
SS 2024 lecture 8

Logic

Diana Gründlinger Aart Middeldorp Fabian Mitterwallner

Alexander Montag Johannes Niederhauser Daniel Rainer

Outline

1. Summary of Previous Lecture

2. Resolution

3. Intermezzo

4. Undecidability

5. Functional Completeness

6. Algebraic Normal Forms

7. Further Reading

SS 2024 Logic lecture 8 2/40

Theorem

¬∀ x φ ⊣⊢ ∃ x ¬φ ¬∃ x φ ⊣⊢ ∀ x ¬φ
∀ x φ ∧ ∀ x ψ ⊣⊢ ∀ x (φ ∧ ψ) ∃ x φ ∨ ∃ x ψ ⊣⊢ ∃ x (φ ∨ ψ)

∀ x ∀ y φ ⊣⊢ ∀ y ∀ x φ ∃ x ∃ y φ ⊣⊢ ∃ y ∃ x φ

if x is not free in ψ then

∀ x φ ∧ ψ ⊣⊢ ∀ x (φ ∧ ψ) ∀ x φ ∨ ψ ⊣⊢ ∀ x (φ ∨ ψ)
∃ x φ ∧ ψ ⊣⊢ ∃ x (φ ∧ ψ) ∃ x φ ∨ ψ ⊣⊢ ∃ x (φ ∨ ψ)
ψ → ∀ x φ ⊣⊢ ∀ x (ψ → φ) ∃ x φ→ ψ ⊣⊢ ∀ x (φ→ ψ)

ψ → ∃ x φ ⊣⊢ ∃ x (ψ → φ) ∀ x φ→ ψ ⊣⊢ ∃ x (φ→ ψ)

SS 2024 Logic lecture 8 1. Summary of Previous Lecture 3/40

Definitions

▶ substitution is set of variable bindings θ = {x1 7→ t1, . . . , xn 7→ tn} with pairwise different

variables x1, . . . , xn and terms t1, . . . , tn

▶ given substitution θ = {x1 7→ t1, . . . , xn 7→ tn} and expression E, instance Eθ of E is

obtained by simultaneously replacing each occurrence of xi in E by ti

▶ composition of substitutions θ = {x1 7→ t1, . . . , xn 7→ tn} and σ = {y1 7→ s1, . . . , yk 7→ sk} is

substitution θσ = {x1 7→ t1σ, . . . , xn 7→ tnσ} ∪ {yi 7→ si | yi ̸= xj for all 1 ⩽ j ⩽ n}
▶ substitution θ is at least as general as substitution σ if θµ = σ for some substitution µ

▶ unifier of terms s and t is substitution θ such that sθ = tθ

▶ most general unifier (mgu) is at least as general as any other unifier

Theorem

unifiable terms have mgu which can be computed by unification algorithm

SS 2024 Logic lecture 8 1. Summary of Previous Lecture 4/40

http://cl-informatik.uibk.ac.at/teaching/ss24/lics
http://cl-informatik.uibk.ac.at/~ami

Unification Algorithm

d decomposition
E1, f(s1, . . . , sn) ≈ f(t1, . . . , tn), E2

E1, s1 ≈ t1, . . . , sn ≈ tn, E2

t removal of trivial equations
E1, t ≈ t, E2

E1, E2

v variable elimination
E1, x ≈ t, E2

(E1, E2){x 7→ t}
and

E1, t ≈ x, E2

(E1, E2){x 7→ t}

if x does not occur in t (occurs check)

Theorem

▶ there are no infinite derivations U ⇒θ1 V ⇒θ2 · · ·
▶ if s and t are unifiable then for every maximal derivation s ≈ t ⇒θ1 E1 ⇒θ2 · · · ⇒θn En

En = 2 and θ1θ2 · · · θn is mgu of s and t

SS 2024 Logic lecture 8 1. Summary of Previous Lecture 5/40

Definitions

▶ prenex normal form is predicate logic formula

Q1x1 Q2x2 . . . Qnxn φ

with Qi ∈ {∀,∃} and φ quantifier-free

▶ Skolem normal form is closed (no free variables) prenex normal form

∀ x1 ∀ x2 . . . ∀ xn φ

with φ quantifier-free CNF

Theorem

for every formula φ there exists prenex normal form ψ such that φ ≡ ψ

SS 2024 Logic lecture 8 1. Summary of Previous Lecture 6/40

Theorem

for every sentence φ there exists Skolem normal form ψ such that φ ≈ ψ

Proof (Skolemization)

1 transform φ into closed prenex normal form Q1x1 Q2x2 . . . Qnxn χ with χ in CNF

2 repeatedly replace ∀ x1 . . . ∀ xi−1 ∃ xi Qi+1xi+1 . . . Qnxn ψ by

∀ x1 . . . ∀ xi−1 Qi+1xi+1 . . . Qnxn ψ [f(x1, . . . , xi−1)/xi]

where f is new function symbol of arity i− 1

SS 2024 Logic lecture 8 1. Summary of Previous Lecture 7/40

Part I: Propositional Logic

algebraic normal forms, binary decision diagrams, conjunctive normal forms, DPLL, Horn

formulas, natural deduction, Post’s adequacy theorem, resolution, SAT, semantics, sorting

networks, soundness and completeness, syntax, Tseitin’s transformation

Part II: Predicate Logic

natural deduction, quantifier equivalences, resolution, semantics, Skolemization, syntax,

undecidability, unification

Part III: Model Checking

adequacy, branching-time temporal logic, CTL∗, fairness, linear-time temporal logic, model

checking algorithms, symbolic model checking

SS 2024 Logic lecture 8 1. Summary of Previous Lecture Overview 8/40

Outline

1. Summary of Previous Lecture

2. Resolution

Propositional Logic Predicate Logic

3. Intermezzo

4. Undecidability

5. Functional Completeness

6. Algebraic Normal Forms

7. Further Reading

SS 2024 Logic lecture 8 2. Resolution 9/40

Definitions

▶ literal is atom p or negation of atom ¬p

▶ clause is set of literals {ℓ1, . . . , ℓn}

▶ 2 denotes empty clause

▶ clausal form is set of clauses {C1, . . . , Cm}

▶ ℓc =

{
¬p if ℓ = p

p if ℓ = ¬p

▶ clauses C1 and C2 clash on literal ℓ if ℓ ∈ C1 and ℓc ∈ C2

▶ resolvent of clauses C1 and C2 clashing on literal ℓ is clause (C1 \ {ℓ}) ∪ (C2 \ {ℓc})

SS 2024 Logic lecture 8 2. Resolution Propositional Logic 10/40

Resolution

input: clausal form S

output: yes if S is satisfiable no if S is unsatisfiable

1 repeatedly add (new) resolvents of clashing clauses in S

2 return no as soon as empty clause is derived

3 return yes if all clashing clauses have been resolved

Definition

refutation of S is resolution derivation of 2 from S

Theorem

resolution is sound and complete for propositional logic:

clausal form S is unsatisfiable if and only if S admits refutation

SS 2024 Logic lecture 8 2. Resolution Propositional Logic 11/40

Outline

1. Summary of Previous Lecture

2. Resolution

Propositional Logic Predicate Logic

3. Intermezzo

4. Undecidability

5. Functional Completeness

6. Algebraic Normal Forms

7. Further Reading

SS 2024 Logic lecture 8 2. Resolution Predicate Logic 12/40

Definitions

▶ atomic formula: P | P(t, . . . , t) | t = t

▶ literal is atomic formula or negation of atomic formula

▶ clause is set of literals {ℓ1, . . . , ℓn}

▶ clausal form is set of clauses {C1, . . . , Cm}, representing ∀ (C1 ∧ · · · ∧ Cm)

▶ clauses C1 and C2 without common variables clash on literals ℓ1 ∈ C1 and ℓ2 ∈ C2

if ℓ1 and ℓc2 are unifiable

▶ resolvent of clauses C1 and C2 clashing on literals ℓ1 ∈ C1 and ℓ2 ∈ C2 is clause

((C1 \ {ℓ1}) ∪ (C2 \ {ℓ2}))θ

where θ is mgu of ℓ1 and ℓc2

SS 2024 Logic lecture 8 2. Resolution Predicate Logic 13/40

Example 1

1 {¬P(x), Q(x), R(x, f(x))} 13 {T(f(a))} resolve 5, 12 {y 7→ f(a)}
2 {¬P(x), Q(x), S(f(x))} 14 {¬S(f(a))} resolve 7, 13 {x 7→ f(a)}
3 {T(a)} 15 2 resolve 11, 14

4 {P(a)}
5 {¬R(a, y), T(y)}
6 {¬T(x), ¬Q(x)}
7 {¬T(x), ¬S(x)}
8 {¬Q(a)} resolve 3, 6 {x 7→ a}
9 {Q(a), S(f(a))} resolve 2, 4 {x 7→ a}

10 {Q(a), R(a, f(a))} resolve 1, 4 {x 7→ a}
11 {S(f(a))} resolve 8, 9

12 {R(a, f(a))} resolve 8, 10

SS 2024 Logic lecture 8 2. Resolution Predicate Logic 14/40

Example 2

1 {¬P(x, y), P(y, x)}
2 {¬P(x, y), ¬P(y, z), P(x, z)}
3 {P(x, f(x))}
4 {¬P(x, x)}
3′ {P(x′, f(x′))} rename 3

5 {P(f(x), x)} resolve 1, 3′ {y 7→ f(x), x′ 7→ x}
6 {¬P(f(x), z), P(x, z)} resolve 2, 3′ {y 7→ f(x), x′ 7→ x}
5′ {P(f(x′), x′)} rename 5

7 {P(z, z)} resolve 6, 5′ {x 7→ z, x′ 7→ z}
8 2 resolve 4, 7 {x 7→ z}

∀ x ∀ y ∀ z
(
(¬P(x, y) ∨ P(y, x)) ∧ (¬P(x, y) ∨ ¬P(y, z) ∨ P(x, z)) ∧ P(x, f(x)) ∧ ¬P(x, x)

)
SS 2024 Logic lecture 8 2. Resolution Predicate Logic 15/40

Theorem

resolution is sound for predicate logic: clausal form S is unsatisfiable if S admits refutation

Problem

resolution is incomplete for predicate logic

Example

1 {P(x), P(y)}

2 {¬P(x′), ¬P(y′)}

3 {P(y), ¬P(y′)} resolve 1, 2 {x 7→ x′}

unsatisfiable but no refutation

SS 2024 Logic lecture 8 2. Resolution Predicate Logic 16/40

Solution

incorporate factoring: Cθ is factor of C if two or more literals in C have mgu θ

Example

1 {P(x), P(y)}

2 {¬P(x′), ¬P(y′)}

3 {P(x)} factor 1

4 {¬P(x′)} factor 2

5 2 resolve 3, 4

SS 2024 Logic lecture 8 2. Resolution Predicate Logic 17/40

Resolution with Factoring

input: clausal form S

output: yes if S is satisfiable

no if S is unsatisfiable

∞ if S is satisfiable (or unsatisfiable)

1 repeatedly add resolvents (renaming clauses if necessary) and factors

2 return no as soon as empty clause 2 is derived

3 return yes if all clashing clauses have been resolved and factoring produces no new clauses

(modulo renaming)

SS 2024 Logic lecture 8 2. Resolution Predicate Logic 18/40

Example

1 {R(x), Q(f(x))}

2 {¬R(f(x)), Q(f(y))}

3 {¬Q(f(f(f(a))))}

1′ {R(x′), Q(f(x′))} rename 1

4 {Q(f(y)), Q(f(f(x)))} resolve 1′, 2 {x′ 7→ f(x)}

5 {Q(f(f(x)))} factor 4 {y 7→ f(x)}

6 2 resolve 3, 5 {x 7→ f(a)}

SS 2024 Logic lecture 8 2. Resolution Predicate Logic 19/40

Theorem

resolution with factoring is sound and complete:

clausal form S is unsatisfiable if and only if S admits refutation

Example

1 {¬P(x), P(f(x))}

2 {P(a)}

3 {P(f(a))} resolve 1, 2 {x 7→ a}

4 {P(f(f(a)))} resolve 1, 3 {x 7→ f(a)}

5 {P(f(f(f(a))))} resolve 1, 4 {x 7→ f(f(a))}

6 {P(f(f(f(f(a)))))} resolve 1, 5 {x 7→ f(f(f(a)))}
...

SS 2024 Logic lecture 8 2. Resolution Predicate Logic 20/40

Example

1 {a = b} 4 {x ̸= y, y ̸= z, x = z}

2 {b = c} 5 {b ̸= z, a = z} resolve 1, 4 {x 7→ a, y 7→ b}

3 {a ̸= c} 6 {a = c} resolve 2, 5 {z 7→ c}

7 2 resolve 3, 6

unsatisfiable but no refutation

Remark

equality needs special treatment: add equality axioms, e.g.

{x ̸= y, y ̸= z, x = z}

for transitivity

SS 2024 Logic lecture 8 2. Resolution Predicate Logic 21/40

Satisfiability Procedure

sentence φ 1 transform φ into Skolem normal form ψ

2 extract clausal form S from ψ

3 apply resolution (with factoring) to S

4 φ is satisfiable if and only if empty clause cannot be derived

Validity Procedure

sentence φ 1 transform ¬φ into Skolem normal form ψ

2 extract clausal form S from ψ

3 apply resolution (with factoring) to S

4 φ is valid if and only if empty clause can be derived

SS 2024 Logic lecture 8 2. Resolution Predicate Logic 22/40

Outline

1. Summary of Previous Lecture

2. Resolution

3. Intermezzo

4. Undecidability

5. Functional Completeness

6. Algebraic Normal Forms

7. Further Reading

SS 2024 Logic lecture 8 3. Intermezzo 23/40

with session ID 0992 9580

Question

Which of the following statements are true ?

A {P(a,b)} is a factor of {P(x,b), ¬P(a, y)}.

B The literals R(x, x, a) and ¬R(f(b),g(y), y) do not clash.

C {Q(f(x)), R(y, z)} is a resolvent of {¬Q(y), R(y, z)} and {Q(x), Q(f(x))}.

D A clause cannot have a factor if it contains at least two literals which are

not unifiable.

SS 2024 Logic lecture 8 3. Intermezzo 24/40

https://ars.uibk.ac.at/p/09929580
https://ars.uibk.ac.at/p/09929580
https://ars.uibk.ac.at/p/09929580

Outline

1. Summary of Previous Lecture

2. Resolution

3. Intermezzo

4. Undecidability

5. Functional Completeness

6. Algebraic Normal Forms

7. Further Reading

SS 2024 Logic lecture 8 4. Undecidability 25/40

Church’s Theorem

validity in predicate logic is undecidable: there is no algorithm

input: formula φ in predicate logic

output: yes if ⊨ φ holds

no if ⊨ φ does not hold

Idea

reduction from Post correspondence problem

Post Correspondence Problem

instance: finite sequence of pairs (s1, t1), . . . , (sk, tk) of non-empty bit strings

question: is there sequence (i1, i2, . . . , in) with n ⩾ 1 such that si1si2 . . . sin = ti1ti2 . . . tin ?

SS 2024 Logic lecture 8 4. Undecidability 26/40

Examples

1 1 2 3

si : 1 10111 10

ti : 11 101 01

solution 2 1 1

s 10111 1 1 = 1011111

t 101 11 11 = 1011111

2 1 2 3

si : 10 011 101

ti : 101 11 011

no solution

3 1 2 3

si : 01 1 0

ti : 0 101 1

solution 1 3 1 1 3 1 3 1 1 3 1 1 2 1 1 2 2 1 3 3 2 1

1 3 1 2 1 1 3 3 1 2 1 1 1 3 2 1 2 1 2 2 3 2

Theorem (Post, 1946)

Post correspondence problem is undecidable

SS 2024 Logic lecture 8 4. Undecidability 27/40

Theorem (Church, 1936)

validity in predicate logic is undecidable

Idea

translate PCP instance C into predicate logic formula φ such that

⊨ φ ⇐⇒ C has solution

SS 2024 Logic lecture 8 4. Undecidability 28/40

https://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/Post_correspondence_problem
https://en.wikipedia.org/wiki/Emil_Post
https://en.wikipedia.org/wiki/Alonzo_Church

Proof

C = ((s1, t1), (s2, t2), . . . , (sk, tk))

▶ function symbols e: constant f0, f1 : arity 1

predicate symbol P: arity 2

▶ if b1,b2, . . . , bn ∈ {0,1} then fb1b2 ··· bn(t) denotes fbn(· · · (fb2(fb1(t))) · · ·)

▶ φ = φ1 ∧ φ2 → φ3 with

φ1 =
k∧

i=1

P(f si(e), f ti(e))

φ2 = ∀ v ∀ w

(
P(v,w) →

k∧
i=1

P(f si(v), f ti(w))

)

φ3 = ∃ z P(z, z)

▶ ⊨ φ ⇐⇒ C has solution

SS 2024 Logic lecture 8 4. Undecidability 29/40

Example

▶ C = ((10,101), (011,11), (10,0))

▶ φ = P(f0(f1(e)), f1(f0(f1(e)))) ∧ P(f1(f1(f0(e))), f1(f1(e))) ∧ P(f0(f1(e)), f0(e))

∧ ∀ v ∀ w
(
P(v,w) → P(f0(f1(v)), f1(f0(f1(w))))

∧ P(f1(f1(f0(v))), f1(f1(w)))

∧ P(f0(f1(v)), f0(w))
)

→ ∃ z P(z, z)

SS 2024 Logic lecture 8 4. Undecidability 30/40

Outline

1. Summary of Previous Lecture

2. Resolution

3. Intermezzo

4. Undecidability

5. Functional Completeness

6. Algebraic Normal Forms

7. Further Reading

SS 2024 Logic lecture 8 5. Functional Completeness 31/40

Definition

set X of boolean functions is called adequate or functionally complete if every boolean

function can be expressed using functions from X

Examples

▶ { , · , +} is adequate: truth table gives rise to DNF x y f(x, y)

0 0 1

0 1 0

1 0 0

1 1 1

f(x, y) = x · y+ x · y

▶ { , ·} is adequate: x+ y = x · y

▶ {·, +, →} with x → y = x+ y is not adequate

SS 2024 Logic lecture 8 5. Functional Completeness 32/40

Definitions

▶ x | y = x · y (nand)

▶ ite(x, y, z) = (x+ y) · (x+ z) (if-then-else)

Examples

▶ { | } is adequate: x = x | x
x · y = (x | y) | (x | y)

▶ { ite, 0, 1} is adequate: x = ite(x,0,1)

x · y = ite(x, y,0)

▶ { , ↔} with x ↔ y = (x+ y) · (x+ y) is not adequate

SS 2024 Logic lecture 8 5. Functional Completeness 33/40

Outline

1. Summary of Previous Lecture

2. Resolution

3. Intermezzo

4. Undecidability

5. Functional Completeness

6. Algebraic Normal Forms

7. Further Reading

SS 2024 Logic lecture 8 6. Algebraic Normal Forms 34/40

Theorem (Algebraic Normal Form, ANF)

every boolean function f : {0,1}n → {0,1} can be uniquely written as

f(x1, . . . , xn) =
⊕

A⊆{1,...,n}

cA ·
∏
i∈A

xi

with cA ∈ {0,1} for all A ⊆ {1, . . . , n}

Corollary

every binary boolean function f : {0,1}2 → {0,1} can be uniquely written as

f(x1, x2) = c∅ ⊕ c{1}x1 ⊕ c{2}x2 ⊕ c{1, 2}x1x2 =
⊕

A⊆{1,2}

cA ·
∏
i∈A

xi

with c∅, c{1}, c{2}, c{1, 2} ∈ {0,1}

SS 2024 Logic lecture 8 6. Algebraic Normal Forms 35/40

Theorem (Algebraic Normal Form, ANF)

every boolean function f : {0,1}n → {0,1} can be uniquely written as

f(x1, . . . , xn) =
⊕

A⊆{1,...,n}

cA ·
∏
i∈A

xi

with cA ∈ {0,1} for all A ⊆ {1, . . . , n}

Proof sketch

▶ n = 0: easy

▶ n > 0: f = f [0/x]⊕ (f [0/x]⊕ f [1/x]) x

f = x f [0/x] + x f [1/x] = f [0/x] x+ f [1/x] x (Shannon expansion)

= f [0/x] x⊕ f [1/x] x⊕ f [0/x] x f [1/x] x (y+ z = y⊕ z ⊕ y z)

= f [0/x] x⊕ f [1/x] x = f [0/x] (1 ⊕ x)⊕ f [1/x] x (x = 1 ⊕ x)

= f [0/x]⊕ f [0/x] x⊕ f [1/x] x = f [0/x]⊕ (f [0/x]⊕ f [1/x]) x

SS 2024 Logic lecture 8 6. Algebraic Normal Forms 36/40

Example (Algebraic Normal Form of HWB4)

x4

x3 x1

x1 x2 x3

0 1

x+ y = x⊕ y⊕ xy

xx = 0

x = x⊕ 1

(x⊕ y)z = xz ⊕ yz

1x = x

· · ·
HWB4(x1, x2, x3, x4) = x4(x3x1 + x3x2) + x4(x1x2 + x1x3)

= x4(x3x1 ⊕ x3x2)⊕ x4(x1x2 ⊕ x1x3)

= x4(x1 ⊕ x1x3 ⊕ x3x2)⊕ x4(x1x2 ⊕ x1x3)

= x4(x1 ⊕ x1x3 ⊕ x3x2)⊕ x4(x2 ⊕ x1x2 ⊕ x1x3)

= x1 ⊕ x1x3 ⊕ x3x2 ⊕ x4(x2 ⊕ x1x2 ⊕ x1x3)⊕ x4(x1 ⊕ x1x3 ⊕ x3x2)

= x1 ⊕ x1x3 ⊕ x2x3 ⊕ x1x4 ⊕ x2x4 ⊕ x1x2x4 ⊕ x2x3x4

SS 2024 Logic lecture 8 6. Algebraic Normal Forms 37/40

Outline

1. Summary of Previous Lecture

2. Resolution

3. Intermezzo

4. Undecidability

5. Functional Completeness

6. Algebraic Normal Forms

7. Further Reading

SS 2024 Logic lecture 8 7. Further Reading 38/40

Huth and Ryan

▶ Section 2.5

Resolution

▶ Wikipedia [accessed January 25, 2024]

Algebraic Normal Form

▶ Wikipedia [accessed January 25, 2024]

SS 2024 Logic lecture 8 7. Further Reading 39/40

Important Concepts

▶ adequacy

▶ algebraic normal form (ANF)

▶ Church’s theorem

▶ clashing

▶ factor

▶ factoring

▶ functional completeness

▶ nand

▶ Post correspondence problem

▶ resolvent

homework for May 16

SS 2024 Logic lecture 8 7. Further Reading 40/40

https://www.cambridge.org/core/services/aop-cambridge-core/content/view/C08A8571887234409733F5B95AF5A07C/9780511810275c2_p93-171_CBO.pdf/predicate_logic.pdf#page=39
https://en.wikipedia.org/wiki/Resolution_(logic)
https://en.wikipedia.org/wiki/Algebraic_normal_form
http://cl-informatik.uibk.ac.at/teaching/ss24/lics/exercises/08.pdf

	lecture 8
	Summary of Previous Lecture
	Overview

	Resolution
	Propositional Logic
	Predicate Logic

	Intermezzo
	Undecidability
	Functional Completeness
	Algebraic Normal Forms
	Further Reading

