Logic

Diana Gründlinger
Alexander Montag Johannes Niederhauser

Fabian Mitterwallner

Aart Middeldorp

Daniel Rainer

Outline

1. Summary of Previous Lecture
2. Resolution
3. Intermezzo
4. Undecidability
5. Functional Completeness
6. Algebraic Normal Forms
7. Further Reading

Theorem

$$
\begin{gathered}
\neg \forall x \varphi \dashv \nexists x \neg \varphi \\
\forall x \varphi \wedge \forall x \psi \neg \vdash \forall x(\varphi \wedge \psi) \\
\forall x \forall y \varphi \dashv \forall \forall y \forall x \varphi
\end{gathered}
$$

$$
\begin{gathered}
\neg \exists x \varphi \dashv \vdash \forall x \neg \varphi \\
\exists x \varphi \vee \exists x \psi \dashv \vdash \exists x(\varphi \vee \psi) \\
\exists x \exists y \varphi \dashv \vdash \exists y \exists x \varphi
\end{gathered}
$$

if x is not free in ψ then

$$
\begin{aligned}
& \forall x \varphi \wedge \psi \dashv \vdash \forall x(\varphi \wedge \psi) \\
& \exists x \varphi \wedge \psi \dashv \vdash \exists x(\varphi \wedge \psi) \\
& \psi \rightarrow \forall x \varphi \dashv \vdash \forall x(\psi \rightarrow \varphi) \\
& \psi \rightarrow \exists x \varphi \dashv \vdash \exists x(\psi \rightarrow \varphi)
\end{aligned}
$$

$$
\begin{gathered}
\forall x \varphi \vee \psi \dashv \vdash \forall x(\varphi \vee \psi) \\
\exists x \varphi \vee \psi \dashv \vdash \exists x(\varphi \vee \psi) \\
\exists x \varphi \rightarrow \psi \dashv \vdash \forall x(\varphi \rightarrow \psi) \\
\forall x \varphi \rightarrow \psi \dashv \vdash \exists x(\varphi \rightarrow \psi)
\end{gathered}
$$

Definitions

- substitution is set of variable bindings $\theta=\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}$ with pairwise different variables x_{1}, \ldots, x_{n} and terms t_{1}, \ldots, t_{n}
- given substitution $\theta=\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}$ and expression E, instance $E \theta$ of E is obtained by simultaneously replacing each occurrence of x_{i} in E by t_{i}
- composition of substitutions $\theta=\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}$ and $\sigma=\left\{y_{1} \mapsto s_{1}, \ldots, y_{k} \mapsto s_{k}\right\}$ is substitution $\theta \sigma=\left\{x_{1} \mapsto t_{1} \sigma, \ldots, x_{n} \mapsto t_{n} \sigma\right\} \cup\left\{y_{i} \mapsto s_{i} \mid y_{i} \neq x_{j}\right.$ for all $\left.1 \leqslant j \leqslant n\right\}$
- substitution θ is at least as general as substitution σ if $\theta \mu=\sigma$ for some substitution μ
- unifier of terms s and t is substitution θ such that $s \theta=t \theta$
- most general unifier (mgu) is at least as general as any other unifier

Theorem

unifiable terms have mgu which can be computed by unification algorithm

Unification Algorithm

d decomposition

$$
\frac{E_{1}, f\left(s_{1}, \ldots, s_{n}\right) \approx f\left(t_{1}, \ldots, t_{n}\right), E_{2}}{E_{1}, s_{1} \approx t_{1}, \ldots, s_{n} \approx t_{n}, E_{2}}
$$

t removal of trivial equations

$$
\frac{E_{1}, t \approx t, E_{2}}{E_{1}, E_{2}}
$$

v variable elimination

$$
\frac{E_{1}, x \approx t, E_{2}}{\left(E_{1}, E_{2}\right)\{x \mapsto t\}} \quad \text { and } \quad \frac{E_{1}, t \approx x, E_{2}}{\left(E_{1}, E_{2}\right)\{x \mapsto t\}}
$$

if x does not occur in t (occurs check)

Theorem

- there are no infinite derivations $U \Rightarrow_{\theta_{1}} V \Rightarrow_{\theta_{2}} \cdots$
- if s and t are unifiable then for every maximal derivation $s \approx t \Rightarrow_{\theta_{1}} E_{1} \Rightarrow_{\theta_{2}} \cdots \Rightarrow_{\theta_{n}} E_{n}$ $E_{n}=\square$ and $\theta_{1} \theta_{2} \cdots \theta_{n}$ is mgu of s and t

Definitions

- prenex normal form is predicate logic formula

$$
Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n} \varphi
$$

with $Q_{i} \in\{\forall, \exists\}$ and φ quantifier-free

- Skolem normal form is closed (no free variables) prenex normal form

$$
\forall x_{1} \forall x_{2} \ldots \forall x_{n} \varphi
$$

with φ quantifier-free CNF

Theorem

for every formula φ there exists prenex normal form ψ such that $\varphi \equiv \psi$

Theorem

for every sentence φ there exists Skolem normal form ψ such that $\varphi \approx \psi$

Proof (Skolemization)

(1) transform φ into closed prenex normal form $Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n} \chi$ with χ in CNF
(2) repeatedly replace $\forall x_{1} \ldots \forall x_{i-1} \exists x_{i} Q_{i+1} x_{i+1} \ldots Q_{n} x_{n} \psi$ by

$$
\forall x_{1} \ldots \forall x_{i-1} Q_{i+1} x_{i+1} \ldots Q_{n} x_{n} \psi\left[f\left(x_{1}, \ldots, x_{i-1}\right) / x_{i}\right]
$$

where f is new function symbol of arity $i-1$

SS 2024
Logic
lecture 8

1. Summary of Previous Lecture

Part I: Propositional Logic

algebraic normal forms, binary decision diagrams, conjunctive normal forms, DPLL, Horn formulas, natural deduction, Post's adequacy theorem, resolution, SAT, semantics, sorting networks, soundness and completeness, syntax, Tseitin's transformation

Part II: Predicate Logic

natural deduction, quantifier equivalences, resolution, semantics, Skolemization, syntax, undecidability, unification

Part III: Model Checking

adequacy, branching-time temporal logic, CTL*, fairness, linear-time temporal logic, model checking algorithms, symbolic model checking

Outline

1. Summary of Previous Lecture

2. Resolution

Propositional Logic
Predicate Logic
3. Intermezzo
4. Undecidability
5. Functional Completeness
6. Algebraic Normal Forms
7. Further Reading

Definitions

- literal is atom p or negation of atom $\neg p$
- clause is set of literals $\left\{\ell_{1}, \ldots, \ell_{n}\right\}$
- \square denotes empty clause
- clausal form is set of clauses $\left\{C_{1}, \ldots, C_{m}\right\}$
- $\ell^{c}= \begin{cases}\neg p & \text { if } \ell=p \\ p & \text { if } \ell=\neg p\end{cases}$
- clauses C_{1} and C_{2} clash on literal ℓ if $\ell \in C_{1}$ and $\ell^{c} \in C_{2}$
- resolvent of clauses C_{1} and C_{2} clashing on literal ℓ is clause $\left(C_{1} \backslash\{\ell\}\right) \cup\left(C_{2} \backslash\left\{\ell^{c}\right\}\right)$

Resolution

input: clausal form S
output: yes if S is satisfiable no if S is unsatisfiable
(1) repeatedly add (new) resolvents of clashing clauses in S
(2) return no as soon as empty clause is derived
(3) return yes if all clashing clauses have been resolved

Definition

refutation of S is resolution derivation of \square from S

Theorem

resolution is sound and complete for propositional logic:
clausal form S is unsatisfiable if and only if S admits refutation

Outline

1. Summary of Previous Lecture

2. Resolution

Propositional Logic
Predicate Logic
3. Intermezzo
4. Undecidability
5. Functional Completeness
6. Algebraic Normal Forms
7. Further Reading

Definitions

- atomic formula: $P|P(t, \ldots, t)| t=t$
- literal is atomic formula or negation of atomic formula
- clause is set of literals $\left\{\ell_{1}, \ldots, \ell_{n}\right\}$
- clausal form is set of clauses $\left\{C_{1}, \ldots, C_{m}\right\}$, representing $\forall\left(C_{1} \wedge \cdots \wedge C_{m}\right)$
- clauses C_{1} and C_{2} without common variables clash on literals $\ell_{1} \in C_{1}$ and $\ell_{2} \in C_{2}$ if ℓ_{1} and ℓ_{2}^{c} are unifiable
- resolvent of clauses C_{1} and C_{2} clashing on literals $\ell_{1} \in C_{1}$ and $\ell_{2} \in C_{2}$ is clause

$$
\left(\left(C_{1} \backslash\left\{\ell_{1}\right\}\right) \cup\left(C_{2} \backslash\left\{\ell_{2}\right\}\right)\right) \theta
$$

where θ is mgu of ℓ_{1} and ℓ_{2}^{c}

SS 2024
Logic
lecture 8
2. Resolution

Predicate Logic

Example 1

1	$\{\neg P(x), Q(x), R(x, f(x))\}$
2	$\{\neg P(x), Q(x), S(f(x))\}$
3	$\{T(a)\}$
4	$\{P(a)\}$
5	$\{\neg R(a, y), T(y)\}$
6	$\{\neg T(x), \neg Q(x)\}$
7	$\{\neg T(x), \neg S(x)\}$
8	$\{\neg Q(a)\}$
9	$\{Q(a), S(f(a))\}$
10	$\{Q(a), R(a, f(a))\}$
11	$\{S(f(a))\}$
12	$\{R(a, f(a))\}$

$1\{\neg P(x), Q(x), R(x, f(x))\}$
$2\{\neg P(x), Q(x), S(f(x))\}$
$3\{T(a)\}$
$4\{P(a)\}$
$5\{\neg R(a, y), T(y)\}$
$6\{\neg T(x), \neg Q(x)\}$
$7\{\neg T(x), \neg S(x)\}$
$8\{\neg Q(a)\}$
$9\{Q(a), S(f(a))\}$
$10\{Q(a), R(a, f(a))$
resolve 3, $6 \quad\{x \mapsto a\}$
resolve 2,4 $4 x \mapsto a\}$
resolve 1,4 $4 x \mapsto a\}$
resolve 8, 9
resolve 8, 10
$13\{T(f(a))\} \quad$ resolve 5, $12 \quad\{y \mapsto f(a)\}$
$14\{\neg S(f(a))\} \quad$ resolve $7,13 \quad\{x \mapsto f(a)\}$
$15 \square \quad$ resolve 11, 14

Example 2

$1\{\neg P(x, y), P(y, x)\}$
$2\{\neg P(x, y), \neg P(y, z), P(x, z)\}$
$3\{P(x, f(x))\}$
$4\{\neg P(x, x)\}$
$3^{\prime}\left\{P\left(x^{\prime}, f\left(x^{\prime}\right)\right)\right\}$
$5\{P(f(x), x)\}$
$6\{\neg P(f(x), z), P(x, z)\}$
$5^{\prime}\left\{P\left(f\left(x^{\prime}\right), x^{\prime}\right)\right\}$
$7\{P(z, z)\}$
rename 3
resolve $1,3^{\prime} \quad\left\{y \mapsto f(x), x^{\prime} \mapsto x\right\}$
resolve $2,3^{\prime} \quad\left\{y \mapsto f(x), x^{\prime} \mapsto x\right\}$
rename 5
resolve 6, 5' $\quad\left\{x \mapsto z, x^{\prime} \mapsto z\right\}$
resolve $4,7 \quad\{x \mapsto z\}$

$$
\forall x \forall y \forall z((\neg P(x, y) \vee P(y, x)) \wedge(\neg P(x, y) \vee \neg P(y, z) \vee P(x, z)) \wedge P(x, f(x)) \wedge \neg P(x, x))
$$

Theorem

resolution is sound for predicate logic: clausal form S is unsatisfiable if S admits refutation

Problem

resolution is incomplete for predicate logic

Example

$1\{P(x), P(y)\}$
$2\left\{\neg P\left(x^{\prime}\right), \neg P\left(y^{\prime}\right)\right\}$
$3\left\{P(y), \neg P\left(y^{\prime}\right)\right\} \quad$ resolve $1,2 \quad\left\{x \mapsto x^{\prime}\right\}$
unsatisfiable but no refutation

Solution

incorporate factoring: $C \theta$ is factor of C if two or more literals in C have mgu θ

Example

$1\{P(x), P(y)\}$
$2\left\{\neg P\left(x^{\prime}\right), \neg P\left(y^{\prime}\right)\right\}$
$3\{P(x)\}$
factor 1
$4\left\{\neg P\left(x^{\prime}\right)\right\} \quad$ factor 2
5resolve 3, 4

Resolution with Factoring

input: clausal form S
output: yes if S is satisfiable
no if S is unsatisfiable
$\infty \quad$ if S is satisfiable (or unsatisfiable)
(1) repeatedly add resolvents (renaming clauses if necessary) and factors
(2) return no as soon as empty clause \square is derived
(3) return yes if all clashing clauses have been resolved and factoring produces no new clauses (modulo renaming)

SS 2024
Logic
lecture 8
2. Resolution

Predicate Logic
AM

Example

```
1 {R(x),Q(f(x))}
2{\negR(f(x)),Q(f(y))}
3{\negQ(f(f(f(a))))}
1' {R(x'),Q(f(\mp@subsup{x}{}{\prime}))}\quadrename 1
4{Q(f(y)),Q(f(f(x)))} resolve 1', 2{\mp@subsup{x}{}{\prime}\mapstof(x)}
5 \{ Q ( f ( f ( x ) ) ) \} \quad \text { factor 4 \{y ff(x)\}}
6
resolve 3,5 {x\mapstof(a)}
```


Theorem

resolution with factoring is sound and complete:
clausal form S is unsatisfiable if and only if S admits refutation

Example

$1\{\neg P(x), P(f(x))\}$
$2\{P(a)\}$
$3\{P(f(a))\}$
resolve 1, $2\{x \mapsto a\}$
$4\{P(f(f(a)))\}$
resolve 1, $3\{x \mapsto f(a)\}$
$5\{P(f(f(f(a))))\} \quad$ resolve $1,4\{x \mapsto f(f(a))\}$
$6\{P(f(f(f(f(a)))))\} \quad$ resolve $1,5\{x \mapsto f(f(f(a)))\}$

Example

$$
\begin{array}{llll}
1\{a=b\} & 4\{x \neq y, y \neq z, x=z\} & & \\
2\{b=c\} & 5\{b \neq z, a=z\} & \text { resolve } 1,4 & \{x \mapsto a, y \mapsto b\} \\
3\{a \neq c\} & 6\{a=c\} & \text { resolve 2,5 }\{z \mapsto c\} \\
& 7 \square & \text { resolve 3,6 } &
\end{array}
$$

unsatisfiable but no refutation

Remark

equality needs special treatment: add equality axioms, e.g.

$$
\{x \neq y, y \neq z, x=z\}
$$

for transitivity

Satisfiability Procedure

sentence $\varphi \quad$ (1) transform φ into Skolem normal form ψ
(2) extract clausal form S from ψ
(3) apply resolution (with factoring) to S
(4) φ is satisfiable if and only if empty clause cannot be derived

Validity Procedure

sentence $\varphi \quad$ (1) transform $\neg \varphi$ into Skolem normal form ψ
(2) extract clausal form S from ψ
(3) apply resolution (with factoring) to S
(4) φ is valid if and only if empty clause can be derived

Outline

1. Summary of Previous Lecture

2. Resolution
3. Intermezzo
4. Undecidability
5. Functional Completeness
6. Algebraic Normal Forms
7. Further Reading

Drticify with session ID 09929580

Question

Which of the following statements are true ?
A $\{P(a, b)\}$ is a factor of $\{P(x, b), \neg P(a, y)\}$.
B The literals $R(x, x, a)$ and $\neg R(f(b), g(y), y)$ do not clash.
C $\{Q(f(x)), R(y, z)\}$ is a resolvent of $\{\neg Q(y), R(y, z)\}$ and $\{Q(x), Q(f(x))\}$.
D A clause cannot have a factor if it contains at least two literals which are not unifiable.

SS 2024
Logic
lecture 8
3. Intermezzo

Outline

```
1. Summary of Previous Lecture
2. Resolution
3. Intermezzo
```

4. Undecidability
5. Functional Completeness
6. Algebraic Normal Forms
7. Further Reading

Church's Theorem

validity in predicate logic is undecidable: there is no algorithm
input: formula φ in predicate logic
output: yes if $\vDash \varphi$ holds
no if $\vDash \varphi$ does not hold

Idea

reduction from Post correspondence problem

Post Correspondence Problem

instance: finite sequence of pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$ of non-empty bit strings
question: is there sequence $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ with $n \geqslant 1$ such that $s_{i_{1}} s_{i_{2}} \ldots s_{i_{n}}=t_{i_{1}} t_{i_{2}} \ldots t_{i_{n}}$?

SS 2024
Logic
lecture 8
4. Undecidability

Examples

(1) | | 1 | 2 | 3 |
| ---: | ---: | ---: | ---: |
| $s_{i}:$ | 1 | 10111 | 10 |
| $t_{i}:$ | 11 | 101 | 01 |

solution	2	1	1
s	10111	1	1
t	101	11	11

(2)		1	2	3	no solution
$s_{i}:$	10	011	101		
$t_{i}:$	101	11	011		

(3) | | 1 | 2 | 3 |
| ---: | ---: | ---: | ---: |
| $s_{i}:$ | 01 | 1 | 0 |
| $t_{i}:$ | 0 | 101 | 1 |

solution 1311313113112112213321
1312113312111321212232

Theorem (Post, 1946)

Post correspondence problem is undecidable

Theorem (Church, 1936)

validity in predicate logic is undecidable

Idea

translate PCP instance C into predicate logic formula φ such that

$$
\vDash \varphi \quad \Longleftrightarrow C \text { has solution }
$$

Proof

$C=\left(\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots,\left(s_{k}, t_{k}\right)\right)$

- function symbols e : constant f_{0}, f_{1} : arity 1
predicate symbol $\quad P$: arity 2
- if $b_{1}, b_{2}, \ldots, b_{n} \in\{0,1\}$ then $f_{b_{1} b_{2} \cdots b_{n}}(t)$ denotes $f_{b_{n}}\left(\cdots\left(f_{b_{2}}\left(f_{b_{1}}(t)\right)\right) \cdots\right)$
- $\varphi=\varphi_{1} \wedge \varphi_{2} \rightarrow \varphi_{3}$ with

$$
\begin{aligned}
\varphi_{1} & =\bigwedge_{i=1}^{k} P\left(f_{s_{i}}(e), f_{t_{i}}(e)\right) \\
\varphi_{2} & =\forall v \forall w\left(P(v, w) \rightarrow \bigwedge_{i=1}^{k} P\left(f_{s_{i}}(v), f_{t_{i}}(w)\right)\right) \\
\varphi_{3} & =\exists z P(z, z)
\end{aligned}
$$

- $\vDash \varphi \quad \Longleftrightarrow \quad C$ has solution

Example

- $C=((10,101),(011,11),(10,0))$
$\triangleright \varphi=P\left(f_{0}\left(f_{1}(e)\right), f_{1}\left(f_{0}\left(f_{1}(e)\right)\right)\right) \wedge P\left(f_{1}\left(f_{1}\left(f_{0}(e)\right)\right), f_{1}\left(f_{1}(e)\right)\right) \wedge P\left(f_{0}\left(f_{1}(e)\right), f_{0}(e)\right)$

$$
\begin{aligned}
\wedge \forall v \forall w(P(v, w) & \rightarrow P\left(f_{0}\left(f_{1}(v)\right), f_{1}\left(f_{0}\left(f_{1}(w)\right)\right)\right) \\
& \wedge P\left(f_{1}\left(f_{1}\left(f_{0}(v)\right)\right), f_{1}\left(f_{1}(w)\right)\right) \\
& \left.\wedge P\left(f_{0}\left(f_{1}(v)\right), f_{0}(w)\right)\right) \\
\rightarrow \exists z P(z, z) &
\end{aligned}
$$

Outline

1. Summary of Previous Lecture
2. Resolution
3. Intermezzo
4. Undecidability

5. Functional Completeness

6. Algebraic Normal Forms
7. Further Reading

Definition

set X of boolean functions is called adequate or functionally complete if every boolean function can be expressed using functions from X

Examples

- $\{-, \cdot,+\}$ is adequate: truth table gives rise to DNF
$\left.\triangleright{ }^{-}, \cdot\right\}$ is adequate: $\quad x+y=\overline{\bar{x} \cdot \bar{y}}$
- $\{\cdot,+, \rightarrow\}$ with $x \rightarrow y=\bar{x}+y$ is not adequate

$$
\begin{array}{rr|c}
x & y & f(x, y) \\
\hline 0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
f(x, y) & =\bar{x} \cdot \bar{y}+x \cdot y
\end{array}
$$

Definitions

- $x \mid y=\overline{x \cdot y}$
- ite $(x, y, z)=(\bar{x}+y) \cdot(x+z) \quad$ (if-then-else)

Examples

- $\{\mid\}$ is adequate:

$$
\begin{aligned}
\bar{x} & =x \mid x \\
x \cdot y & =(x \mid y) \mid(x \mid y)
\end{aligned}
$$

- $\{$ ite, 0,1$\}$ is adequate:

$$
\begin{aligned}
\bar{x} & =\operatorname{ite}(x, 0,1) \\
x \cdot y & =\operatorname{ite}(x, y, 0)
\end{aligned}
$$

- $\left\{{ }^{-}, \leftrightarrow\right\}$ with $x \leftrightarrow y=(\bar{x}+y) \cdot(x+\bar{y})$ is not adequate

Outline

```
1. Summary of Previous Lecture
2. Resolution
3. Intermezzo
4. Undecidability
5. Functional Completeness
```

6. Algebraic Normal Forms
7. Further Reading

Theorem (Algebraic Normal Form, ANF)

every boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ can be uniquely written as

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigoplus_{A \subseteq\{1, \ldots, n\}} c_{A} \cdot \prod_{i \in A} x_{i}
$$

with $c_{A} \in\{0,1\}$ for all $A \subseteq\{1, \ldots, n\}$

Corollary

every binary boolean function $f:\{0,1\}^{2} \rightarrow\{0,1\}$ can be uniquely written as

$$
f\left(x_{1}, x_{2}\right)=c_{\varnothing} \oplus c_{\{1\}} x_{1} \oplus c_{\{2\}} x_{2} \oplus c_{\{1,2\}} x_{1} x_{2}=\bigoplus_{A \subseteq\{1,2\}} c_{A} \cdot \prod_{i \in A} x_{i}
$$

with $c_{\varnothing}, c_{\{1\}}, c_{\{2\}}, c_{\{1,2\}} \in\{0,1\}$

Theorem (Algebraic Normal Form, ANF)

every boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ can be uniquely written as

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigoplus_{A \subseteq\{1, \ldots, n\}} c_{A} \cdot \prod_{i \in A} x_{i}
$$

with $c_{A} \in\{0,1\}$ for all $A \subseteq\{1, \ldots, n\}$

Proof sketch

- $n=0$: easy
- $n>0: f=f[0 / x] \oplus(f[0 / x] \oplus f[1 / x]) x$

$$
\begin{array}{rlrl}
f & =\bar{x} f[0 / x]+x f[1 / x]=f[0 / x] \bar{x}+f[1 / x] x & & \text { (Shannon expansion) } \\
& =f[0 / x] \bar{x} \oplus f[1 / x] x \oplus f[0 / x] \bar{x} f[1 / x] x & (y+z=y \oplus z \oplus y z) \\
& =f[0 / x] \bar{x} \oplus f[1 / x] x=f[0 / x](1 \oplus x) \oplus f[1 / x] x & (\bar{x}=1 \oplus x) \\
& =f[0 / x] \oplus f[0 / x] x \oplus f[1 / x] x=f[0 / x] \oplus(f[0 / x] \oplus f[1 / x]) x &
\end{array}
$$

Example (Algebraic Normal Form of HWB_{4})

$$
\begin{aligned}
x+y & =x \oplus y \oplus x y \\
\bar{x} x & =0 \\
\bar{x} & =x \oplus 1 \\
(x \oplus y) z & =x z \oplus y z \\
1 x & =x
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{HWB}_{4} & \left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\bar{x}_{4}\left(\bar{x}_{3} x_{1}+x_{3} x_{2}\right)+x_{4}\left(\bar{x}_{1} x_{2}+x_{1} x_{3}\right) \\
& =\bar{x}_{4}\left(\bar{x}_{3} x_{1} \oplus x_{3} x_{2}\right) \oplus x_{4}\left(\bar{x}_{1} x_{2} \oplus x_{1} x_{3}\right) \\
& =\bar{x}_{4}\left(x_{1} \oplus x_{1} x_{3} \oplus x_{3} x_{2}\right) \oplus x_{4}\left(\bar{x}_{1} x_{2} \oplus x_{1} x_{3}\right) \\
& =\bar{x}_{4}\left(x_{1} \oplus x_{1} x_{3} \oplus x_{3} x_{2}\right) \oplus x_{4}\left(x_{2} \oplus x_{1} x_{2} \oplus x_{1} x_{3}\right) \\
& =x_{1} \oplus x_{1} x_{3} \oplus x_{3} x_{2} \oplus x_{4}\left(x_{2} \oplus x_{1} x_{2} \oplus x_{1} x_{3}\right) \oplus x_{4}\left(x_{1} \oplus x_{1} x_{3} \oplus x_{3} x_{2}\right) \\
& =x_{1} \oplus x_{1} x_{3} \oplus x_{2} x_{3} \oplus x_{1} x_{4} \oplus x_{2} x_{4} \oplus x_{1} x_{2} x_{4} \oplus x_{2} x_{3} x_{4}
\end{aligned}
$$

Outline

```
1. Summary of Previous Lecture
2. Resolution
3. Intermezzo
4. Undecidability
5. Functional Completeness
6. Algebraic Normal Forms
```

7. Further Reading

Huth and Ryan

- Section 2.5

Resolution

- Wikipedia
[accessed January 25, 2024]

Algebraic Normal Form

- Wikipedia
[accessed January 25, 2024]

Important Concepts

- adequacy
- algebraic normal form (ANF)
- Church's theorem
- clashing
- factor
- factoring
- functional completeness
- nand
- Post correspondence problem
- resolvent
homework for May 16

