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Theorem

¬∀ x φ ⊣⊢ ∃ x ¬φ ¬∃ x φ ⊣⊢ ∀ x ¬φ
∀ x φ ∧ ∀ x ψ ⊣⊢ ∀ x (φ ∧ ψ) ∃ x φ ∨ ∃ x ψ ⊣⊢ ∃ x (φ ∨ ψ)

∀ x ∀ y φ ⊣⊢ ∀ y ∀ x φ ∃ x ∃ y φ ⊣⊢ ∃ y ∃ x φ

if x is not free in ψ then

∀ x φ ∧ ψ ⊣⊢ ∀ x (φ ∧ ψ) ∀ x φ ∨ ψ ⊣⊢ ∀ x (φ ∨ ψ)
∃ x φ ∧ ψ ⊣⊢ ∃ x (φ ∧ ψ) ∃ x φ ∨ ψ ⊣⊢ ∃ x (φ ∨ ψ)
ψ → ∀ x φ ⊣⊢ ∀ x (ψ → φ) ∃ x φ→ ψ ⊣⊢ ∀ x (φ→ ψ)

ψ → ∃ x φ ⊣⊢ ∃ x (ψ → φ) ∀ x φ→ ψ ⊣⊢ ∃ x (φ→ ψ)
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Definitions

▶ substitution is set of variable bindings θ = {x1 7→ t1, . . . , xn 7→ tn} with pairwise different

variables x1, . . . , xn and terms t1, . . . , tn

▶ given substitution θ = {x1 7→ t1, . . . , xn 7→ tn} and expression E, instance Eθ of E is

obtained by simultaneously replacing each occurrence of xi in E by ti

▶ composition of substitutions θ = {x1 7→ t1, . . . , xn 7→ tn} and σ = {y1 7→ s1, . . . , yk 7→ sk} is

substitution θσ = {x1 7→ t1σ, . . . , xn 7→ tnσ} ∪ {yi 7→ si | yi ̸= xj for all 1 ⩽ j ⩽ n}
▶ substitution θ is at least as general as substitution σ if θµ = σ for some substitution µ

▶ unifier of terms s and t is substitution θ such that sθ = tθ

▶ most general unifier (mgu) is at least as general as any other unifier

Theorem

unifiable terms have mgu which can be computed by unification algorithm
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http://cl-informatik.uibk.ac.at/teaching/ss24/lics
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Unification Algorithm

d decomposition
E1, f(s1, . . . , sn) ≈ f(t1, . . . , tn), E2

E1, s1 ≈ t1, . . . , sn ≈ tn, E2

t removal of trivial equations
E1, t ≈ t, E2

E1, E2

v variable elimination
E1, x ≈ t, E2

(E1, E2){x 7→ t}
and

E1, t ≈ x, E2

(E1, E2){x 7→ t}

if x does not occur in t (occurs check)

Theorem

▶ there are no infinite derivations U ⇒θ1 V ⇒θ2 · · ·
▶ if s and t are unifiable then for every maximal derivation s ≈ t ⇒θ1 E1 ⇒θ2 · · · ⇒θn En

En = 2 and θ1θ2 · · · θn is mgu of s and t
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Definitions

▶ prenex normal form is predicate logic formula

Q1x1 Q2x2 . . . Qnxn φ

with Qi ∈ {∀,∃} and φ quantifier-free

▶ Skolem normal form is closed (no free variables) prenex normal form

∀ x1 ∀ x2 . . . ∀ xn φ

with φ quantifier-free CNF

Theorem

for every formula φ there exists prenex normal form ψ such that φ ≡ ψ
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Theorem

for every sentence φ there exists Skolem normal form ψ such that φ ≈ ψ

Proof (Skolemization)

1 transform φ into closed prenex normal form Q1x1 Q2x2 . . . Qnxn χ with χ in CNF

2 repeatedly replace ∀ x1 . . . ∀ xi−1 ∃ xi Qi+1xi+1 . . . Qnxn ψ by

∀ x1 . . . ∀ xi−1 Qi+1xi+1 . . . Qnxn ψ [f(x1, . . . , xi−1)/xi ]

where f is new function symbol of arity i− 1
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Part I: Propositional Logic

algebraic normal forms, binary decision diagrams, conjunctive normal forms, DPLL, Horn

formulas, natural deduction, Post’s adequacy theorem, resolution, SAT, semantics, sorting

networks, soundness and completeness, syntax, Tseitin’s transformation

Part II: Predicate Logic

natural deduction, quantifier equivalences, resolution, semantics, Skolemization, syntax,

undecidability, unification

Part III: Model Checking

adequacy, branching-time temporal logic, CTL∗, fairness, linear-time temporal logic, model

checking algorithms, symbolic model checking
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Definitions

▶ literal is atom p or negation of atom ¬p

▶ clause is set of literals {ℓ1, . . . , ℓn}

▶ 2 denotes empty clause

▶ clausal form is set of clauses {C1, . . . , Cm}

▶ ℓc =

{
¬p if ℓ = p

p if ℓ = ¬p

▶ clauses C1 and C2 clash on literal ℓ if ℓ ∈ C1 and ℓc ∈ C2

▶ resolvent of clauses C1 and C2 clashing on literal ℓ is clause (C1 \ {ℓ}) ∪ (C2 \ {ℓc})
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Resolution

input: clausal form S

output: yes if S is satisfiable no if S is unsatisfiable

1 repeatedly add (new) resolvents of clashing clauses in S

2 return no as soon as empty clause is derived

3 return yes if all clashing clauses have been resolved

Definition

refutation of S is resolution derivation of 2 from S

Theorem

resolution is sound and complete for propositional logic:

clausal form S is unsatisfiable if and only if S admits refutation
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Definitions

▶ atomic formula: P | P(t, . . . , t) | t = t

▶ literal is atomic formula or negation of atomic formula

▶ clause is set of literals {ℓ1, . . . , ℓn}

▶ clausal form is set of clauses {C1, . . . , Cm}, representing ∀ (C1 ∧ · · · ∧ Cm)

▶ clauses C1 and C2 without common variables clash on literals ℓ1 ∈ C1 and ℓ2 ∈ C2

if ℓ1 and ℓc2 are unifiable

▶ resolvent of clauses C1 and C2 clashing on literals ℓ1 ∈ C1 and ℓ2 ∈ C2 is clause

((C1 \ {ℓ1}) ∪ (C2 \ {ℓ2}))θ

where θ is mgu of ℓ1 and ℓc2
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Example 1

1 {¬P(x), Q(x), R(x, f(x))} 13 {T(f(a))} resolve 5, 12 {y 7→ f(a)}
2 {¬P(x), Q(x), S(f(x))} 14 {¬S(f(a))} resolve 7, 13 {x 7→ f(a)}
3 {T(a)} 15 2 resolve 11, 14

4 {P(a)}
5 {¬R(a, y), T(y)}
6 {¬T(x), ¬Q(x)}
7 {¬T(x), ¬S(x)}
8 {¬Q(a)} resolve 3, 6 {x 7→ a}
9 {Q(a), S(f(a))} resolve 2, 4 {x 7→ a}

10 {Q(a), R(a, f(a))} resolve 1, 4 {x 7→ a}
11 {S(f(a))} resolve 8, 9

12 {R(a, f(a))} resolve 8, 10

SS 2024 Logic lecture 8 2. Resolution Predicate Logic 14/40

Example 2

1 {¬P(x, y), P(y, x)}
2 {¬P(x, y), ¬P(y, z), P(x, z)}
3 {P(x, f(x))}
4 {¬P(x, x)}
3′ {P(x′, f(x′))} rename 3

5 {P(f(x), x)} resolve 1, 3′ {y 7→ f(x), x′ 7→ x}
6 {¬P(f(x), z), P(x, z)} resolve 2, 3′ {y 7→ f(x), x′ 7→ x}
5′ {P(f(x′), x′)} rename 5

7 {P(z, z)} resolve 6, 5′ {x 7→ z, x′ 7→ z}
8 2 resolve 4, 7 {x 7→ z}

∀ x ∀ y ∀ z
(
(¬P(x, y) ∨ P(y, x)) ∧ (¬P(x, y) ∨ ¬P(y, z) ∨ P(x, z)) ∧ P(x, f(x)) ∧ ¬P(x, x)

)
SS 2024 Logic lecture 8 2. Resolution Predicate Logic 15/40

Theorem

resolution is sound for predicate logic: clausal form S is unsatisfiable if S admits refutation

Problem

resolution is incomplete for predicate logic

Example

1 {P(x), P(y)}

2 {¬P(x′), ¬P(y′)}

3 {P(y), ¬P(y′)} resolve 1, 2 {x 7→ x′}

unsatisfiable but no refutation
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Solution

incorporate factoring: Cθ is factor of C if two or more literals in C have mgu θ

Example

1 {P(x), P(y)}

2 {¬P(x′), ¬P(y′)}

3 {P(x)} factor 1

4 {¬P(x′)} factor 2

5 2 resolve 3, 4
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Resolution with Factoring

input: clausal form S

output: yes if S is satisfiable

no if S is unsatisfiable

∞ if S is satisfiable (or unsatisfiable)

1 repeatedly add resolvents (renaming clauses if necessary) and factors

2 return no as soon as empty clause 2 is derived

3 return yes if all clashing clauses have been resolved and factoring produces no new clauses

(modulo renaming)
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Example

1 {R(x), Q(f(x))}

2 {¬R(f(x)), Q(f(y))}

3 {¬Q(f(f(f(a))))}

1′ {R(x′), Q(f(x′))} rename 1

4 {Q(f(y)), Q(f(f(x)))} resolve 1′, 2 {x′ 7→ f(x)}

5 {Q(f(f(x)))} factor 4 {y 7→ f(x)}

6 2 resolve 3, 5 {x 7→ f(a)}
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Theorem

resolution with factoring is sound and complete:

clausal form S is unsatisfiable if and only if S admits refutation

Example

1 {¬P(x), P(f(x))}

2 {P(a)}

3 {P(f(a))} resolve 1, 2 {x 7→ a}

4 {P(f(f(a)))} resolve 1, 3 {x 7→ f(a)}

5 {P(f(f(f(a))))} resolve 1, 4 {x 7→ f(f(a))}

6 {P(f(f(f(f(a)))))} resolve 1, 5 {x 7→ f(f(f(a)))}
...
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Example

1 {a = b} 4 {x ̸= y, y ̸= z, x = z}

2 {b = c} 5 {b ̸= z, a = z} resolve 1, 4 {x 7→ a, y 7→ b}

3 {a ̸= c} 6 {a = c} resolve 2, 5 {z 7→ c}

7 2 resolve 3, 6

unsatisfiable but no refutation

Remark

equality needs special treatment: add equality axioms, e.g.

{x ̸= y, y ̸= z, x = z}

for transitivity
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Satisfiability Procedure

sentence φ 1 transform φ into Skolem normal form ψ

2 extract clausal form S from ψ

3 apply resolution (with factoring) to S

4 φ is satisfiable if and only if empty clause cannot be derived

Validity Procedure

sentence φ 1 transform ¬φ into Skolem normal form ψ

2 extract clausal form S from ψ

3 apply resolution (with factoring) to S

4 φ is valid if and only if empty clause can be derived
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with session ID 0992 9580

Question

Which of the following statements are true ?

A {P(a,b)} is a factor of {P(x,b), ¬P(a, y)}.

B The literals R(x, x, a) and ¬R(f(b),g(y), y) do not clash.

C {Q(f(x)), R(y, z)} is a resolvent of {¬Q(y), R(y, z)} and {Q(x), Q(f(x))}.

D A clause cannot have a factor if it contains at least two literals which are

not unifiable.
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Church’s Theorem

validity in predicate logic is undecidable: there is no algorithm

input: formula φ in predicate logic

output: yes if ⊨ φ holds

no if ⊨ φ does not hold

Idea

reduction from Post correspondence problem

Post Correspondence Problem

instance: finite sequence of pairs (s1, t1), . . . , (sk, tk) of non-empty bit strings

question: is there sequence (i1, i2, . . . , in) with n ⩾ 1 such that si1si2 . . . sin = ti1ti2 . . . tin ?
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Examples

1 1 2 3

si : 1 10111 10

ti : 11 101 01

solution 2 1 1

s 10111 1 1 = 1011111

t 101 11 11 = 1011111

2 1 2 3

si : 10 011 101

ti : 101 11 011

no solution

3 1 2 3

si : 01 1 0

ti : 0 101 1

solution 1 3 1 1 3 1 3 1 1 3 1 1 2 1 1 2 2 1 3 3 2 1

1 3 1 2 1 1 3 3 1 2 1 1 1 3 2 1 2 1 2 2 3 2

Theorem (Post, 1946)

Post correspondence problem is undecidable
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Theorem (Church, 1936)

validity in predicate logic is undecidable

Idea

translate PCP instance C into predicate logic formula φ such that

⊨ φ ⇐⇒ C has solution
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https://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/Post_correspondence_problem
https://en.wikipedia.org/wiki/Emil_Post
https://en.wikipedia.org/wiki/Alonzo_Church


Proof

C = ((s1, t1), (s2, t2), . . . , (sk, tk))

▶ function symbols e: constant f0, f1 : arity 1

predicate symbol P: arity 2

▶ if b1,b2, . . . , bn ∈ {0,1} then fb1b2 ··· bn(t) denotes fbn(· · · (fb2(fb1(t))) · · · )

▶ φ = φ1 ∧ φ2 → φ3 with

φ1 =
k∧

i=1

P(f si(e), f ti(e))

φ2 = ∀ v ∀ w

(
P(v,w) →

k∧
i=1

P(f si(v), f ti(w))

)

φ3 = ∃ z P(z, z)

▶ ⊨ φ ⇐⇒ C has solution
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Example

▶ C = ((10,101), (011,11), (10,0))

▶ φ = P(f0(f1(e)), f1(f0(f1(e)))) ∧ P(f1(f1(f0(e))), f1(f1(e))) ∧ P(f0(f1(e)), f0(e))

∧ ∀ v ∀ w
(
P(v,w) → P(f0(f1(v)), f1(f0(f1(w))))

∧ P(f1(f1(f0(v))), f1(f1(w)))

∧ P(f0(f1(v)), f0(w))
)

→ ∃ z P(z, z)
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Definition

set X of boolean functions is called adequate or functionally complete if every boolean

function can be expressed using functions from X

Examples

▶ { , · , +} is adequate: truth table gives rise to DNF x y f(x, y)

0 0 1

0 1 0

1 0 0

1 1 1

f(x, y) = x · y+ x · y

▶ { , ·} is adequate: x+ y = x · y

▶ {·, +, →} with x → y = x+ y is not adequate
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Definitions

▶ x | y = x · y (nand)

▶ ite(x, y, z) = (x+ y) · (x+ z) (if-then-else)

Examples

▶ { | } is adequate: x = x | x
x · y = (x | y) | (x | y)

▶ { ite, 0, 1} is adequate: x = ite(x,0,1)

x · y = ite(x, y,0)

▶ { , ↔} with x ↔ y = (x+ y) · (x+ y) is not adequate
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Theorem (Algebraic Normal Form, ANF)

every boolean function f : {0,1}n → {0,1} can be uniquely written as

f(x1, . . . , xn) =
⊕

A⊆{1,...,n}

cA ·
∏
i∈A

xi

with cA ∈ {0,1} for all A ⊆ {1, . . . , n}

Corollary

every binary boolean function f : {0,1}2 → {0,1} can be uniquely written as

f(x1, x2) = c∅ ⊕ c{1}x1 ⊕ c{2}x2 ⊕ c{1, 2}x1x2 =
⊕

A⊆{1,2}

cA ·
∏
i∈A

xi

with c∅, c{1}, c{2}, c{1, 2} ∈ {0,1}
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Theorem (Algebraic Normal Form, ANF)

every boolean function f : {0,1}n → {0,1} can be uniquely written as

f(x1, . . . , xn) =
⊕

A⊆{1,...,n}

cA ·
∏
i∈A

xi

with cA ∈ {0,1} for all A ⊆ {1, . . . , n}

Proof sketch

▶ n = 0: easy

▶ n > 0: f = f [0/x ]⊕ (f [0/x ]⊕ f [1/x ]) x

f = x f [0/x ] + x f [1/x ] = f [0/x ] x+ f [1/x ] x (Shannon expansion)

= f [0/x ] x⊕ f [1/x ] x⊕ f [0/x ] x f [1/x ] x (y+ z = y⊕ z ⊕ y z)

= f [0/x ] x⊕ f [1/x ] x = f [0/x ] (1 ⊕ x)⊕ f [1/x ] x (x = 1 ⊕ x)

= f [0/x ]⊕ f [0/x ] x⊕ f [1/x ] x = f [0/x ]⊕ (f [0/x ]⊕ f [1/x ]) x
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Example (Algebraic Normal Form of HWB4 )

x4

x3 x1

x1 x2 x3

0 1

x+ y = x⊕ y⊕ xy

xx = 0

x = x⊕ 1

(x⊕ y)z = xz ⊕ yz

1x = x

· · ·
HWB4(x1, x2, x3, x4) = x4(x3x1 + x3x2) + x4(x1x2 + x1x3)

= x4(x3x1 ⊕ x3x2)⊕ x4(x1x2 ⊕ x1x3)

= x4(x1 ⊕ x1x3 ⊕ x3x2)⊕ x4(x1x2 ⊕ x1x3)

= x4(x1 ⊕ x1x3 ⊕ x3x2)⊕ x4(x2 ⊕ x1x2 ⊕ x1x3)

= x1 ⊕ x1x3 ⊕ x3x2 ⊕ x4(x2 ⊕ x1x2 ⊕ x1x3)⊕ x4(x1 ⊕ x1x3 ⊕ x3x2)

= x1 ⊕ x1x3 ⊕ x2x3 ⊕ x1x4 ⊕ x2x4 ⊕ x1x2x4 ⊕ x2x3x4
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Huth and Ryan

▶ Section 2.5

Resolution

▶ Wikipedia [accessed January 25, 2024]

Algebraic Normal Form

▶ Wikipedia [accessed January 25, 2024]

SS 2024 Logic lecture 8 7. Further Reading 39/40

Important Concepts

▶ adequacy

▶ algebraic normal form (ANF)

▶ Church’s theorem

▶ clashing

▶ factor

▶ factoring

▶ functional completeness

▶ nand

▶ Post correspondence problem

▶ resolvent

homework for May 16
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https://www.cambridge.org/core/services/aop-cambridge-core/content/view/C08A8571887234409733F5B95AF5A07C/9780511810275c2_p93-171_CBO.pdf/predicate_logic.pdf#page=39
https://en.wikipedia.org/wiki/Resolution_(logic)
https://en.wikipedia.org/wiki/Algebraic_normal_form
http://cl-informatik.uibk.ac.at/teaching/ss24/lics/exercises/08.pdf
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