x]\overline{x} \oplus f[1/x]x$

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

with $c_A \in \{0,1\}$ for all $A \subseteq \{1,\ldots,n\}$

Proof sketch

- $\rightarrow n = 0$: easy
- ▶ n > 0: $f = f[0/x] \oplus (f[0/x] \oplus f[1/x])x$

$$f = \overline{x}f[0/x] + xf[1/x] =$$

 $f = \bar{x} f[0/x] + x f[1/x] = f[0/x]\bar{x} + f[1/x]x$

 $= f[0/x]\overline{x} \oplus f[1/x]x \oplus f[0/x]\overline{x}f[1/x]x$

 $= f[0/x]\overline{x} \oplus f[1/x]x = f[0/x](1 \oplus x) \oplus f[1/x]x$

ΔΜ

 $(\bar{x} = 1 \oplus x)$

every boolean function $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

with $c_A \in \{0,1\}$ for all $A \subseteq \{1,\ldots,n\}$

Proof sketch

▶
$$n = 0$$
: easy

$$n > 0$$
: $f = f[0/x] \oplus (f[0/x] \oplus f[1/x]) x$

Logic

$$f = \overline{x}f[0/x] + xf[1/x] = f[0/x]\overline{x} + f[1/x]x$$

$$= f[0/x] \oplus f[0/x] x \oplus f[1/x] x$$

 $= f[0/x]\overline{x} \oplus f[1/x]x \oplus f[0/x]\overline{x}f[1/x]x$

 $= f[0/x]\overline{x} \oplus f[1/x]x = f[0/x](1 \oplus x) \oplus f[1/x]x$

every boolean function $f \colon \{0,1\}^n \to \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A\subseteq\{1,\ldots,n\}} c_A \cdot \prod_{i\in A} x_i$$

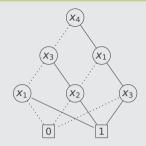
with $c_A \in \{0,1\}$ for all $A \subseteq \{1,\ldots,n\}$

Proof sketch

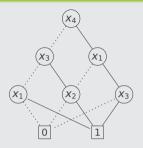
- n = 0: easy
- ▶ n > 0: $f = f[0/x] \oplus (f[0/x] \oplus f[1/x])x$

$$f = \overline{x}f[0/x] + xf[1/x] = f[0/x]\overline{x} + f[1/x]x$$

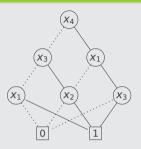
- $= f[0/x]\overline{x} \oplus f[1/x]x \oplus f[0/x]\overline{x}f[1/x]x$
- $= f[0/x]\overline{x} \oplus f[1/x]x = f[0/x](1 \oplus x) \oplus f[1/x]x$ $= f[0/x] \oplus f[0/x]x \oplus f[1/x]x = f[0/x] \oplus (f[0/x] \oplus f[1/x])x$



 $HWB_4(x_1, x_2, x_3, x_4)$

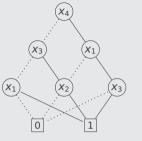


$$\mathsf{HWB}_4(x_1, x_2, x_3, x_4) \ = \ \overline{x}_4(\overline{x}_3x_1 + x_3x_2) + x_4(\overline{x}_1x_2 + x_1x_3)$$



$$x + y = x \oplus y \oplus xy$$
$$\bar{x}x = 0$$

$$HWB_4(x_1, x_2, x_3, x_4) = \overline{x}_4(\overline{x}_3x_1 + x_3x_2) + x_4(\overline{x}_1x_2 + x_1x_3)$$
$$= \overline{x}_4(\overline{x}_3x_1 \oplus x_3x_2) \oplus x_4(\overline{x}_1x_2 \oplus x_1x_3)$$



$$x + y = x \oplus y \oplus xy$$

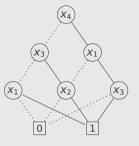
$$\overline{x}x = 0$$

$$\overline{x} = x \oplus 1$$

$$(x \oplus y)z = xz \oplus yz$$

$$1x = x$$

$$\begin{aligned} \mathsf{HWB_4}(x_1, x_2, x_3, x_4) &= \overline{x}_4(\overline{x}_3 x_1 + x_3 x_2) + x_4(\overline{x}_1 x_2 + x_1 x_3) \\ &= \overline{x}_4(\overline{x}_3 x_1 \oplus x_3 x_2) \oplus x_4(\overline{x}_1 x_2 \oplus x_1 x_3) \\ &= \overline{x}_4(x_1 \oplus x_1 x_3 \oplus x_3 x_2) \oplus x_4(\overline{x}_1 x_2 \oplus x_1 x_3) \end{aligned}$$



$$x + y = x \oplus y \oplus xy$$

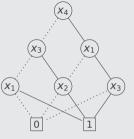
$$\bar{x}x = 0$$

$$\bar{x} = x \oplus 1$$

$$(x \oplus y)z = xz \oplus yz$$

$$1x = x$$

$$\begin{aligned} \mathsf{HWB_4}(x_1, x_2, x_3, x_4) &= \overline{x}_4(\overline{x}_3 x_1 + x_3 x_2) + x_4(\overline{x}_1 x_2 + x_1 x_3) \\ &= \overline{x}_4(\overline{x}_3 x_1 \oplus x_3 x_2) \oplus x_4(\overline{x}_1 x_2 \oplus x_1 x_3) \\ &= \overline{x}_4(x_1 \oplus x_1 x_3 \oplus x_3 x_2) \oplus x_4(\overline{x}_1 x_2 \oplus x_1 x_3) \\ &= \overline{x}_4(x_1 \oplus x_1 x_3 \oplus x_3 x_2) \oplus x_4(x_2 \oplus x_1 x_2 \oplus x_1 x_3) \end{aligned}$$



$$x + y = x \oplus y \oplus xy$$

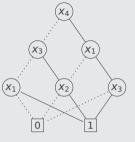
$$\overline{x}x = 0$$

$$\overline{x} = x \oplus 1$$

$$(x \oplus y)z = xz \oplus yz$$

$$1x = x$$

$$\begin{aligned} \mathsf{HWB_4}(x_1, x_2, x_3, x_4) &= \overline{x_4}(\overline{x_3}x_1 + x_3x_2) + x_4(\overline{x_1}x_2 + x_1x_3) \\ &= \overline{x_4}(\overline{x_3}x_1 \oplus x_3x_2) \oplus x_4(\overline{x_1}x_2 \oplus x_1x_3) \\ &= \overline{x_4}(x_1 \oplus x_1x_3 \oplus x_3x_2) \oplus x_4(\overline{x_1}x_2 \oplus x_1x_3) \\ &= \overline{x_4}(\mathbf{x_1} \oplus \mathbf{x_1}\mathbf{x_3} \oplus \mathbf{x_3}\mathbf{x_2}) \oplus x_4(\mathbf{x_2} \oplus \mathbf{x_1}\mathbf{x_2} \oplus \mathbf{x_1}\mathbf{x_3}) \\ &= x_1 \oplus x_1x_3 \oplus x_3x_2 \oplus x_4(\mathbf{x_2} \oplus x_1x_2 \oplus x_1x_3) \oplus x_4(\mathbf{x_1} \oplus x_1x_3 \oplus x_3x_2) \end{aligned}$$



$$x + y = x \oplus y \oplus xy$$

$$\bar{x}x = 0$$

$$\bar{x} = x \oplus 1$$

$$(x \oplus y)z = xz \oplus yz$$

$$1x = x$$

$$\mathsf{HWB}_{4}(x_{1}, x_{2}, x_{3}, x_{4}) = \overline{x}_{4}(\overline{x}_{3}x_{1} + x_{3}x_{2}) + x_{4}(\overline{x}_{1}x_{2} + x_{1}x_{3})$$
$$= \overline{x}_{4}(\overline{x}_{3}x_{1} \oplus x_{3}x_{2}) \oplus x_{4}(\overline{x}_{1}x_{2} \oplus x_{1}x_{3})$$

$$= \overline{x}_4(x_1 \oplus x_1x_3 \oplus x_3x_2) \oplus x_4(\overline{x}_1x_2 \oplus x_1x_3)$$

$$= \overline{x}_4(x_1 \oplus x_1x_3 \oplus x_3x_2) \oplus x_4(x_2 \oplus x_1x_2 \oplus x_1x_3)$$

$$= x_1 \oplus x_1x_3 \oplus x_3x_2 \oplus x_4(x_2 \oplus x_1x_2 \oplus x_1x_3) \oplus x_4(x_1 \oplus x_1x_3 \oplus x_3x_2)$$

$$= x_1 \oplus x_1 x_3 \oplus x_2 x_3 \oplus x_1 x_4 \oplus x_2 x_4 \oplus x_1 x_2 x_4 \oplus x_2 x_3 x_4$$

Outline

- 1. Summary of Previous Lecture
- 2. Resolution
- 3. Intermezzo
- 4. Undecidability
- 5. Functional Completeness
- 6. Algebraic Normal Forms
- 7. Further Reading

Huth and Ryan

► Section 2.5

Huth and Ryan

► Section 2.5

Resolution

Wikipedia

[accessed January 25, 2024]

Huth and Ryan

Section 2.5

Resolution

Wikipedia

Algebraic Normal Form

► Wikipedia

7. Further Reading

[accessed January 25, 2024]

[accessed January 25, 2024]

Logic

Important Concepts

- adequacy
- algebraic normal form (ANF)
- Church's theorem
- clashing
- factor

- factoring
- functional completeness
- nand
- Post correspondence problem
- resolvent

Important Concepts

adequacy

algebraic normal form (ANF)

Church's theorem

clashing

factor

factoring

functional completeness

nand

Post correspondence problem

resolvent

homework for May 16

