## Logic

Diana Gründlinger
Alexander Montag Johannes Niederhauser

Fabian Mitterwallner

Aart Middeldorp

Daniel Rainer

## Outline

1. Summary of Previous Lecture
2. Post's Adequacy Theorem
3. Intermezzo
4. Model Checking
5. Branching-Time Temporal Logic (CTL)
6. CTL Model Checking Algorithm
7. Further Reading

## Definitions

- atomic formula: $P \mid P(t, \ldots, t)$
- literal is atomic formula or negation of atomic formula
- clause is set of literals $\left\{\ell_{1}, \ldots, \ell_{n}\right\}$
- clausal form is set of clauses $\left\{C_{1}, \ldots, C_{m}\right\}$, representing $\forall\left(C_{1} \wedge \cdots \wedge C_{m}\right)$
- clauses $C_{1}$ and $C_{2}$ without common variables clash on literals $\ell_{1} \in C_{1}$ and $\ell_{2} \in C_{2}$ if $\ell_{1}$ and $\ell_{2}^{c}$ are unifiable
- resolvent of clauses $C_{1}$ and $C_{2}$ clashing on literals $\ell_{1} \in C_{1}$ and $\ell_{2} \in C_{2}$ is clause

$$
\left(\left(C_{1} \backslash\left\{\ell_{1}\right\}\right) \cup\left(C_{2} \backslash\left\{\ell_{2}\right\}\right)\right) \theta
$$

where $\theta$ is mgu of $\ell_{1}$ and $\ell_{2}^{c}$

- $C \sigma$ is factor of $C$ if two or more literals in $C$ have mgu $\sigma$


## Resolution with Factoring

input: clausal form $S$
output: yes if $S$ is satisfiable
no if $S$ is unsatisfiable
$\infty \quad$ if $S$ is satisfiable
(1) repeatedly add resolvents (renaming clauses if necessary) and factors
(2) return no as soon as empty clause $\square$ is derived
(3) return yes if all clashing clauses have been resolved and factoring produces no new clauses (modulo renaming)

## Theorem

resolution with factoring is sound and complete:
clausal form $S$ is unsatisfiable if and only if $S$ admits refutation

SS 2024
Logic
lecture 9

1. Summary of Previous Lecture

AM

## Decision Problem (Church's Theorem)

instance: set of formulas 「, first-order formula $\psi$
question: $\quad\ulcorner\vDash \psi$ ?
is undecidable even when $\Gamma=\varnothing$

## Definition

set $X$ of boolean functions is called adequate or functionally complete if every boolean function can be expressed using functions from $X$

## Theorem (Algebraic Normal Form)

every boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ can be uniquely written as

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigoplus_{A \subseteq\{1, \ldots, n\}} c_{A} \cdot \prod_{i \in A} x_{i}
$$

with $c_{A} \in\{0,1\}$ for all $A \subseteq\{1, \ldots, n\}$

## Part I: Propositional Logic

algebraic normal forms, binary decision diagrams, conjunctive normal forms, DPLL, Horn formulas, natural deduction, Post's adequacy theorem, resolution, SAT, semantics, sorting networks, soundness and completeness, syntax, Tseitin's transformation

## Part II: Predicate Logic

natural deduction, quantifier equivalences, resolution, semantics, Skolemization, syntax, undecidability, unification

## Part III: Model Checking

adequacy, branching-time temporal logic, CTL*, fairness, linear-time temporal logic, model checking algorithms, symbolic model checking

## Part I: Propositional Logic

algebraic normal forms, binary decision diagrams, conjunctive normal forms, DPLL, Horn formulas, natural deduction, Post's adequacy theorem, resolution, SAT, semantics, sorting networks, soundness and completeness, syntax, Tseitin's transformation

## Part II: Predicate Logic

natural deduction, quantifier equivalences, resolution, semantics, Skolemization, syntax, undecidability, unification

## Part III: Model Checking

adequacy, branching-time temporal logic, CTL*, fairness, linear-time temporal logic, model checking algorithms, symbolic model checking

## Outline

## 1. Summary of Previous Lecture

2. Post's Adequacy Theorem
3. Intermezzo
4. Model Checking
5. Branching-Time Temporal Logic (CTL)
6. CTL Model Checking Algorithm
7. Further Reading

## Theorem (Post's Adequacy Theorem)

set $X$ of boolean functions is adequate if and only if following conditions hold:

## Theorem (Post's Adequacy Theorem)

set $X$ of boolean functions is adequate if and only if following conditions hold:
(1) there exists $f \in X$ such that $f(0, \ldots, 0) \neq 0$

## Theorem (Post's Adequacy Theorem)

set $X$ of boolean functions is adequate if and only if following conditions hold:
(1) there exists $f \in X$ such that $f(0, \ldots, 0) \neq 0$
(2) there exists $f \in X$ such that $f(1, \ldots, 1) \neq 1$

## Theorem (Post's Adequacy Theorem)

set $X$ of boolean functions is adequate if and only if following conditions hold:
(1) there exists $f \in X$ such that $f(0, \ldots, 0) \neq 0$
(2) there exists $f \in X$ such that $f(1, \ldots, 1) \neq 1$
(3) there exists $f \in X$ which is not monotone

## Theorem (Post's Adequacy Theorem)

set $X$ of boolean functions is adequate if and only if following conditions hold:
(1) there exists $f \in X$ such that $f(0, \ldots, 0) \neq 0$
(2) there exists $f \in X$ such that $f(1, \ldots, 1) \neq 1$
(3) there exists $f \in X$ which is not monotone

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$


## Theorem (Post's Adequacy Theorem)

set $X$ of boolean functions is adequate if and only if following conditions hold:
(1) there exists $f \in X$ such that $f(0, \ldots, 0) \neq 0$
(2) there exists $f \in X$ such that $f(1, \ldots, 1) \neq 1$
(3) there exists $f \in X$ which is not monotone
(4) there exists $f \in X$ which is not self-dual

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$


## Theorem (Post's Adequacy Theorem)

set $X$ of boolean functions is adequate if and only if following conditions hold:
(1) there exists $f \in X$ such that $f(0, \ldots, 0) \neq 0$
(2) there exists $f \in X$ such that $f(1, \ldots, 1) \neq 1$
(3) there exists $f \in X$ which is not monotone
(4) there exists $f \in X$ which is not self-dual

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$

SS 2024
Logic
lecture 9

## Theorem (Post's Adequacy Theorem)

set $X$ of boolean functions is adequate if and only if following conditions hold:
(1) there exists $f \in X$ such that $f(0, \ldots, 0) \neq 0$
(2) there exists $f \in X$ such that $f(1, \ldots, 1) \neq 1$
(3) there exists $f \in X$ which is not monotone
(4) there exists $f \in X$ which is not self-dual
(3) there exists $f \in X$ which is not affine

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$

SS 2024
Logic
lecture 9

## Theorem (Post's Adequacy Theorem)

set $X$ of boolean functions is adequate if and only if following conditions hold:
(1) there exists $f \in X$ such that $f(0, \ldots, 0) \neq 0$
(2) there exists $f \in X$ such that $f(1, \ldots, 1) \neq 1$
(3) there exists $f \in X$ which is not monotone
(4) there exists $f \in X$ which is not self-dual
(3) there exists $f \in X$ which is not affine

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$

Logic
lecture 9
2. Post's Adequacy Theorem

## Lemma

boolean function $f$ is not monotone if and only if

$$
f\left(b_{1}, \ldots, b_{i-1}, x, b_{i+1}, \ldots, b_{n}\right)=\bar{x} \quad \text { for all } x \in\{0,1\}
$$

for some $i$ and $b_{1}, \ldots, b_{i-1}, b_{i+1}, \ldots, b_{n} \in\{0,1\}$

## Lemma

boolean function $f$ is not monotone if and only if

$$
f\left(b_{1}, \ldots, b_{i-1}, x, b_{i+1}, \ldots, b_{n}\right)=\bar{x} \quad \text { for all } x \in\{0,1\}
$$

for some $i$ and $b_{1}, \ldots, b_{i-1}, b_{i+1}, \ldots, b_{n} \in\{0,1\}$

## Lemma

boolean function $f$ is not self-dual if and only if

$$
f\left(b_{1}, \ldots, b_{n}\right)=f\left(\bar{b}_{1}, \ldots, \bar{b}_{n}\right)
$$

for some $b_{1}, \ldots, b_{n} \in\{0,1\}$

## Lemma

boolean function $f$ is not monotone if and only if

$$
f\left(b_{1}, \ldots, b_{i-1}, x, b_{i+1}, \ldots, b_{n}\right)=\bar{x} \quad \text { for all } x \in\{0,1\}
$$

for some $i$ and $b_{1}, \ldots, b_{i-1}, b_{i+1}, \ldots, b_{n} \in\{0,1\}$

## Lemma

boolean function $f$ is not self-dual if and only if

$$
f\left(b_{1}, \ldots, b_{n}\right)=f\left(\bar{b}_{1}, \ldots, \bar{b}_{n}\right)
$$

for some $b_{1}, \ldots, b_{n} \in\{0,1\}$

## Remark

boolean function $f$ is affine if and only if algebraic normal form of $f$ is linear

SS 2024
lecture 9

## Examples

|  | - |
| ---: | :--- |
| $f(0, \ldots, 0) \neq 0$ |  |
| $f(1, \ldots, 1) \neq 1$ |  |
| not monotone |  |
| not self-dual |  |
| not affine |  |

## Examples

|  | - |
| ---: | :--- |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ |
| $f(1, \ldots, 1) \neq 1$ |  |
| not monotone |  |
| not self-dual |  |
| not affine |  |

## Examples

|  | - |
| ---: | :--- |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ |
| not monotone |  |
| not self-dual |  |
| not affine |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$


## Examples

|  | - |
| ---: | :--- |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ |
| not monotone | $\checkmark$ |
| not self-dual |  |
| not affine |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$


## Examples

|  | - |
| ---: | :--- |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ |
| not monotone | $\checkmark$ |
| not self-dual | $\times$ |
| not affine |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$


## Examples

|  | - |
| ---: | :--- |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ |
| not monotone | $\checkmark$ |
| not self-dual | $\times$ |
| not affine | $\times$ |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$


## Examples

|  | - |  |
| ---: | :--- | :--- |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ |  |
| not monotone | $\checkmark$ |  |
| not self-dual | $\times$ |  |
| not affine | $\times$ |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$

SS 2024
Logic
lecture 9
2. Post's Adequacy Theorem

## Examples

|  | - | . |
| ---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ |
| not monotone | $\checkmark$ |  |
| not self-dual | $\times$ |  |
| not affine | $\times$ |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$


## Examples

|  | - | . |
| ---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ |
| not monotone | $\checkmark$ | $\times$ |
| not self-dual | $\times$ |  |
| not affine | $\times$ |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$


## Examples

|  | - |  |
| ---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ |
| not monotone | $\checkmark$ | $\times$ |
| not self-dual | $\times$ | $\checkmark$ |
| not affine | $\times$ |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$


## Examples

|  | - | $\cdot$ | + |
| ---: | :---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ |  |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ |  |
| not monotone | $\checkmark$ | $\times$ |  |
| not self-dual | $\times$ | $\checkmark$ |  |
| not affine | $\times$ | $\checkmark$ |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$

SS 2024
Logic
lecture 9
2. Post's Adequacy Theorem

## Examples

|  | - | $\cdot$ | + |
| ---: | :---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ | $\times$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ |  |
| not monotone | $\checkmark$ | $\times$ |  |
| not self-dual | $\times$ | $\checkmark$ |  |
| not affine | $\times$ | $\checkmark$ |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$

SS 2024
Logic
lecture 9
2. Post's Adequacy Theorem

## Examples

|  | - | $\cdot$ | + |
| ---: | :---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ | $\times$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ | $\times$ |
| not monotone | $\checkmark$ | $\times$ |  |
| not self-dual | $\times$ | $\checkmark$ |  |
| not affine | $\times$ | $\checkmark$ |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$

SS 2024
Logic
lecture 9
2. Post's Adequacy Theorem

## Examples

|  | - | $\cdot$ | + |
| ---: | :---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ | $\times$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ | $\times$ |
| not monotone | $\checkmark$ | $\times$ | $\times$ |
| not self-dual | $\times$ | $\checkmark$ |  |
| not affine | $\times$ | $\checkmark$ |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$

SS 2024
Logic
lecture 9
2. Post's Adequacy Theorem

## Examples

|  | - | $\cdot$ | + |
| ---: | :---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ | $\times$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ | $\times$ |
| not monotone | $\checkmark$ | $\times$ | $\times$ |
| not self-dual | $\times$ | $\checkmark$ | $\checkmark$ |
| not affine | $\times$ | $\checkmark$ |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$


## Examples

|  | - | $\cdot$ | + | $=$ |
| ---: | :---: | :---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ | $\times$ |  |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ | $\times$ |  |
| not monotone | $\checkmark$ | $\times$ | $\times$ |  |
| not self-dual | $\times$ | $\checkmark$ | $\checkmark$ |  |
| not affine | $\times$ | $\checkmark$ | $\checkmark$ |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$

SS 2024
Logic
lecture 9
2. Post's Adequacy Theorem

## Examples

|  | - | $\cdot$ | + | $=$ |
| ---: | :---: | :---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ | $\times$ |  |
| not monotone | $\checkmark$ | $\times$ | $\times$ |  |
| not self-dual | $\times$ | $\checkmark$ | $\checkmark$ |  |
| not affine | $\times$ | $\checkmark$ | $\checkmark$ |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$

SS 2024
Logic
lecture 9
2. Post's Adequacy Theorem

## Examples

|  | - | $\cdot$ | + | $=$ |
| ---: | :---: | :---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ | $\times$ | $\times$ |
| not monotone | $\checkmark$ | $\times$ | $\times$ |  |
| not self-dual | $\times$ | $\checkmark$ | $\checkmark$ |  |
| not affine | $\times$ | $\checkmark$ | $\checkmark$ |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$

SS 2024
Logic
lecture 9

## Examples

|  | - | $\cdot$ | + | $=$ |
| ---: | :---: | :---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ | $\times$ | $\times$ |
| not monotone | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ |
| not self-dual | $\times$ | $\checkmark$ | $\checkmark$ |  |
| not affine | $\times$ | $\checkmark$ | $\checkmark$ |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$


## Examples

|  | - | $\cdot$ | + | $=$ |
| ---: | :---: | :---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ | $\times$ | $\times$ |
| not monotone | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ |
| not self-dual | $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| not affine | $\times$ | $\checkmark$ | $\checkmark$ |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$


## Examples

|  | - | $\cdot$ | + | $=$ | $\oplus$ |
| ---: | :---: | :---: | :---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ |  |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ | $\times$ | $\times$ |  |
| not monotone | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ |  |
| not self-dual | $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |
| not affine | $\times$ | $\checkmark$ | $\checkmark$ | $\times$ |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$


## Examples

|  | - | $\cdot$ | + | $=$ | $\oplus$ |
| ---: | :---: | :---: | :---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\times$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ | $\times$ | $\times$ |  |
| not monotone | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ |  |
| not self-dual | $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |
| not affine | $\times$ | $\checkmark$ | $\checkmark$ | $\times$ |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$


## Examples

|  | - | $\cdot$ | + | $=$ | $\oplus$ |
| ---: | :---: | :---: | :---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\times$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ | $\times$ | $\times$ | $\checkmark$ |
| not monotone | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ |  |
| not self-dual | $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |
| not affine | $\times$ | $\checkmark$ | $\checkmark$ | $\times$ |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$


## Examples

|  | - | $\cdot$ | + | $=$ | $\oplus$ |
| ---: | :---: | :---: | :---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\times$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ | $\times$ | $\times$ | $\checkmark$ |
| not monotone | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\checkmark$ |
| not self-dual | $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |
| not affine | $\times$ | $\checkmark$ | $\checkmark$ | $\times$ |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$


## Examples

|  | - | $\cdot$ | + | $=$ | $\oplus$ |
| ---: | :---: | :---: | :---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\times$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ | $\times$ | $\times$ | $\checkmark$ |
| not monotone | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\checkmark$ |
| not self-dual | $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| not affine | $\times$ | $\checkmark$ | $\checkmark$ | $\times$ |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$


## Examples

|  | - | $\cdot$ | + | $=$ | $\oplus$ | $\mid$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\times$ |  |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ | $\times$ | $\times$ | $\checkmark$ |  |
| not monotone | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\checkmark$ |  |
| not self-dual | $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |
| not affine | $\times$ | $\checkmark$ | $\checkmark$ | $\times$ | $\times$ |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$


## Examples

|  | - | $\cdot$ | + | $=$ | $\oplus$ | $\mid$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\times$ | $\checkmark$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ | $\times$ | $\times$ | $\checkmark$ |  |
| not monotone | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\checkmark$ |  |
| not self-dual | $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |
| not affine | $\times$ | $\checkmark$ | $\checkmark$ | $\times$ | $\times$ |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$


## Examples

|  | - | $\cdot$ | + | $=$ | $\oplus$ | $\mid$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\times$ | $\checkmark$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ | $\times$ | $\times$ | $\checkmark$ | $\checkmark$ |
| not monotone | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\checkmark$ |  |
| not self-dual | $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |
| not affine | $\times$ | $\checkmark$ | $\checkmark$ | $\times$ | $\times$ |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$


## Examples

|  | - | $\cdot$ | + | $=$ | $\oplus$ | $\mid$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\times$ | $\checkmark$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ | $\times$ | $\times$ | $\checkmark$ | $\checkmark$ |
| not monotone | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| not self-dual | $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |
| not affine | $\times$ | $\checkmark$ | $\checkmark$ | $\times$ | $\times$ |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$


## Examples

|  | - | $\cdot$ | + | $=$ | $\oplus$ | $\mid$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\times$ | $\checkmark$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ | $\times$ | $\times$ | $\checkmark$ | $\checkmark$ |
| not monotone | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| not self-dual | $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| not affine | $\times$ | $\checkmark$ | $\checkmark$ | $\times$ | $\times$ |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$


## Examples

|  | - | $\cdot$ | + | $=$ | $\oplus$ | $\mid$ | 0 | 1 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\times$ | $\checkmark$ |  |  |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ | $\times$ | $\times$ | $\checkmark$ | $\checkmark$ |  |  |
| not monotone | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |
| not self-dual | $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |
| not affine | $\times$ | $\checkmark$ | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ |  |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$


## Examples

|  | - | $\cdot$ | + | $=$ | $\oplus$ | $\mid$ | 0 | 1 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\times$ | $\checkmark$ | $\times$ | $\checkmark$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ | $\times$ | $\times$ | $\checkmark$ | $\checkmark$ |  |  |
| not monotone | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |
| not self-dual | $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |
| not affine | $\times$ | $\checkmark$ | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ |  |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$


## Examples

|  | - | $\cdot$ | + | $=$ | $\oplus$ | $\mid$ | 0 | 1 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\times$ | $\checkmark$ | $\times$ | $\checkmark$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ | $\times$ | $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\times$ |
| not monotone | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |
| not self-dual | $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |
| not affine | $\times$ | $\checkmark$ | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ |  |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$


## Examples

|  | - | $\cdot$ | + | $=$ | $\oplus$ | $\mid$ | 0 | 1 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\times$ | $\checkmark$ | $\times$ | $\checkmark$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ | $\times$ | $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\times$ |
| not monotone | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\times$ | $\times$ |
| not self-dual | $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |
| not affine | $\times$ | $\checkmark$ | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ |  |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$


## Examples

|  | - | $\cdot$ | + | $=$ | $\oplus$ | $\mid$ | 0 | 1 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\times$ | $\checkmark$ | $\times$ | $\checkmark$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ | $\times$ | $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\times$ |
| not monotone | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\times$ | $\times$ |
| not self-dual | $\times$ | $\checkmark$ |
| not affine | $\times$ | $\checkmark$ | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ |  |  |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$


## Examples

|  | - | $\cdot$ | + | $=$ | $\oplus$ | $\mid$ | 0 | 1 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(0, \ldots, 0) \neq 0$ | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\times$ | $\checkmark$ | $\times$ | $\checkmark$ |
| $f(1, \ldots, 1) \neq 1$ | $\checkmark$ | $\times$ | $\times$ | $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\times$ |
| not monotone | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\times$ | $\times$ |
| not self-dual | $\times$ | $\checkmark$ |
| not affine | $\times$ | $\checkmark$ | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ | $\times$ | $\times$ |

## Definitions

boolean function $f$ is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$


## Theorem (Post's Adequacy Theorem)

set $X$ of boolean functions is adequate if and only if following conditions hold:
(1) $\exists f_{1} \in X$ such that $f_{1}(0, \ldots, 0) \neq 0$
(4) $\exists f_{4} \in X$ which is not self-dual
(2) $\exists f_{2} \in X$ such that $f_{2}(1, \ldots, 1) \neq 1$
(6) $\exists f_{5} \in X$ which is not affine
(3) $\exists f_{3} \in X$ which is not monotone

## Proof ( $\Longleftarrow$ )

- first task: define $0,1, \bar{x}$


## Theorem (Post's Adequacy Theorem)

set $X$ of boolean functions is adequate if and only if following conditions hold:
(1) $\exists f_{1} \in X$ such that $f_{1}(0, \ldots, 0) \neq 0$
(4) $\exists f_{4} \in X$ which is not self-dual
(2) $\exists f_{2} \in X$ such that $f_{2}(1, \ldots, 1) \neq 1$
(6) $\exists f_{5} \in X$ which is not affine
(3) $\exists f_{3} \in X$ which is not monotone

## Proof ( $\Longleftarrow$ )

- first task: define $0,1, \bar{x}$
- define $g(x)=f_{1}(x, \ldots, x)$


## Theorem (Post's Adequacy Theorem)

set $X$ of boolean functions is adequate if and only if following conditions hold:
(1) $\exists f_{1} \in X$ such that $f_{1}(0, \ldots, 0) \neq 0$
(4) $\exists f_{4} \in X$ which is not self-dual
(2) $\exists f_{2} \in X$ such that $f_{2}(1, \ldots, 1) \neq 1$
(6) $\exists f_{5} \in X$ which is not affine
(3) $\exists f_{3} \in X$ which is not monotone

## Proof ( $\Longleftarrow$ )

- first task: define $0,1, \bar{x}$
- define $g(x)=f_{1}(x, \ldots, x)$
- $g(x)=1$ or $g(x)=\bar{x}$


## Theorem (Post's Adequacy Theorem)

set $X$ of boolean functions is adequate if and only if following conditions hold:
(1) $\exists f_{1} \in X$ such that $f_{1}(0, \ldots, 0) \neq 0$
(4) $\exists f_{4} \in X$ which is not self-dual
(2) $\exists f_{2} \in X$ such that $f_{2}(1, \ldots, 1) \neq 1$
(5) $\exists f_{5} \in X$ which is not affine
(3) $\exists f_{3} \in X$ which is not monotone

## Proof ( $\Longleftarrow$ )

- first task: define $0,1, \bar{x}$
- define $g(x)=f_{1}(x, \ldots, x)$ and $h(x)=f_{2}(x, \ldots, x)$
- $g(x)=1$ or $g(x)=\bar{x}$ and $h(x)=0$ or $h(x)=\bar{x}$


## Theorem (Post's Adequacy Theorem)

set $X$ of boolean functions is adequate if and only if following conditions hold:
(1) $\exists f_{1} \in X$ such that $f_{1}(0, \ldots, 0) \neq 0$
(4) $\exists f_{4} \in X$ which is not self-dual
(2) $\exists f_{2} \in X$ such that $f_{2}(1, \ldots, 1) \neq 1$
(5) $\exists f_{5} \in X$ which is not affine
(3) $\exists f_{3} \in X$ which is not monotone

## Proof ( $\Longleftarrow$ )

- first task: define $0,1, \bar{x}$
- define $g(x)=f_{1}(x, \ldots, x)$ and $h(x)=f_{2}(x, \ldots, x)$
- $g(x)=1$ or $g(x)=\bar{x}$ and $h(x)=0$ or $h(x)=\bar{x}$
- we distinguish four cases:
(1) $g(x)=1$ and $h(x)=\bar{x}$
(3) $g(x)=1$ and $h(x)=0$
(2) $g(x)=\bar{x}$ and $h(x)=0$
(4) $g(x)=\bar{x}$ and $h(x)=\bar{x}$


## Proof $(\Longleftarrow)$

- first task: define $0,1, \bar{x}$
(1) $g(x)=1$ and $h(x)=\bar{x}$


## Proof $(\Longleftarrow)$

- first task: define $0,1, \bar{x}$
(1) $g(x)=1$ and $h(x)=\bar{x} \quad h(g(x))=0$


## Proof $(\Longleftarrow)$

- first task: define $0,1, \bar{x}$
(1) $g(x)=1$ and $h(x)=\bar{x} \quad h(g(x))=0$
(2) $g(x)=\bar{x}$ and $h(x)=0$


## Proof $(\Longleftarrow)$

- first task: define $0,1, \bar{x}$
(1) $g(x)=1$ and $h(x)=\bar{x} \quad h(g(x))=0$
(2) $g(x)=\bar{x}$ and $h(x)=0 \quad g(h(x))=1$
- first task: define $0,1, \bar{x}$
(1) $g(x)=1$ and $h(x)=\bar{x} \quad h(g(x))=0$
(2) $g(x)=\bar{x}$ and $h(x)=0 \quad g(h(x))=1$
(3) $g(x)=1$ and $h(x)=0$


## Proof ( $\Longleftarrow$ )

- first task: define $0,1, \bar{x}$
(1) $g(x)=1$ and $h(x)=\bar{x} \quad h(g(x))=0$
(2) $g(x)=\bar{x}$ and $h(x)=0 \quad g(h(x))=1$
(3) $g(x)=1$ and $h(x)=0$
there exist $i \in\{1, \ldots, m\}$ and $b_{1}, \ldots, b_{i-1}, b_{i+1}, \ldots, b_{m} \in\{0,1\}$ such that

$$
f_{3}\left(b_{1}, \ldots, b_{i-1}, x, b_{i+1}, \ldots, b_{m}\right)=\bar{x}
$$

(3) there exists $f_{3} \in X$ which is not monotone

## Proof $(\Longleftarrow)$

- first task: define $0,1, \bar{x}$
(1) $g(x)=1$ and $h(x)=\bar{x} \quad h(g(x))=0$
(2) $g(x)=\bar{x}$ and $h(x)=0 \quad g(h(x))=1$
(3) $g(x)=1$ and $h(x)=0$
there exist $i \in\{1, \ldots, m\}$ and $b_{1}, \ldots, b_{i-1}, b_{i+1}, \ldots, b_{m} \in\{0,1\}$ such that

$$
f_{3}\left(b_{1}, \ldots, b_{i-1}, x, b_{i+1}, \ldots, b_{m}\right)=\bar{x}
$$

$b_{j}=g(x)$ or $b_{j}=h(x)$ for $j \neq i$
(3) there exists $f_{3} \in X$ which is not monotone

## Proof $(\Longleftarrow)$

- first task: define $0,1, \bar{x}$
(1) $g(x)=1$ and $h(x)=\bar{x} \quad h(g(x))=0$
(2) $g(x)=\bar{x}$ and $h(x)=0 \quad g(h(x))=1$
(3) $g(x)=1$ and $h(x)=0$
there exist $i \in\{1, \ldots, m\}$ and $b_{1}, \ldots, b_{i-1}, b_{i+1}, \ldots, b_{m} \in\{0,1\}$ such that

$$
f_{3}\left(b_{1}, \ldots, b_{i-1}, x, b_{i+1}, \ldots, b_{m}\right)=\bar{x}
$$

$b_{j}=g(x)$ or $b_{j}=h(x)$ for $j \neq i$
so $\bar{x}$ is defined using $f_{3}, g, h$
(3) there exists $f_{3} \in X$ which is not monotone

## Proof $(\Longleftarrow)$

- first task: define $0,1, \bar{x}$
(4) $g(x)=\bar{x}$ and $h(x)=\bar{x}$
- first task: define $0,1, \bar{x}$
(4) $g(x)=\bar{x}$ and $h(x)=\bar{x}$
there exists $b_{1}, \ldots, b_{k} \in\{0,1\}$ such that $f_{4}\left(\bar{b}_{1}, \ldots, \bar{b}_{k}\right)=f_{4}\left(b_{1}, \ldots, b_{k}\right)$
(4) there exists $f_{4} \in X$ which is not self-dual


## Proof ( $\Longleftarrow$ )

- first task: define $0,1, \bar{x}$
(4) $g(x)=\bar{x}$ and $h(x)=\bar{x}$
there exists $b_{1}, \ldots, b_{k} \in\{0,1\}$ such that $f_{4}\left(\bar{b}_{1}, \ldots, \bar{b}_{k}\right)=f_{4}\left(b_{1}, \ldots, b_{k}\right)$
define $i(x)=f_{4}\left(x \oplus b_{1}, \ldots, x \oplus b_{k}\right)$
(4) there exists $f_{4} \in X$ which is not self-dual

SS 2024
Logic
lecture 9
2. Post's Adequacy Theorem

## Proof ( $\Longleftarrow$ )

- first task: define $0,1, \bar{x}$
(4) $g(x)=\bar{x}$ and $h(x)=\bar{x}$
there exists $b_{1}, \ldots, b_{k} \in\{0,1\}$ such that $f_{4}\left(\bar{b}_{1}, \ldots, \bar{b}_{k}\right)=f_{4}\left(b_{1}, \ldots, b_{k}\right)$
define $i(x)=f_{4}\left(x \oplus b_{1}, \ldots, x \oplus b_{k}\right)$
$x \oplus b_{j}=x$ or $x \oplus b_{j}=\bar{x}=g(x)$
(4) there exists $f_{4} \in X$ which is not self-dual

SS 2024
Logic
lecture 9
2. Post's Adequacy Theorem

## Proof $(\Longleftarrow)$

- first task: define $0,1, \bar{x}$
(4) $g(x)=\bar{x}$ and $h(x)=\bar{x}$
there exists $b_{1}, \ldots, b_{k} \in\{0,1\}$ such that $f_{4}\left(\bar{b}_{1}, \ldots, \bar{b}_{k}\right)=f_{4}\left(b_{1}, \ldots, b_{k}\right)$
define $i(x)=f_{4}\left(x \oplus b_{1}, \ldots, x \oplus b_{k}\right)$
$x \oplus b_{j}=x$ or $x \oplus b_{j}=\bar{x}=g(x)$, so $i(x)$ is defined using $f_{4}$ and $g$
(4) there exists $f_{4} \in X$ which is not self-dual

SS 2024
Logic
lecture 9
2. Post's Adequacy Theorem

## Proof $(\Longleftarrow)$

- first task: define $0,1, \bar{x}$
(4) $g(x)=\bar{x}$ and $h(x)=\bar{x}$
there exists $b_{1}, \ldots, b_{k} \in\{0,1\}$ such that $f_{4}\left(\bar{b}_{1}, \ldots, \bar{b}_{k}\right)=f_{4}\left(b_{1}, \ldots, b_{k}\right)$
define $i(x)=f_{4}\left(x \oplus b_{1}, \ldots, x \oplus b_{k}\right)$
$x \oplus b_{j}=x$ or $x \oplus b_{j}=\bar{x}=g(x)$, so $i(x)$ is defined using $f_{4}$ and $g$ $i(x)=0$ or $i(x)=1$
(4) there exists $f_{4} \in X$ which is not self-dual

SS 2024
Logic
lecture 9
2. Post's Adequacy Theorem

## Proof $(\Longleftarrow)$

- first task: define $0,1, \bar{x}$
(4) $g(x)=\bar{x}$ and $h(x)=\bar{x}$
there exists $b_{1}, \ldots, b_{k} \in\{0,1\}$ such that $f_{4}\left(\bar{b}_{1}, \ldots, \bar{b}_{k}\right)=f_{4}\left(b_{1}, \ldots, b_{k}\right)$
define $i(x)=f_{4}\left(x \oplus b_{1}, \ldots, x \oplus b_{k}\right)$
$x \oplus b_{j}=x$ or $x \oplus b_{j}=\bar{x}=g(x)$, so $i(x)$ is defined using $f_{4}$ and $g$
$i(x)=0$ or $i(x)=1$
$g(i(x))=1$ or $g(i(x))=0$
(4) there exists $f_{4} \in X$ which is not self-dual


## Proof ( $\Longleftarrow$ )

- second task: define $x y$


## Proof $(\Longleftarrow)$

- second task: define $x y$
there exist $g_{1}, g_{2}, g_{3}, g_{4}$ such that (wlog)

$$
f_{5}\left(x_{1}, \ldots, x_{l}\right)=x_{1} x_{2} g_{1}\left(x_{3}, \ldots, x_{l}\right) \oplus x_{1} g_{2}\left(x_{3}, \ldots, x_{l}\right) \oplus x_{2} g_{3}\left(x_{3}, \ldots, x_{l}\right) \oplus g_{4}\left(x_{3}, \ldots, x_{l}\right)
$$

with $g_{1}\left(x_{3}, \ldots, x_{l}\right) \neq 0$
(5) there exists $f_{5} \in X$ which is not affine

## Proof $(\Longleftarrow)$

- second task: define $x y$
there exist $g_{1}, g_{2}, g_{3}, g_{4}$ such that (wlog)

$$
f_{5}\left(x_{1}, \ldots, x_{l}\right)=x_{1} x_{2} g_{1}\left(x_{3}, \ldots, x_{l}\right) \oplus x_{1} g_{2}\left(x_{3}, \ldots, x_{l}\right) \oplus x_{2} g_{3}\left(x_{3}, \ldots, x_{l}\right) \oplus g_{4}\left(x_{3}, \ldots, x_{l}\right)
$$

with $g_{1}\left(x_{3}, \ldots, x_{l}\right) \neq 0$
there exist $c_{3}, \ldots, c_{1} \in\{0,1\}$ such that $g_{1}\left(c_{3}, \ldots, c_{1}\right)=1$
(5) there exists $f_{5} \in X$ which is not affine

## Proof $(\Longleftarrow)$

- second task: define $x y$
there exist $g_{1}, g_{2}, g_{3}, g_{4}$ such that (wlog)

$$
f_{5}\left(x_{1}, \ldots, x_{l}\right)=x_{1} x_{2} g_{1}\left(x_{3}, \ldots, x_{l}\right) \oplus x_{1} g_{2}\left(x_{3}, \ldots, x_{l}\right) \oplus x_{2} g_{3}\left(x_{3}, \ldots, x_{l}\right) \oplus g_{4}\left(x_{3}, \ldots, x_{l}\right)
$$

with $g_{1}\left(x_{3}, \ldots, x_{l}\right) \neq 0$
there exist $c_{3}, \ldots, c_{1} \in\{0,1\}$ such that $g_{1}\left(c_{3}, \ldots, c_{1}\right)=1$
define $c=g_{2}\left(c_{3}, \ldots, c_{l}\right), d=g_{3}\left(c_{3}, \ldots, c_{1}\right), e=g_{4}\left(c_{3}, \ldots, c_{1}\right)$
(5) there exists $f_{5} \in X$ which is not affine

## Proof $(\Longleftarrow)$

- second task: define $x y$
there exist $g_{1}, g_{2}, g_{3}, g_{4}$ such that (wlog)

$$
f_{5}\left(x_{1}, \ldots, x_{l}\right)=x_{1} x_{2} g_{1}\left(x_{3}, \ldots, x_{l}\right) \oplus x_{1} g_{2}\left(x_{3}, \ldots, x_{l}\right) \oplus x_{2} g_{3}\left(x_{3}, \ldots, x_{l}\right) \oplus g_{4}\left(x_{3}, \ldots, x_{l}\right)
$$

with $g_{1}\left(x_{3}, \ldots, x_{l}\right) \neq 0$
there exist $c_{3}, \ldots, c_{1} \in\{0,1\}$ such that $g_{1}\left(c_{3}, \ldots, c_{1}\right)=1$
define $c=g_{2}\left(c_{3}, \ldots, c_{1}\right), d=g_{3}\left(c_{3}, \ldots, c_{1}\right), e=g_{4}\left(c_{3}, \ldots, c_{1}\right)$
$f_{5}\left(x_{1}, x_{2}, c_{3}, \ldots, c_{1}\right)=x_{1} x_{2} \oplus x_{1} c \oplus x_{2} d \oplus e$
(5) there exists $f_{5} \in X$ which is not affine

## Proof $(\Longleftarrow)$

- second task: define $x y$
there exist $g_{1}, g_{2}, g_{3}, g_{4}$ such that (wlog)

$$
f_{5}\left(x_{1}, \ldots, x_{l}\right)=x_{1} x_{2} g_{1}\left(x_{3}, \ldots, x_{l}\right) \oplus x_{1} g_{2}\left(x_{3}, \ldots, x_{l}\right) \oplus x_{2} g_{3}\left(x_{3}, \ldots, x_{l}\right) \oplus g_{4}\left(x_{3}, \ldots, x_{l}\right)
$$

with $g_{1}\left(x_{3}, \ldots, x_{l}\right) \neq 0$
there exist $c_{3}, \ldots, c_{1} \in\{0,1\}$ such that $g_{1}\left(c_{3}, \ldots, c_{1}\right)=1$
define $c=g_{2}\left(c_{3}, \ldots, c_{l}\right), d=g_{3}\left(c_{3}, \ldots, c_{l}\right), e=g_{4}\left(c_{3}, \ldots, c_{l}\right)$
$f_{5}\left(x_{1}, x_{2}, c_{3}, \ldots, c_{1}\right)=x_{1} x_{2} \oplus x_{1} c \oplus x_{2} d \oplus e$
define $h(x, y)=f_{5}\left(x \oplus d, y \oplus c, c_{3}, \ldots, c_{l}\right) \oplus c d \oplus e$
(5) there exists $f_{5} \in X$ which is not affine

## Proof $(\Longleftarrow)$

- second task: define $x y$
there exist $g_{1}, g_{2}, g_{3}, g_{4}$ such that (wlog)

$$
f_{5}\left(x_{1}, \ldots, x_{l}\right)=x_{1} x_{2} g_{1}\left(x_{3}, \ldots, x_{l}\right) \oplus x_{1} g_{2}\left(x_{3}, \ldots, x_{l}\right) \oplus x_{2} g_{3}\left(x_{3}, \ldots, x_{l}\right) \oplus g_{4}\left(x_{3}, \ldots, x_{l}\right)
$$

with $g_{1}\left(x_{3}, \ldots, x_{l}\right) \neq 0$
there exist $c_{3}, \ldots, c_{1} \in\{0,1\}$ such that $g_{1}\left(c_{3}, \ldots, c_{1}\right)=1$
define $c=g_{2}\left(c_{3}, \ldots, c_{1}\right), d=g_{3}\left(c_{3}, \ldots, c_{l}\right), e=g_{4}\left(c_{3}, \ldots, c_{1}\right)$
$f_{5}\left(x_{1}, x_{2}, c_{3}, \ldots, c_{1}\right)=x_{1} x_{2} \oplus x_{1} c \oplus x_{2} d \oplus e$
define $h(x, y)=f_{5}\left(x \oplus d, y \oplus c, c_{3}, \ldots, c_{l}\right) \oplus c d \oplus e$
$h(x, y)=(x \oplus d)(y \oplus c) \oplus(x \oplus d) c \oplus(y \oplus c) d \oplus e \oplus c d \oplus e$
(3) there exists $f_{5} \in X$ which is not affine

## Proof $(\Longleftarrow)$

- second task: define $x y$
there exist $g_{1}, g_{2}, g_{3}, g_{4}$ such that (wlog)

$$
f_{5}\left(x_{1}, \ldots, x_{l}\right)=x_{1} x_{2} g_{1}\left(x_{3}, \ldots, x_{l}\right) \oplus x_{1} g_{2}\left(x_{3}, \ldots, x_{l}\right) \oplus x_{2} g_{3}\left(x_{3}, \ldots, x_{l}\right) \oplus g_{4}\left(x_{3}, \ldots, x_{l}\right)
$$

with $g_{1}\left(x_{3}, \ldots, x_{l}\right) \neq 0$
there exist $c_{3}, \ldots, c_{1} \in\{0,1\}$ such that $g_{1}\left(c_{3}, \ldots, c_{1}\right)=1$
define $c=g_{2}\left(c_{3}, \ldots, c_{1}\right), d=g_{3}\left(c_{3}, \ldots, c_{l}\right), e=g_{4}\left(c_{3}, \ldots, c_{1}\right)$
$f_{5}\left(x_{1}, x_{2}, c_{3}, \ldots, c_{1}\right)=x_{1} x_{2} \oplus x_{1} c \oplus x_{2} d \oplus e$
define $h(x, y)=f_{5}\left(x \oplus d, y \oplus c, c_{3}, \ldots, c_{l}\right) \oplus c d \oplus e$
$h(x, y)=(x \oplus d)(y \oplus c) \oplus(x \oplus d) c \oplus(y \oplus c) d \oplus e \oplus c d \oplus e=x y$
(5) there exists $f_{5} \in X$ which is not affine

## Remark

proof of "if direction" is constructive

## Remark

proof of "if direction" is constructive

## Demo

BoolTool
by Patrick Muxel (2004), Philipp Ruff (2006), Caroline Terzer (2006), Markus Plattner (2007), Elias Zischg (2012)

SS 2024
Logic
lecture 9

## Remark

proof of "if direction" is constructive

## Demo

BoolTool
by Patrick Muxel (2004), Philipp Ruff (2006), Caroline Terzer (2006), Markus Plattner (2007), Elias Zischg (2012)

BoolTool Reloaded
by Martin Neuner (2023)

SS 2024
Logic
lecture 9

## Remark

proof of "if direction" is constructive

## Demo

BoolTool
by Patrick Muxel (2004), Philipp Ruff (2006), Caroline Terzer (2006), Markus Plattner (2007), Elias Zischg (2012)

BoolTool Reloaded
by Martin Neuner (2023)

## Proof sketch ( $\Longrightarrow$ )

- suppose $X$ has no functions that satisfy condition (i)

Logic
lecture 9
2. Post's Adequacy Theorem

## Remark

proof of "if direction" is constructive

## Demo

BoolTool
by Patrick Muxel (2004), Philipp Ruff (2006), Caroline Terzer (2006), Markus Plattner (2007), Elias Zischg (2012)

BoolTool Reloaded
by Martin Neuner (2023)

## Proof sketch ( $\Longrightarrow$ )

- suppose $X$ has no functions that satisfy condition (i)
- claim: all functions constructed from $X$ violate condition (i)

SS 2024
Logic
lecture 9
2. Post's Adequacy Theorem

## Remark

proof of "if direction" is constructive

## Demo

BoolTool
by Patrick Muxel (2004), Philipp Ruff (2006), Caroline Terzer (2006), Markus Plattner (2007), Elias Zischg (2012)

BoolTool Reloaded
by Martin Neuner (2023)

## Proof sketch ( $\Longrightarrow$ )

- suppose $X$ has no functions that satisfy condition (i)
- claim: all functions constructed from $X$ violate condition (i)
- X cannot be adequate because $x \mid y$ cannot be expressed

SS 2024
Logic
lecture 9
2. Post's Adequacy Theorem

## Outline

\author{

1. Summary of Previous Lecture <br> 2. Post's Adequacy Theorem <br> 3. Intermezzo <br> 4. Model Checking <br> 5. Branching-Time Temporal Logic (CTL) <br> 6. CTL Model Checking Algorithm <br> 7. Further Reading
}

## Drticify with session ID 09929580

## Question

Which of the following statements are true ?
A If $f(1, \ldots, 1)=0$ and $f$ is monotone then $f\left(x_{1}, \ldots, x_{n}\right)=0$
B A set containing only constants and unary functions can be adequate.

C $\{\bar{\nabla}\}$ is adequate where $x \bar{\nabla} y=\overline{x \vee y}$.


D There are more affine than non-affine binary boolean functions.

## Outline

```
1. Summary of Previous Lecture
2. Post's Adequacy Theorem
3. Intermezzo
```


## 4. Model Checking

```
5. Branching-Time Temporal Logic (CTL)
6. CTL Model Checking Algorithm
7. Further Reading
```


## Formal Verification comprises

- framework for modeling systems (description language)


## Formal Verification comprises

- framework for modeling systems (description language)
- specification language for describing properties to be verified


## Formal Verification comprises

- framework for modeling systems (description language)
- specification language for describing properties to be verified
- verification method to establish whether description of system satisfies specification


## Formal Verification comprises

- framework for modeling systems (description language)
- specification language for describing properties to be verified
- verification method to establish whether description of system satisfies specification


## Model Checking

automatic formal verification approach for concurrent systems based on temporal logic

SS 2024
Logic
lecture 9
4. Model Checking

## Formal Verification comprises

- framework for modeling systems (description language)
- specification language for describing properties to be verified
- verification method to establish whether description of system satisfies specification


## Model Checking

automatic formal verification approach for concurrent systems based on temporal logic

## Temporal Logic

- formulas are not statically true or false in model



## Formal Verification comprises

- framework for modeling systems (description language)
- specification language for describing properties to be verified
- verification method to establish whether description of system satisfies specification


## Model Checking

automatic formal verification approach for concurrent systems based on temporal logic

## Temporal Logic

- formulas are not statically true or false in model
- models of temporal logic contain several states and truth is dynamic



## Formal Verification comprises

- framework for modeling systems (description language)
- specification language for describing properties to be verified
- verification method to establish whether description of system satisfies specification


## Model Checking

automatic formal verification approach for concurrent systems based on temporal logic

## Temporal Logic

- formulas are not statically true or false in model
- models of temporal logic contain several states and truth is dynamic
- formula can be true in some states and false in others

SS 2024
Logic
lecture 9
4. Model Checking

## Model Checking

- models are transition systems $\mathcal{M}$
- properties are formulas $\varphi$ in temporal logic
- model checker determines whether $\mathcal{M} \vDash \varphi$ is true or not


## Model Checking

- models are transition systems $\mathcal{M}$
- properties are formulas $\varphi$ in temporal logic
- model checker determines whether $\mathcal{M} \vDash \varphi$ is true or not


## Two Temporal Logics

- computation tree logic (CTL)
- linear-time temporal logic (LTL)
lectures 9 and 10
lectures 10 and 11


## Model Checking

- models are transition systems $\mathcal{M}$
- properties are formulas $\varphi$ in temporal logic
- model checker determines whether $\mathcal{M} \vDash \varphi$ is true or not


## Two Temporal Logics

- computation tree logic (CTL)
- linear-time temporal logic (LTL)
lectures 9 and 10
lectures 10 and 11


## Impact

both logics have been proven to be extremely fruitful in verifying hardware and communication protocols

## Model Checking

- models are transition systems $\mathcal{M}$
- properties are formulas $\varphi$ in temporal logic
- model checker determines whether $\mathcal{M} \vDash \varphi$ is true or not


## Two Temporal Logics

- computation tree logic (CTL)
- linear-time temporal logic (LTL)
lectures 9 and 10
lectures 10 and 11


## Impact

both logics have been proven to be extremely fruitful in verifying hardware and communication protocols, and are increasingly applied to software verification

## Model Checking

- models are transition systems $\mathcal{M}$
- properties are formulas $\varphi$ in temporal logic
- model checker determines whether $\mathcal{M} \vDash \varphi$ is true or not


## Two Temporal Logics

- computation tree logic (CTL)
- linear-time temporal logic (LTL)
lectures 9 and 10
lectures 10 and 11


## Impact

both logics have been proven to be extremely fruitful in verifying hardware and communication protocols, and are increasingly applied to software verification


## ACM Turing Awards

1996 Amir Pnueli
lecture 9

## ACM Turing Awards

1996 Amir Pnueli
2007 Edmund M. Clarke, E. Allen Emerson, Joseph Sifakis

## Outline

## 1. Summary of Previous Lecture

2. Post's Adequacy Theorem
3. Intermezzo
4. Model Checking
5. Branching-Time Temporal Logic (CTL)

Syntax Semantics
6. CTL Model Checking Algorithm
7. Further Reading

## Definition

- CTL (computation tree logic) formulas are built from
- atoms
- logical connectives
$p, q, r, p_{1}, p_{2}, \ldots$
$\perp, \top, \neg, \wedge, \vee, \rightarrow$


## Definition

- CTL (computation tree logic) formulas are built from
- atoms
- logical connectives
- temporal connectives
$p, q, r, p_{1}, p_{2}, \ldots$
$\perp, \top, \neg, \wedge, \vee, \rightarrow$
AX, EX, AF, EF, AG, EG, AU, EU


## Definition

- CTL (computation tree logic) formulas are built from
- atoms
- logical connectives
- temporal connectives
$p, q, r, p_{1}, p_{2}, \ldots$
$\perp, \top, \neg, \wedge, \vee, \rightarrow$
AX, EX, AF, EF, AG, EG, AU, EU
according to following BNF grammar:

$$
\begin{aligned}
\varphi::= & \perp|\top| p|(\neg \varphi)|(\varphi \wedge \varphi)|(\varphi \vee \varphi)|(\varphi \rightarrow \varphi)|(\operatorname{AX} \varphi)|(\mathrm{EX} \varphi) \mid \\
& (\operatorname{AF} \varphi)|(\mathrm{EF} \varphi)|(\operatorname{AG} \varphi)|(\mathrm{EG} \varphi)| \mathrm{A}[\varphi \mathrm{U} \varphi] \mid \mathrm{E}[\varphi \mathrm{U} \varphi]
\end{aligned}
$$

## Definition

- CTL (computation tree logic) formulas are built from
- atoms
- logical connectives
- temporal connectives
$p, q, r, p_{1}, p_{2}, \ldots$
$\perp, \top, \neg, \wedge, \vee, \rightarrow$
AX, EX, AF, EF, AG, EG, AU, EU
according to following BNF grammar:

$$
\begin{aligned}
\varphi::= & \perp|\top| p|(\neg \varphi)|(\varphi \wedge \varphi)|(\varphi \vee \varphi)|(\varphi \rightarrow \varphi)|(\operatorname{AX} \varphi)|(\mathrm{EX} \varphi) \mid \\
& (\mathrm{AF} \varphi)|(\mathrm{EF} \varphi)|(\mathrm{AG} \varphi)|(\mathrm{EG} \varphi)| \mathrm{A}[\varphi \mathrm{U} \varphi] \mid \mathrm{E}[\varphi \mathrm{U} \varphi]
\end{aligned}
$$

- notational conventions:
- binding precedence

$$
\neg, \mathrm{AX}, \mathrm{EX}, \mathrm{AF}, \mathrm{EF}, \mathrm{AG}, \mathrm{EG}>\wedge, \vee>\rightarrow, \mathrm{AU}, \mathrm{EU}
$$

- omit outer parentheses
- $\rightarrow, \wedge, \vee$ are right-associative


## Example

formula $\quad \neg \mathrm{A}[\mathrm{EX} p \cup \neg q]$
parse tree


- $2+2.2$


## Example

formula $\quad \neg \mathrm{A}[\mathrm{EX} p \cup \neg q]$
$\mathrm{AG}(p \rightarrow \mathrm{~A}[p \cup \neg p \wedge \mathrm{~A}[\neg p \cup q]])$
parse tree


## Example

formula $\quad \neg \mathrm{A}[\operatorname{EX} p \mathrm{U} \neg q]$
$\mathrm{AG}(p \rightarrow \mathrm{~A}[p \cup \neg p \wedge \mathrm{~A}[\neg p \cup q]])$
parse tree

A $\forall$ paths
G $\forall$ states globally
X next state
E $\exists$ path
F $\exists$ state future
$U$ until

## Outline

1. Summary of Previous Lecture
2. Post's Adequacy Theorem
3. Intermezzo
4. Model Checking
5. Branching-Time Temporal Logic (CTL)

Syntax Semantics
6. CTL Model Checking Algorithm
7. Further Reading

Semantics

## Definition

transition system (model) is triple $\mathcal{M}=(S, \rightarrow, L)$ with
(1) set of states $S$

## Definition

transition system (model) is triple $\mathcal{M}=(S, \rightarrow, L)$ with
(1) set of states $S$
(2) transition relation $\rightarrow \subseteq S \times S$ such that $\forall s \in S \quad \exists t \in S$ with $s \rightarrow t$

## Definition

transition system (model) is triple $\mathcal{M}=(S, \rightarrow, L)$ with
(1) set of states $S$
(2) transition relation $\rightarrow \subseteq S \times S$ such that $\forall s \in S \quad \exists t \in S$ with $s \rightarrow t$ ("no deadlock")

## Definition

transition system (model) is triple $\mathcal{M}=(S, \rightarrow, L)$ with
(1) set of states $S$
(2) transition relation $\rightarrow \subseteq S \times S$ such that $\forall s \in S \quad \exists t \in S$ with $s \rightarrow t$ ("no deadlock")
(3) Iabelling function $L: S \rightarrow \mathcal{P}$ (atoms)

## Definition

transition system (model) is triple $\mathcal{M}=(S, \rightarrow, L)$ with
(1) set of states $S$
(2) transition relation $\rightarrow \subseteq S \times S$ such that $\forall s \in S \quad \exists t \in S$ with $s \rightarrow t$ ("no deadlock")
(3) labelling function $L: S \rightarrow \mathcal{P}$ (atoms)

## Example



$$
\begin{array}{cc}
\text { model } \mathcal{M}=(S, \rightarrow, L) \\
S=\{1,2,3,4,5,6,7,8\} \\
L(1)=\left\{I_{A}, I_{B}\right\} & L(5)=\left\{I_{A}, P_{B}\right\} \\
L(2)=\left\{P_{A}, I_{B}\right\} & L(6)=\left\{R_{A}, P_{B}\right\} \\
L(3)=\left\{R_{A}, I_{B}\right\} & L(7)=\left\{R_{A}, R_{B}\right\} \\
L(4)=\left\{I_{A}, R_{B}\right\} & L(8)=\left\{P_{A}, R_{B}\right\}
\end{array}
$$

## Definition

satisfaction of CTL formula $\varphi$ in state $s \in S$ of model $\mathcal{M}=(S, \rightarrow, L)$

$$
\mathcal{M}, s \vDash \varphi
$$

## Definition

satisfaction of CTL formula $\varphi$ in state $s \in S$ of model $\mathcal{M}=(S, \rightarrow, L)$

$$
\mathcal{M}, s \vDash \varphi
$$

is defined by induction on $\varphi$ :

$$
\mathcal{M}, s \vDash T \quad \mathcal{M}, s \not \models \perp
$$

## Definition

satisfaction of CTL formula $\varphi$ in state $s \in S$ of model $\mathcal{M}=(S, \rightarrow, L)$

$$
\mathcal{M}, s \vDash \varphi
$$

is defined by induction on $\varphi$ :

$$
\begin{aligned}
& \mathcal{M}, s \vDash T \\
& \mathcal{M}, s \vDash p
\end{aligned} \quad \Longleftrightarrow \quad \begin{aligned}
& \mathcal{M}, s \nvdash \perp \\
& p \in L(s)
\end{aligned}
$$

## Definition

satisfaction of CTL formula $\varphi$ in state $s \in S$ of model $\mathcal{M}=(S, \rightarrow, L)$

$$
\mathcal{M}, s \vDash \varphi
$$

is defined by induction on $\varphi$ :

$$
\begin{aligned}
& \mathcal{M}, s \vDash \top \quad \mathcal{M}, s \not \vDash \perp \mathcal{M}, s \vDash \varphi \wedge \psi \quad \Longleftrightarrow \mathcal{M}, s \vDash \varphi \text { and } \mathcal{M}, s \vDash \psi \\
& \mathcal{M}, s \vDash p \quad \Longleftrightarrow \quad p \in L(s) \quad \mathcal{M}, s \vDash \varphi \vee \psi \quad \Longleftrightarrow \mathcal{M}, s \vDash \varphi \text { or } \mathcal{M}, s \vDash \psi \\
& \mathcal{M}, s \vDash \neg \varphi \quad \Longleftrightarrow \mathcal{M}, s \not \vDash \varphi \quad \mathcal{M}, s \vDash \varphi \rightarrow \psi \Longleftrightarrow \mathcal{M}, s \not \vDash \varphi \text { or } \mathcal{M}, s \vDash \psi
\end{aligned}
$$

## Example



$$
\begin{array}{ll}
\mathcal{M}, 1 \not \models I_{A} \wedge R_{B} & \mathcal{M}, 1 \not \models I_{B} \rightarrow P_{A} \vee R_{B} \\
\mathcal{M}, 4 \not \vDash I_{A} \wedge R_{B} & \mathcal{M}, 2 \not \vDash I_{B} \rightarrow P_{A} \vee R_{B}
\end{array}
$$

## Definition

satisfaction of CTL formula $\varphi$ in state $s \in S$ of model $\mathcal{M}=(S, \rightarrow, L)$

$$
\mathcal{M}, s \vDash \varphi
$$

is defined by induction on $\varphi$ :

$$
\begin{array}{lll}
\mathcal{M}, s \vDash \top & \mathcal{M}, s \not \vDash \perp \quad \mathcal{M}, s \vDash \varphi \wedge \psi \quad \Longleftrightarrow \mathcal{M}, s \vDash \varphi \text { and } \mathcal{M}, s \vDash \psi \\
\mathcal{M}, s \vDash p & \Longleftrightarrow p \in L(s) & \mathcal{M}, s \vDash \varphi \vee \psi \Longleftrightarrow \mathcal{M}, s \vDash \varphi \text { or } \mathcal{M}, s \vDash \psi \\
\mathcal{M}, s \vDash \neg \varphi & \Longleftrightarrow \mathcal{M}, s \not \vDash \varphi \quad \mathcal{M}, s \vDash \varphi \rightarrow \psi \Longleftrightarrow \mathcal{M}, s \not \vDash \varphi \text { or } \mathcal{M}, s \vDash \psi \\
\mathcal{M}, s \vDash \mathrm{AX} \varphi & \Longleftrightarrow & \forall \text { paths } s=s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow \cdots \mathcal{M}, s_{2} \vDash \varphi
\end{array}
$$

## Definition

satisfaction of CTL formula $\varphi$ in state $s \in S$ of model $\mathcal{M}=(S, \rightarrow, L)$

$$
\mathcal{M}, s \vDash \varphi
$$

is defined by induction on $\varphi$ :

$$
\begin{array}{ll}
\mathcal{M}, s \vDash \top & \mathcal{M}, s \not \vDash \perp \quad \mathcal{M}, s \vDash \varphi \wedge \psi \Longleftrightarrow \mathcal{M}, s \vDash \varphi \text { and } \mathcal{M}, s \vDash \psi \\
\mathcal{M}, s \vDash p & \Longleftrightarrow p \in L(s) \quad \mathcal{M}, s \vDash \varphi \vee \psi \Longleftrightarrow \mathcal{M}, s \vDash \varphi \text { or } \mathcal{M}, s \vDash \psi \\
\mathcal{M}, s \vDash \neg \varphi & \Longleftrightarrow \mathcal{M}, s \not \vDash \varphi \quad \mathcal{M}, s \vDash \varphi \rightarrow \psi \Longleftrightarrow \mathcal{M}, s \not \vDash \varphi \text { or } \mathcal{M}, s \vDash \psi \\
\mathcal{M}, s \vDash \mathrm{AX} \varphi & \Longleftrightarrow \forall \text { paths } s=s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow \cdots \mathcal{M}, s_{2} \vDash \varphi \\
\mathcal{M}, s \vDash \operatorname{EX} \varphi & \Longleftrightarrow \exists \text { path } s=s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow \cdots \mathcal{M}, s_{2} \vDash \varphi
\end{array}
$$

## Example



## Example

$$
\text { model } \mathcal{M}
$$

$$
\begin{array}{ll}
\mathcal{M}, 1 \not \models I_{A} \wedge R_{B} & \mathcal{M}, 1 \not \models I_{B} \rightarrow P_{A} \vee R_{B} \\
\mathcal{M}, 4 \not \vDash I_{A} \wedge R_{B} & \mathcal{M}, 2 \vDash I_{B} \rightarrow P_{A} \vee R_{B} \\
\mathcal{M}, 1 \not \vDash \operatorname{AX}\left(R_{A} \vee R_{B}\right) & \mathcal{M}, 1 \quad \operatorname{EXP}_{B}
\end{array}
$$

## Example

$$
\text { model } \mathcal{M}
$$

$$
\begin{array}{ll}
\mathcal{M}, 1 \not \models I_{A} \wedge R_{B} & \mathcal{M}, 1 \not \models I_{B} \rightarrow P_{A} \vee R_{B} \\
\mathcal{M}, 4 \not \vDash I_{A} \wedge R_{B} & \mathcal{M}, 2 \not \vDash I_{B} \rightarrow P_{A} \vee R_{B} \\
\mathcal{M}, 1 \not \vDash \operatorname{AX}\left(R_{A} \vee R_{B}\right) & \mathcal{M}, 1 \not \models \operatorname{EX} P_{B}
\end{array}
$$

## Example


$\mathcal{M}, 1 \not \models I_{A} \wedge R_{B}$
$\mathcal{M}, 4 \vDash I_{A} \wedge R_{B}$
$\mathcal{M}, 1 \vDash \mathrm{AX}\left(R_{A} \vee R_{B}\right)$
$\mathcal{M}, 3 \quad \mathrm{AXP} \mathrm{P}_{\mathrm{A}}$
$\mathcal{M}, 1 \nvdash I_{B} \rightarrow P_{A} \vee R_{B}$
$\mathcal{M}, 2 \vDash I_{B} \rightarrow P_{A} \vee R_{B}$
$\mathcal{M}, 1 \not \models \operatorname{EXP}_{B}$
$\mathcal{M}, 3 \quad \operatorname{EXP} P_{A}$

## Example



$$
\begin{array}{rlrl}
\mathcal{M}, 1 & \not \models I_{A} \wedge R_{B} & \mathcal{M}, 1 \not \models I_{B} \rightarrow P_{A} \vee R_{B} \\
\mathcal{M}, 4 & \vDash I_{A} \wedge R_{B} & \mathcal{M}, 2 \not \vDash I_{B} \rightarrow P_{A} \vee R_{B} \\
\mathcal{M}, 1 & \vDash \operatorname{AX}\left(R_{A} \vee R_{B}\right) & \mathcal{M}, 1 \not \models \operatorname{EX} P_{B} \\
\mathcal{M}, 3 \not \models \operatorname{AXP} P_{A} & \mathcal{M}, 3 & \operatorname{EXP}_{A}
\end{array}
$$

## Example



$$
\begin{array}{lll}
\mathcal{M}, 1 \not \models I_{A} \wedge R_{B} & \mathcal{M}, 1 \not \vDash I_{B} \rightarrow P_{A} \vee R_{B} \\
\mathcal{M}, 4 \not \vDash I_{A} \wedge R_{B} & \mathcal{M}, 2 \not \vDash I_{B} \rightarrow P_{A} \vee R_{B} \\
\mathcal{M}, 1 \not \vDash \operatorname{AX}\left(R_{A} \vee R_{B}\right) & \mathcal{M}, 1 \not \vDash \operatorname{EXP}_{B} \\
\mathcal{M}, 3 \not \vDash \operatorname{AXP} P_{A} & \mathcal{M}, 3 \vDash \operatorname{EXP}_{A}
\end{array}
$$

## Definition

satisfaction of CTL formula $\varphi$ in state $s \in S$ of model $\mathcal{M}=(S, \rightarrow, L)$

$$
\mathcal{M}, s \vDash \varphi
$$

is defined by induction on $\varphi$ :

$$
\begin{array}{ll}
\mathcal{M}, s \vDash \top & \mathcal{M}, s \not \vDash \perp \quad \mathcal{M}, s \vDash \varphi \wedge \psi \quad \Longleftrightarrow \mathcal{M}, s \vDash \varphi \text { and } \mathcal{M}, s \vDash \psi \\
\mathcal{M}, s \vDash p & \Longleftrightarrow p \in L(s) \quad \mathcal{M}, s \vDash \varphi \vee \psi \Longleftrightarrow \mathcal{M}, s \vDash \varphi \text { or } \mathcal{M}, s \vDash \psi \\
\mathcal{M}, s \vDash \neg \varphi & \Longleftrightarrow \mathcal{M}, s \not \vDash \varphi \quad \mathcal{M}, s \vDash \varphi \rightarrow \psi \Longleftrightarrow \mathcal{M}, s \not \vDash \varphi \text { or } \mathcal{M}, s \vDash \psi \\
\mathcal{M}, s \vDash \operatorname{AX} \varphi & \Longleftrightarrow \forall \text { paths } s=s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow \cdots \mathcal{M}, s_{2} \vDash \varphi \\
\mathcal{M}, s \vDash \operatorname{EX} \varphi & \Longleftrightarrow \exists \text { path } s=s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow \cdots \mathcal{M}, s_{2} \vDash \varphi \\
\mathcal{M}, s \vDash \operatorname{AF} \varphi & \Longleftrightarrow \quad \forall \text { paths } s=s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow \cdots \exists i \geqslant 1 \mathcal{M}, s_{i} \vDash \varphi \\
\mathcal{M}, s \vDash \operatorname{EF} \varphi & \Longleftrightarrow \exists \text { path } s=s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow \cdots \quad \exists i \geqslant 1 \mathcal{M}, s_{i} \vDash \varphi
\end{array}
$$

## Example


$\mathcal{M}, 1 \not \models I_{A} \wedge R_{B}$
$\mathcal{M}, 1 \not \models I_{B} \rightarrow P_{A} \vee R_{B}$
$\mathcal{M}, 4 \vDash I_{A} \wedge R_{B}$

$$
\mathcal{M}, 2 \vDash I_{B} \rightarrow P_{A} \vee R_{B}
$$

$\mathcal{M}, 1 \vDash \operatorname{AX}\left(R_{A} \vee R_{B}\right)$

$$
\mathcal{M}, 1 \not \models E X P_{B}
$$

$\mathcal{M}, 3 \not \models \mathrm{AXP} \mathrm{P}_{\mathrm{A}}$

$$
\mathcal{M}, 3 \vDash E X P_{A}
$$

$\mathcal{M}, 1$

$$
\mathrm{AF}\left(R_{A} \vee R_{B}\right)
$$

$\mathcal{M}, 1 \quad \mathrm{EF}\left(R_{A} \wedge R_{B}\right)$

## Example



$$
\begin{array}{rlrl}
\mathcal{M}, 1 & \nvdash I_{A} \wedge R_{B} & \mathcal{M}, 1 \not \models I_{B} \rightarrow P_{A} \vee R_{B} \\
\mathcal{M}, 4 & \vDash I_{A} \wedge R_{B} & \mathcal{M}, 2 \not \vDash I_{B} \rightarrow P_{A} \vee R_{B} \\
\mathcal{M}, 1 \not \vDash \operatorname{AX}\left(R_{A} \vee R_{B}\right) & \mathcal{M}, 1 \not \vDash \operatorname{EX} P_{B} \\
\mathcal{M}, 3 \not \vDash \operatorname{AXP} P_{A} & \mathcal{M}, 3 \vDash \operatorname{EXP} P_{A} \\
\mathcal{M}, 1 \not \vDash \operatorname{AF}\left(R_{A} \vee R_{B}\right) & \mathcal{M}, 1 \quad \operatorname{EF}\left(R_{A} \wedge R_{B}\right)
\end{array}
$$

## Example



$$
\begin{array}{ll}
\mathcal{M}, 1 \not \vDash I_{A} \wedge R_{B} & \mathcal{M}, 1 \not \vDash I_{B} \rightarrow P_{A} \vee R_{B} \\
\mathcal{M}, 4 \not \vDash I_{A} \wedge R_{B} & \mathcal{M}, 2 \not \vDash I_{B} \rightarrow P_{A} \vee R_{B} \\
\mathcal{M}, 1 \not \vDash \operatorname{AX}\left(R_{A} \vee R_{B}\right) & \mathcal{M}, 1 \not \vDash \operatorname{EX} P_{B} \\
\mathcal{M}, 3 \not \vDash \operatorname{AXP} P_{A} & \mathcal{M}, 3 \vDash \operatorname{EXP} P_{A} \\
\mathcal{M}, 1 \not \vDash \operatorname{AF}\left(R_{A} \vee R_{B}\right) & \mathcal{M}, 1 \nLeftarrow \operatorname{EF}\left(R_{A} \wedge R_{B}\right)
\end{array}
$$

## Example



$$
\begin{array}{ll}
\mathcal{M}, 1 \not \vDash I_{A} \wedge R_{B} & \mathcal{M}, 1 \not \models I_{B} \rightarrow P_{A} \vee R_{B} \\
\mathcal{M}, 4 \not I_{A} \wedge R_{B} & \mathcal{M}, 2 \not \vDash I_{B} \rightarrow P_{A} \vee R_{B} \\
\mathcal{M}, 1 \nLeftarrow \operatorname{AX}\left(R_{A} \vee R_{B}\right) & \mathcal{M}, 1 \not \models \operatorname{EX} P_{B} \\
\mathcal{M}, 3 \not \models \operatorname{AXP} P_{A} & \mathcal{M}, 3 \vDash \operatorname{EX} P_{A} \\
\mathcal{M}, 1 \vDash \operatorname{AF}\left(R_{A} \vee R_{B}\right) & \mathcal{M}, 1 \vDash \operatorname{EF}\left(R_{A} \wedge R_{B}\right) \\
\mathcal{M}, 5 \not \operatorname{AF} R_{B} & \mathcal{M}, 5 \not \operatorname{EF}\left(P_{A} \wedge P_{B}\right)
\end{array}
$$

## Example



$$
\begin{array}{ll}
\mathcal{M}, 1 \not \models I_{A} \wedge R_{B} & \mathcal{M}, 1 \not \models I_{B} \rightarrow P_{A} \vee R_{B} \\
\mathcal{M}, 4 \not I_{A} \wedge R_{B} & \mathcal{M}, 2 \not \vDash I_{B} \rightarrow P_{A} \vee R_{B} \\
\mathcal{M}, 1 \not \vDash \operatorname{AX}\left(R_{A} \vee R_{B}\right) & \mathcal{M}, 1 \not \models \operatorname{EX} P_{B} \\
\mathcal{M}, 3 \nvdash \operatorname{AXP} P_{A} & \mathcal{M}, 3 \vDash \operatorname{EX} P_{A} \\
\mathcal{M}, 1 \not \vDash \operatorname{AF}\left(R_{A} \vee R_{B}\right) & \mathcal{M}, 1 \vDash \operatorname{EF}\left(R_{A} \wedge R_{B}\right) \\
\mathcal{M}, 5 \not \models \operatorname{AF} R_{B} & \mathcal{M}, 5 \not \operatorname{EF}\left(P_{A} \wedge P_{B}\right)
\end{array}
$$

## Example



$$
\begin{array}{ll}
\mathcal{M}, 1 \not \models I_{A} \wedge R_{B} & \mathcal{M}, 1 \not \vDash I_{B} \rightarrow P_{A} \vee R_{B} \\
\mathcal{M}, 4 \not \vDash I_{A} \wedge R_{B} & \mathcal{M}, 2 \not \vDash I_{B} \rightarrow P_{A} \vee R_{B} \\
\mathcal{M}, 1 \not \vDash \operatorname{AX}\left(R_{A} \vee R_{B}\right) & \mathcal{M}, 1 \not \models \operatorname{EX} P_{B} \\
\mathcal{M}, 3 \not \models \operatorname{AX} P_{A} & \mathcal{M}, 3 \vDash \operatorname{EX} P_{A} \\
\mathcal{M}, 1 \not \vDash \operatorname{AF}\left(R_{A} \vee R_{B}\right) & \mathcal{M}, 1 \not \vDash \operatorname{EF}\left(R_{A} \wedge R_{B}\right) \\
\mathcal{M}, 5 \not \models \operatorname{AF} R_{B} & \mathcal{M}, 5 \nvdash \operatorname{EF}\left(P_{A} \wedge P_{B}\right)
\end{array}
$$

## Definition (cont'd)

satisfaction of CTL formula $\varphi$ in state $s \in S$ of model $\mathcal{M}=(S, \rightarrow, L)$

$$
\mathcal{M}, s \vDash \varphi
$$

is defined by induction on $\varphi$ :

$$
\begin{array}{ll}
\mathcal{M}, s \vDash \operatorname{AG} \varphi & \Longleftrightarrow \quad \forall \text { paths } s=s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow \cdots \quad \forall i \geqslant 1 \quad \mathcal{M}, s_{i} \vDash \varphi \\
\mathcal{M}, s \vDash \operatorname{EG} \varphi & \Longleftrightarrow \quad \exists \text { path } s=s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow \cdots \quad \forall i \geqslant 1 \quad \mathcal{M}, s_{i} \vDash \varphi
\end{array}
$$

## Example


$\mathcal{M}, 1 \not \models I_{A} \wedge R_{B}$
$\mathcal{M}, 1 \not \models I_{B} \rightarrow P_{A} \vee R_{B}$
$\mathcal{M}, 4 \vDash I_{A} \wedge R_{B}$
$\mathcal{M}, 1 \vDash \operatorname{AX}\left(R_{A} \vee R_{B}\right)$
$\mathcal{M}, 3 \not \models \mathrm{AXP} \mathrm{P}_{\mathrm{A}}$
$\mathcal{M}, 1 \vDash \operatorname{AF}\left(R_{A} \vee R_{B}\right)$
$\mathcal{M}, 5 \not \models \mathrm{AF} R_{B}$
$\mathcal{M}, 1 \quad \mathrm{AG}\left(R_{A} \rightarrow E F P_{A}\right)$

## Example



$$
\begin{array}{ll}
\mathcal{M}, 1 \not \models I_{A} \wedge R_{B} & \mathcal{M}, 1 \not \models I_{B} \rightarrow P_{A} \vee R_{B} \\
\mathcal{M}, 4 \not \vDash I_{A} \wedge R_{B} & \mathcal{M}, 2 \not \vDash I_{B} \rightarrow P_{A} \vee R_{B} \\
\mathcal{M}, 1 \not \vDash \operatorname{AX}\left(R_{A} \vee R_{B}\right) & \mathcal{M}, 1 \not \models \operatorname{EX} P_{B} \\
\mathcal{M}, 3 \not \models \operatorname{AXP} P_{A} & \mathcal{M}, 3 \vDash \operatorname{EX} P_{A} \\
\mathcal{M}, 1 \vDash \operatorname{AF}\left(R_{A} \vee R_{B}\right) & \mathcal{M}, 1 \vDash \operatorname{EF}\left(R_{A} \wedge R_{B}\right) \\
\mathcal{M}, 5 \not \vDash \operatorname{AF} R_{B} & \mathcal{M}, 5 \not \vDash \operatorname{EF}\left(P_{A} \wedge P_{B}\right) \\
\mathcal{M}, 1 \not \vDash \operatorname{AG}\left(R_{A} \rightarrow \operatorname{EF} P_{A}\right) & \mathcal{M}, 2 \\
\mathrm{EG}\left(\neg P_{A} \rightarrow R_{B}\right)
\end{array}
$$

## Example



| $\mathcal{M}, 1 \nvdash I_{A} \wedge R_{B}$ | $\mathcal{M}, 1 \nvdash I_{B} \rightarrow P_{A} \vee R_{B}$ |
| :---: | :---: |
| $\mathcal{M}, 4 \vDash I_{A} \wedge R_{B}$ | $\mathcal{M}, 2 \vDash I_{B} \rightarrow P_{A} \vee R_{B}$ |
| $\mathcal{M}, 1 \vDash \operatorname{AX}\left(R_{A} \vee R_{B}\right)$ | $\mathcal{M}, 1 \nvdash \operatorname{EXP}_{B}$ |
| $\mathcal{M}, 3 \nvdash \mathrm{AXP} \mathrm{P}_{\mathrm{A}}$ | $\mathcal{M}, 3 \vDash \operatorname{EXP}_{A}$ |
| $\mathcal{M}, 1 \vDash \operatorname{AF}\left(R_{A} \vee R_{B}\right)$ | $\mathcal{M}, 1 \vDash \operatorname{EF}\left(R_{A} \wedge R_{B}\right)$ |
| $\mathcal{M}, 5 \nvdash \mathrm{AF} R_{B}$ | $\mathcal{M}, 5 \nvdash \mathrm{EF}\left(P_{A} \wedge P_{B}\right)$ |
| $\mathcal{M}, 1 \vDash \mathrm{AG}\left(R_{A} \rightarrow \mathrm{EF} P_{A}\right)$ | $\mathcal{M}, 2 \vDash \mathrm{EG}\left(\neg P_{A} \rightarrow R_{B}\right)$ |
| $\mathcal{M}, 1 \quad \mathrm{AG}\left(R_{A} \rightarrow \mathrm{AF} P_{A}\right)$ | $\mathcal{M}, 2 \quad \mathrm{EG} \mathrm{P}_{\mathrm{A}}$ |

## Example



$$
\begin{aligned}
& \mathcal{M}, 1 \not \models I_{A} \wedge R_{B} \quad \mathcal{M}, 1 \not \models I_{B} \rightarrow P_{A} \vee R_{B} \\
& \mathcal{M}, 4 \vDash I_{A} \wedge R_{B} \\
& \mathcal{M}, 1 \vDash \operatorname{AX}\left(R_{A} \vee R_{B}\right) \quad \mathcal{M}, 1 \not \models E X P_{B} \\
& \mathcal{M}, 3 \not \models \quad \operatorname{AXP} P_{A} \\
& \mathcal{M}, 3 \vDash E X P_{A} \\
& \mathcal{M}, 1 \vDash \operatorname{AF}\left(R_{A} \vee R_{B}\right) \\
& \mathcal{M}, 1 \vDash \operatorname{EF}\left(R_{A} \wedge R_{B}\right) \\
& \mathcal{M}, 5 \not \models \mathrm{AF} R_{B} \\
& \mathcal{M}, 5 \not \models \mathrm{EF}\left(P_{A} \wedge P_{B}\right) \\
& \mathcal{M}, 1 \vDash \mathrm{AG}\left(R_{A} \rightarrow \mathrm{EF} P_{A}\right) \quad \mathcal{M}, 2 \vDash \mathrm{EG}\left(\neg P_{A} \rightarrow R_{B}\right) \\
& \mathcal{M}, 1 \not \models \mathrm{AG}\left(R_{A} \rightarrow \mathrm{AF} P_{A}\right) \quad \mathcal{M}, 2 \quad \mathrm{EG} P_{A}
\end{aligned}
$$

## Example



$$
\begin{aligned}
& \mathcal{M}, 1 \not \models I_{A} \wedge R_{B} \quad \mathcal{M}, 1 \not \models I_{B} \rightarrow P_{A} \vee R_{B} \\
& \mathcal{M}, 4 \vDash I_{A} \wedge R_{B} \\
& \mathcal{M}, 1 \vDash \operatorname{AX}\left(R_{A} \vee R_{B}\right) \quad \mathcal{M}, 1 \not \models E X P_{B} \\
& \mathcal{M}, 3 \not \models \quad \operatorname{AXP} P_{A} \\
& \mathcal{M}, 3 \vDash E X P_{A} \\
& \mathcal{M}, 1 \vDash \operatorname{AF}\left(R_{A} \vee R_{B}\right) \\
& \mathcal{M}, 1 \vDash \operatorname{EF}\left(R_{A} \wedge R_{B}\right) \\
& \mathcal{M}, 5 \not \models \mathrm{AF} R_{B} \\
& \mathcal{M}, 5 \not \models \mathrm{EF}\left(P_{A} \wedge P_{B}\right) \\
& \mathcal{M}, 1 \vDash \mathrm{AG}\left(R_{A} \rightarrow \mathrm{EF} P_{A}\right) \quad \mathcal{M}, 2 \vDash \mathrm{EG}\left(\neg P_{A} \rightarrow R_{B}\right) \\
& \mathcal{M}, 1 \not \models \mathrm{AG}\left(R_{A} \rightarrow \mathrm{AF} P_{A}\right) \quad \mathcal{M}, 2 \not \models \mathrm{EG} P_{A}
\end{aligned}
$$

## Definition (cont'd)

satisfaction of CTL formula $\varphi$ in state $s \in S$ of model $\mathcal{M}=(S, \rightarrow, L)$

$$
\mathcal{M}, s \vDash \varphi
$$

is defined by induction on $\varphi$ :

$$
\begin{array}{ll}
\mathcal{M}, s \vDash \mathrm{AG} \varphi & \Longleftrightarrow \\
\mathcal{M}, s \vDash \mathrm{EG} \varphi & \Longleftrightarrow \text { paths } s=s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow \cdots \quad \forall i \geqslant 1 \quad \mathcal{M}, s_{i} \vDash \varphi \\
\mathcal{M}, s \vDash \mathrm{~A}[\varphi \cup \psi] \quad \Longleftrightarrow \quad \forall \text { path } s=s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow \cdots \forall i \geqslant 1 \quad \mathcal{M}, s_{i} \vDash \varphi \\
& \Longleftrightarrow \quad \exists i \geqslant 1 \mathcal{M}, s_{i} \vDash \psi \text { and } \forall j<i \mathcal{M}, s_{j} \vDash \varphi \\
\mathcal{M}, s \vDash \mathrm{E}[\varphi \cup \psi] \quad \Longleftrightarrow & \exists \text { path } s=s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow \cdots \\
& \exists i \geqslant 1 \mathcal{M}, s_{i} \vDash \psi \text { and } \forall j<i \mathcal{M}, s_{j} \vDash \varphi
\end{array}
$$

## Example



$$
\begin{aligned}
& \mathcal{M}, 1 \nvdash I_{A} \wedge R_{B} \\
& \mathcal{M}, 4 \vDash I_{A} \wedge R_{B} \\
& \mathcal{M}, 1 \vDash \operatorname{AX}\left(R_{A} \vee R_{B}\right) \quad \mathcal{M}, 1 \not \models E X P_{B} \\
& \mathcal{M}, 3 \not \models \quad \operatorname{AXP} P_{A} \\
& \mathcal{M}, 1 \vDash \mathrm{AF}\left(R_{A} \vee R_{B}\right) \\
& \mathcal{M}, 1 \vDash \operatorname{EF}\left(R_{A} \wedge R_{B}\right) \\
& \mathcal{M}, 5 \not \models \mathrm{AF} R_{B} \\
& \mathcal{M}, 5 \not \models \mathrm{EF}\left(P_{A} \wedge P_{B}\right) \\
& \mathcal{M}, 1 \vDash \mathrm{AG}\left(R_{A} \rightarrow \mathrm{EF} P_{A}\right) \quad \mathcal{M}, 2 \vDash \mathrm{EG}\left(\neg P_{A} \rightarrow R_{B}\right) \\
& \mathcal{M}, 1 \not \models \mathrm{AG}\left(R_{A} \rightarrow \mathrm{AF} P_{A}\right) \quad \mathcal{M}, 2 \not \models \mathrm{EG} P_{A} \\
& \mathcal{M}, 1 \quad \neg \mathrm{~A}\left[R_{A} \cup P_{A}\right] \\
& \mathcal{M}, 7 \quad \mathrm{~A}\left[P_{A} \cup R_{A}\right]
\end{aligned}
$$

## Example



$$
\begin{aligned}
& \mathcal{M}, 1 \not \models I_{A} \wedge R_{B} \quad \mathcal{M}, 1 \not \models I_{B} \rightarrow P_{A} \vee R_{B} \\
& \mathcal{M}, 4 \vDash I_{A} \wedge R_{B} \\
& \mathcal{M}, 1 \vDash \operatorname{AX}\left(R_{A} \vee R_{B}\right) \quad \mathcal{M}, 1 \not \models E X P_{B} \\
& \mathcal{M}, 3 \not \models \quad \operatorname{AXP} P_{A} \\
& \mathcal{M}, 3 \vDash \operatorname{EXP}_{A} \\
& \mathcal{M}, 1 \vDash \operatorname{AF}\left(R_{A} \vee R_{B}\right) \\
& \mathcal{M}, 1 \vDash \operatorname{EF}\left(R_{A} \wedge R_{B}\right) \\
& \mathcal{M}, 5 \not \models \mathrm{AF} R_{B} \\
& \mathcal{M}, 5 \not \models \mathrm{EF}\left(P_{A} \wedge P_{B}\right) \\
& \mathcal{M}, 1 \vDash \mathrm{AG}\left(R_{A} \rightarrow \mathrm{EF} P_{A}\right) \quad \mathcal{M}, 2 \vDash \mathrm{EG}\left(\neg P_{A} \rightarrow R_{B}\right) \\
& \mathcal{M}, 1 \not \models \mathrm{AG}\left(R_{A} \rightarrow \mathrm{AF} P_{A}\right) \quad \mathcal{M}, 2 \not \models \mathrm{EG} P_{A} \\
& \mathcal{M}, 1 \vDash \neg \mathrm{~A}\left[R_{A} \cup P_{A}\right] \\
& \mathcal{M}, 7 \quad \mathrm{~A}\left[P_{A} \cup R_{A}\right]
\end{aligned}
$$

## Example

|  | $\mathcal{M}, 1 \not \models I_{A} \wedge R_{B}$ | $\mathcal{M}, 1 \not \models I_{B} \rightarrow P_{A} \vee R_{B}$ |
| :---: | :---: | :---: |
| $I_{A} I_{B}$ | $\mathcal{M}, 4 \vDash I_{A} \wedge R_{B}$ | $\mathcal{M}, 2 \vDash I_{B} \rightarrow P_{A} \vee R_{B}$ |
| model $\mathcal{M}$ | $\mathcal{M}, 1 \vDash \operatorname{AX}\left(R_{A} \vee R_{B}\right)$ | $\mathcal{M}, 1 \not \models E X P_{B}$ |
|  | $\mathcal{M}, 3 \not \models \mathrm{AXP} \mathrm{P}_{\mathrm{A}}$ | $\mathcal{M}, 3 \vDash \mathrm{EXP}_{\mathrm{A}}$ |
|  | $\mathcal{M}, 1 \vDash \mathrm{AF}\left(R_{A} \vee R_{B}\right)$ | $\mathcal{M}, 1 \vDash \operatorname{EF}\left(R_{A} \wedge R_{B}\right)$ |
|  | $\mathcal{M}, 5 \not \models \mathrm{AF} R_{B}$ | $\mathcal{M}, 5 \not \models \mathrm{EF}\left(P_{A} \wedge P_{B}\right)$ |
|  | $\mathcal{M}, 1 \vDash \mathrm{AG}\left(R_{A} \rightarrow \mathrm{EF} P_{A}\right)$ | $\mathcal{M}, 2 \vDash \mathrm{EG}\left(\neg P_{A} \rightarrow R_{B}\right)$ |
|  | $\mathcal{M}, 1 \not \models \mathrm{AG}\left(R_{A} \rightarrow \mathrm{AF} P_{A}\right)$ | $\mathcal{M}, 2 \not \models E G P_{A}$ |
|  | $\mathcal{M}, 1 \vDash \neg \mathrm{~A}\left[R_{A} \cup P_{A}\right]$ |  |
|  | $\mathcal{M}, 7 \vDash \mathrm{~A}\left[P_{A} \cup R_{A}\right]$ |  |

## Example

$$
\begin{aligned}
& \mathcal{M}, 1 \not \models I_{A} \wedge R_{B} \quad \mathcal{M}, 1 \not \models I_{B} \rightarrow P_{A} \vee R_{B} \\
& \mathcal{M}, 4 \vDash I_{A} \wedge R_{B} \quad \mathcal{M}, 2 \vDash I_{B} \rightarrow P_{A} \vee R_{B} \\
& \mathcal{M}, 1 \vDash \operatorname{AX}\left(R_{A} \vee R_{B}\right) \quad \mathcal{M}, 1 \not \models E X P_{B} \\
& \mathcal{M}, 3 \not \models \operatorname{AXP} P_{A} \quad \mathcal{M}, 3 \vDash \operatorname{EXP}_{A} \\
& \mathcal{M}, 1 \vDash \operatorname{AF}\left(R_{A} \vee R_{B}\right) \quad \mathcal{M}, 1 \vDash \operatorname{EF}\left(R_{A} \wedge R_{B}\right) \\
& \mathcal{M}, 5 \not \models \mathrm{AF} R_{B} \quad \mathcal{M}, 5 \not \models \mathrm{EF}\left(P_{A} \wedge P_{B}\right) \\
& \mathcal{M}, 1 \vDash \mathrm{AG}\left(R_{A} \rightarrow \mathrm{EF} P_{A}\right) \quad \mathcal{M}, 2 \vDash \mathrm{EG}\left(\neg P_{A} \rightarrow R_{B}\right) \\
& \mathcal{M}, 1 \not \models \mathrm{AG}\left(R_{A} \rightarrow \mathrm{AF} P_{A}\right) \quad \mathcal{M}, 2 \not \models \mathrm{EG} P_{\mathrm{A}} \\
& \mathcal{M}, 1 \vDash \neg \mathrm{~A}\left[R_{A} \cup P_{A}\right] \quad \mathcal{M}, 1 \quad \mathrm{EXE}\left[R_{A} \cup P_{A}\right] \\
& \mathcal{M}, 7 \vDash \mathrm{~A}\left[P_{A} \cup R_{A}\right] \quad \mathcal{M}, 7 \quad \mathrm{E}\left[P_{A} \wedge P_{B} \cup I_{A} \vee I_{B}\right]
\end{aligned}
$$

## Example

$$
\begin{aligned}
& \mathcal{M}, 1 \not \models I_{A} \wedge R_{B} \quad \mathcal{M}, 1 \not \models I_{B} \rightarrow P_{A} \vee R_{B} \\
& \mathcal{M}, 4 \vDash I_{A} \wedge R_{B} \quad \mathcal{M}, 2 \vDash I_{B} \rightarrow P_{A} \vee R_{B} \\
& \mathcal{M}, 1 \vDash \operatorname{AX}\left(R_{A} \vee R_{B}\right) \quad \mathcal{M}, 1 \not \models E X P_{B} \\
& \mathcal{M}, 3 \not \models \operatorname{AXP} P_{A} \quad \mathcal{M}, 3 \vDash \operatorname{EXP}_{A} \\
& \mathcal{M}, 1 \vDash \operatorname{AF}\left(R_{A} \vee R_{B}\right) \quad \mathcal{M}, 1 \vDash \operatorname{EF}\left(R_{A} \wedge R_{B}\right) \\
& \mathcal{M}, 5 \not \models \mathrm{AF} R_{B} \quad \mathcal{M}, 5 \not \models \mathrm{EF}\left(P_{A} \wedge P_{B}\right) \\
& \mathcal{M}, 1 \vDash \mathrm{AG}\left(R_{A} \rightarrow \mathrm{EF} P_{A}\right) \quad \mathcal{M}, 2 \vDash \mathrm{EG}\left(\neg P_{A} \rightarrow R_{B}\right) \\
& \mathcal{M}, 1 \not \models \mathrm{AG}\left(R_{A} \rightarrow \mathrm{AF} P_{A}\right) \quad \mathcal{M}, 2 \not \models \mathrm{EG} P_{A} \\
& \mathcal{M}, 1 \vDash \neg \mathrm{~A}\left[R_{A} \cup P_{A}\right] \quad \mathcal{M}, 1 \vDash \operatorname{EXE}\left[R_{A} \cup P_{A}\right] \\
& \mathcal{M}, 7 \vDash \mathrm{~A}\left[P_{A} \cup R_{A}\right] \quad \mathcal{M}, 7 \quad \mathrm{E}\left[P_{A} \wedge P_{B} \cup I_{A} \vee I_{B}\right]
\end{aligned}
$$

## Example

$$
\begin{aligned}
& \mathcal{M}, 1 \not \models I_{A} \wedge R_{B} \quad \mathcal{M}, 1 \not \models I_{B} \rightarrow P_{A} \vee R_{B} \\
& \mathcal{M}, 4 \vDash I_{A} \wedge R_{B} \quad \mathcal{M}, 2 \vDash I_{B} \rightarrow P_{A} \vee R_{B} \\
& \mathcal{M}, 1 \vDash \operatorname{AX}\left(R_{A} \vee R_{B}\right) \quad \mathcal{M}, 1 \not \models E X P_{B} \\
& \mathcal{M}, 3 \not \models \operatorname{AXP} P_{A} \quad \mathcal{M}, 3 \vDash \operatorname{EXP}_{A} \\
& \mathcal{M}, 1 \vDash \operatorname{AF}\left(R_{A} \vee R_{B}\right) \quad \mathcal{M}, 1 \vDash \operatorname{EF}\left(R_{A} \wedge R_{B}\right) \\
& \mathcal{M}, 5 \not \models \mathrm{AF} R_{B} \quad \mathcal{M}, 5 \not \models \mathrm{EF}\left(P_{A} \wedge P_{B}\right) \\
& \mathcal{M}, 1 \vDash \mathrm{AG}\left(R_{A} \rightarrow \mathrm{EF} P_{A}\right) \quad \mathcal{M}, 2 \vDash \mathrm{EG}\left(\neg P_{A} \rightarrow R_{B}\right) \\
& \mathcal{M}, 1 \not \models \mathrm{AG}\left(R_{A} \rightarrow \mathrm{AF} P_{A}\right) \quad \mathcal{M}, 2 \not \models \mathrm{EG} P_{\mathrm{A}} \\
& \mathcal{M}, 1 \vDash \neg \mathrm{~A}\left[R_{A} \cup P_{A}\right] \quad \mathcal{M}, 1 \vDash \operatorname{EXE}\left[R_{A} \cup P_{A}\right] \\
& \mathcal{M}, 7 \vDash \mathrm{~A}\left[P_{A} \cup R_{A}\right] \quad \mathcal{M}, 7 \not \models \mathrm{E}\left[P_{A} \wedge P_{B} \cup I_{A} \vee I_{B}\right]
\end{aligned}
$$

satisfaction of CTL formulas in finite models is decidable

## Theorem

satisfaction of CTL formulas in finite models is decidable

## Definition

CTL formulas $\varphi$ and $\psi$ are semantically equivalent $(\varphi \equiv \psi)$ if

$$
\mathcal{M}, s \vDash \varphi \quad \Longleftrightarrow \quad \mathcal{M}, s \vDash \psi
$$

for all models $\mathcal{M}=(S, \rightarrow, L)$ and states $s \in S$

## Theorem

satisfaction of CTL formulas in finite models is decidable

## Definition

CTL formulas $\varphi$ and $\psi$ are semantically equivalent $(\varphi \equiv \psi)$ if

$$
\mathcal{M}, s \vDash \varphi \quad \Longleftrightarrow \quad \mathcal{M}, s \vDash \psi
$$

for all models $\mathcal{M}=(S, \rightarrow, L)$ and states $s \in S$

## Theorem

$$
\neg \mathrm{AF} \varphi \equiv \mathrm{EG} \neg \varphi
$$

## Theorem

satisfaction of CTL formulas in finite models is decidable

## Definition

CTL formulas $\varphi$ and $\psi$ are semantically equivalent $(\varphi \equiv \psi)$ if

$$
\mathcal{M}, s \vDash \varphi \quad \Longleftrightarrow \quad \mathcal{M}, s \vDash \psi
$$

for all models $\mathcal{M}=(S, \rightarrow, L)$ and states $s \in S$

## Theorem

$$
\begin{aligned}
& \neg \mathrm{AF} \varphi \equiv \mathrm{EG} \neg \varphi \\
& \neg \mathrm{EF} \varphi \equiv \mathrm{AG} \neg \varphi
\end{aligned}
$$

## Theorem

satisfaction of CTL formulas in finite models is decidable

## Definition

CTL formulas $\varphi$ and $\psi$ are semantically equivalent $(\varphi \equiv \psi)$ if

$$
\mathcal{M}, s \vDash \varphi \quad \Longleftrightarrow \quad \mathcal{M}, s \vDash \psi
$$

for all models $\mathcal{M}=(S, \rightarrow, L)$ and states $s \in S$

## Theorem

$$
\begin{aligned}
& \neg \mathrm{AF} \varphi \equiv \mathrm{EG} \neg \varphi \\
& \neg \mathrm{EF} \varphi \equiv \mathrm{AG} \neg \varphi \\
& \neg \mathrm{AX} \varphi \equiv \mathrm{EX} \neg \varphi
\end{aligned}
$$

## Theorem

satisfaction of CTL formulas in finite models is decidable

## Definition

CTL formulas $\varphi$ and $\psi$ are semantically equivalent $(\varphi \equiv \psi)$ if

$$
\mathcal{M}, s \vDash \varphi \quad \Longleftrightarrow \quad \mathcal{M}, s \vDash \psi
$$

for all models $\mathcal{M}=(S, \rightarrow, L)$ and states $s \in S$

## Theorem

$$
\begin{array}{ll}
\neg \mathrm{AF} \varphi \equiv \mathrm{EG} \neg \varphi & \mathrm{AF} \varphi \equiv \mathrm{~A}[\top \mathrm{U} \varphi] \\
\neg \mathrm{EF} \varphi \equiv \mathrm{AG} \neg \varphi & \\
\neg \mathrm{AX} \varphi \equiv \mathrm{EX} \neg \varphi &
\end{array}
$$

## Theorem

satisfaction of CTL formulas in finite models is decidable

## Definition

CTL formulas $\varphi$ and $\psi$ are semantically equivalent $(\varphi \equiv \psi)$ if

$$
\mathcal{M}, s \vDash \varphi \quad \Longleftrightarrow \quad \mathcal{M}, s \vDash \psi
$$

for all models $\mathcal{M}=(S, \rightarrow, L)$ and states $s \in S$

## Theorem

$$
\begin{array}{ll}
\neg \mathrm{AF} \varphi \equiv \mathrm{EG} \neg \varphi & \mathrm{AF} \varphi \equiv \mathrm{~A}[\top \mathrm{U} \varphi] \\
\neg \mathrm{EF} \varphi \equiv \mathrm{AG} \neg \varphi & \mathrm{EF} \varphi \equiv \mathrm{E}[\top \cup \varphi]
\end{array}
$$

$$
\neg \mathrm{AX} \varphi \equiv \mathrm{EX} \neg \varphi
$$

## Theorem

satisfaction of CTL formulas in finite models is decidable

## Definition

CTL formulas $\varphi$ and $\psi$ are semantically equivalent $(\varphi \equiv \psi)$ if

$$
\mathcal{M}, s \vDash \varphi \quad \Longleftrightarrow \quad \mathcal{M}, s \vDash \psi
$$

for all models $\mathcal{M}=(S, \rightarrow, L)$ and states $s \in S$

## Theorem

$$
\begin{aligned}
\neg \mathrm{AF} \varphi & \equiv \mathrm{EG} \neg \varphi & \mathrm{AF} \varphi & \equiv \mathrm{~A}[\mathrm{~T} \mathrm{U} \varphi] \\
\neg \mathrm{EF} \varphi & \equiv \mathrm{AG} \neg \varphi & \mathrm{EF} \varphi & \equiv \mathrm{E}[\mathrm{~T} \mathrm{U} \varphi] \\
\neg \mathrm{AX} \varphi & \equiv \mathrm{EX} \neg \varphi & \mathrm{~A}[\varphi \mathrm{U} \psi] & \equiv \neg(\mathrm{E}[\neg \psi \mathrm{U}(\neg \varphi \wedge \neg \psi)] \vee \mathrm{EG} \neg \psi)
\end{aligned}
$$

## Outline

```
1. Summary of Previous Lecture
2. Post's Adequacy Theorem
3. Intermezzo
4. Model Checking
5. Branching-Time Temporal Logic (CTL)
```

6. CTL Model Checking Algorithm
7. Further Reading

## CTL Model Checking Algorithm 1

input: $\bullet$ model $\mathcal{M}=(S, \rightarrow, L)$ and CTL formula $\varphi$
output: - $\{s \in S \mid \mathcal{M}, s \vDash \varphi\}$

## CTL Model Checking Algorithm (1)

input: $\quad$ model $\mathcal{M}=(S, \rightarrow, L)$ and CTL formula $\varphi$
output: • $\{s \in S \mid \mathcal{M}, s \vDash \varphi\}$
label each state $s \in S$ by those subformulas of $\varphi$ that are satisfied in $s$

## CTL Model Checking Algorithm (1)

```
input: - model }\mathcal{M}=(S,->,L)\mathrm{ and CTL formula }
output: - {s\inS | M , s\vDash\varphi}
```

label each state $s \in S$ by those subformulas of $\varphi$ that are satisfied in $s$
$T \quad$ label every state
$\perp \quad$ label no state

## CTL Model Checking Algorithm 1

```
input: - model M}=(S,->,L) and CTL formula \varphi
output: - {s\inS|\mathcal{M},s\vDash\varphi}
```

label each state $s \in S$ by those subformulas of $\varphi$ that are satisfied in $s$
T label every state
$\perp \quad$ label no state
$p \quad$ label $s \Longleftrightarrow p \in L(s)$

## CTL Model Checking Algorithm 1

```
input: - model }\mathcal{M}=(S,->,L) and CTL formula \varphi
output: - {s\inS|\mathcal{M},s\vDash\varphi}
```

label each state $s \in S$ by those subformulas of $\varphi$ that are satisfied in $s$
T label every state
$\perp \quad$ label no state
$p \quad$ label $s \Longleftrightarrow p \in L(s)$
label $s \Longleftrightarrow s$ is not labelled with $\varphi$

## CTL Model Checking Algorithm 1

```
input: - model M = (S,->,L) and CTL formula }
output: - {s\inS|\mathcal{M},s\vDash\varphi}
```

label each state $s \in S$ by those subformulas of $\varphi$ that are satisfied in $s$
T label every state
$\perp \quad$ label no state
$p \quad$ label $s \Longleftrightarrow p \in L(s)$
$\neg \varphi \quad$ label $s \quad \Longleftrightarrow \quad s$ is not labelled with $\varphi$
$\varphi \wedge \psi$ label $s \Longleftrightarrow s$ is labelled with both $\varphi$ and $\psi$

## CTL Model Checking Algorithm 1

```
input: - model M}=(S,->,L) and CTL formula \varphi
output: - {s\inS|\mathcal{M},s\vDash\varphi}
```

label each state $s \in S$ by those subformulas of $\varphi$ that are satisfied in $s$
T label every state
$\perp \quad$ label no state
$p \quad$ label $s \Longleftrightarrow p \in L(s)$
$\neg \varphi \quad$ label $s \quad \Longleftrightarrow \quad s$ is not labelled with $\varphi$
$\varphi \wedge \psi \quad$ label $s \Longleftrightarrow s$ is labelled with both $\varphi$ and $\psi$
$\varphi \vee \psi$ label $s \Longleftrightarrow s$ is labelled with $\varphi$ or $\psi$

## CTL Model Checking Algorithm 1

```
input: - model M}=(S,->,L) and CTL formula \varphi
output: - {s\inS|\mathcal{M},s\vDash\varphi}
label each state s\inS by those subformulas of \varphi that are satisfied in s
T label every state
label no state
p label s \Longleftrightarrow p\inL(s)
\neg\varphi label }s\quad\Longleftrightarrow\quads\mathrm{ is not labelled with }
\varphi\wedge\psi label s \Longleftrightarrow s is labelled with both \varphi and \psi
\varphi\vee\psi label s \Longleftrightarrows is labelled with }\varphi\mathrm{ or }
\varphi->\psi label s}\Longleftrightarrows\mathrm{ is not labelled with }\varphi\mathrm{ or s is labelled with }
```


## CTL Model Checking Algorithm 1

```
input: - model }\mathcal{M}=(S,->,L)\mathrm{ and CTL formula }
output: - {s\inS | M , s\vDash\varphi}
label each state s\inS by those subformulas of \varphi that are satisfied in s
T label every state
| label no state
p label s < p\inL(s)
\neg \varphi \quad l a b e l s \quad \Longleftrightarrow s \text { is not labelled with } \varphi
\varphi\wedge\psi label s \Longleftrightarrow s is labelled with both }\varphi\mathrm{ and }
\varphi\vee\psi label s \Longleftrightarrow s is labelled with }\varphi\mathrm{ or }
\varphi->\psi label s \Longleftrightarrows is not labelled with \varphi or s is labelled with \psi
AX }\quad\mathrm{ label s <t is labelled with }\varphi\mathrm{ for all t with s 
```


## CTL Model Checking Algorithm 2

EX $\varphi$ label $s \Longleftrightarrow t$ is labelled with $\varphi$ for some $t$ with $s \rightarrow t$

## CTL Model Checking Algorithm 2

EX $\varphi$ label $s \Longleftrightarrow t$ is labelled with $\varphi$ for some $t$ with $s \rightarrow t$
AF $\varphi$ label $s \Longleftrightarrow$ (1) $s$ is labelled with $\varphi$

## CTL Model Checking Algorithm 2

EX $\varphi$ label $s \Longleftrightarrow t$ is labelled with $\varphi$ for some $t$ with $s \rightarrow t$
AF $\varphi$ label $s \Longleftrightarrow$ (1) $s$ is labelled with $\varphi$
(2) $t$ is labelled with $\mathrm{AF} \varphi$ for all $t$ with $s \rightarrow t$

## CTL Model Checking Algorithm 2

EX $\varphi$ label $s \Longleftrightarrow t$ is labelled with $\varphi$ for some $t$ with $s \rightarrow t$
AF $\varphi$ label $s \Longleftrightarrow$ (1) $s$ is labelled with $\varphi$
(2) $t$ is labelled with $\mathrm{AF} \varphi$ for all $t$ with $s \rightarrow t$
(3) repeat (2) until no change

## CTL Model Checking Algorithm 2

EX $\varphi$ label $s \Longleftrightarrow t$ is labelled with $\varphi$ for some $t$ with $s \rightarrow t$
AF $\varphi$ label $s \Longleftrightarrow$ (1) $s$ is labelled with $\varphi$
(2) $t$ is labelled with $\mathrm{AF} \varphi$ for all $t$ with $s \rightarrow t$
(3) repeat (2) until no change

EF $\varphi$ label $s \Longleftrightarrow$ (1) $s$ is labelled with $\varphi$

## CTL Model Checking Algorithm 2

EX $\varphi$ label $s \Longleftrightarrow t$ is labelled with $\varphi$ for some $t$ with $s \rightarrow t$
AF $\varphi$ label $s \Longleftrightarrow$ (1) $s$ is labelled with $\varphi$
(2) $t$ is labelled with $\mathrm{AF} \varphi$ for all $t$ with $s \rightarrow t$
(3) repeat (2) until no change

EF $\varphi$ label $s \Longleftrightarrow$ (1) $s$ is labelled with $\varphi$
(2) $t$ is labelled with $\mathrm{EF} \varphi$ for some $t$ with $s \rightarrow t$

## CTL Model Checking Algorithm 2

EX $\varphi$ label $s \Longleftrightarrow t$ is labelled with $\varphi$ for some $t$ with $s \rightarrow t$
AF $\varphi$ label $s \Longleftrightarrow$ (1) $s$ is labelled with $\varphi$
(2) $t$ is labelled with $\mathrm{AF} \varphi$ for all $t$ with $s \rightarrow t$
(3) repeat (2) until no change

EF $\varphi$ label $s \Longleftrightarrow$ (1) $s$ is labelled with $\varphi$
(2) $t$ is labelled with $\mathrm{EF} \varphi$ for some $t$ with $s \rightarrow t$
(3) repeat (2) until no change

## CTL Model Checking Algorithm 2

EX $\varphi$ label $s \Longleftrightarrow t$ is labelled with $\varphi$ for some $t$ with $s \rightarrow t$
AF $\varphi$ label $s \Longleftrightarrow$ (1) $s$ is labelled with $\varphi$
(2) $t$ is labelled with $\mathrm{AF} \varphi$ for all $t$ with $s \rightarrow t$
(3) repeat (2) until no change

EF $\varphi$ label $s \quad \Longleftrightarrow$ (1) $s$ is labelled with $\varphi$
(2) $t$ is labelled with $\mathrm{EF} \varphi$ for some $t$ with $s \rightarrow t$
(3) repeat (2) until no change

AG $\varphi$ (1) label every $s$ that is labelled with $\varphi$

## CTL Model Checking Algorithm 2

EX $\varphi$ label $s \Longleftrightarrow t$ is labelled with $\varphi$ for some $t$ with $s \rightarrow t$
AF $\varphi$ label $s \Longleftrightarrow$ (1) $s$ is labelled with $\varphi$
(2) $t$ is labelled with $\mathrm{AF} \varphi$ for all $t$ with $s \rightarrow t$
(3) repeat (2) until no change

EF $\varphi$ label $s \Longleftrightarrow$ (1) $s$ is labelled with $\varphi$
(2) $t$ is labelled with $\operatorname{EF} \varphi$ for some $t$ with $s \rightarrow t$
(3) repeat (2) until no change

AG $\varphi$ (1) label every $s$ that is labelled with $\varphi$
(2) remove label from $s \Longleftrightarrow t$ is not labelled with $\operatorname{AG} \varphi$ for some $t$ with $s \rightarrow t$

## CTL Model Checking Algorithm 2

EX $\varphi$ label $s \Longleftrightarrow t$ is labelled with $\varphi$ for some $t$ with $s \rightarrow t$
AF $\varphi$ label $s \Longleftrightarrow$ (1) $s$ is labelled with $\varphi$
(2) $t$ is labelled with $\mathrm{AF} \varphi$ for all $t$ with $s \rightarrow t$
(3) repeat (2) until no change

EF $\varphi$ label $s \Longleftrightarrow$ (1) $s$ is labelled with $\varphi$
(2) $t$ is labelled with $\mathrm{EF} \varphi$ for some $t$ with $s \rightarrow t$
(3) repeat (2) until no change

AG $\varphi$ (1) label every $s$ that is labelled with $\varphi$
(2) remove label from $s \Longleftrightarrow t$ is not labelled with $\operatorname{AG} \varphi$ for some $t$ with $s \rightarrow t$
(3) repeat (2) until no change

## CTL Model Checking Algorithm 3

EG $\varphi$ (1) label every $s$ that is labelled with $\varphi$
(2) remove label from $s \Longleftrightarrow t$ is not labelled with $\mathrm{EG} \varphi$ for all $t$ with $s \rightarrow t$
(3) repeat (2) until no change

SS 2024
Logic
lecture 9

## CTL Model Checking Algorithm 3

EG $\varphi \quad$ (1) label every $s$ that is labelled with $\varphi$
(2) remove label from $s \Longleftrightarrow t$ is not labelled with $\mathrm{EG} \varphi$ for all $t$ with $s \rightarrow t$
(3) repeat (2) until no change
$\mathrm{A}[\varphi \cup \psi]$ label $s \quad \Longleftrightarrow$ (1) $s$ is labelled with $\psi$
(2) $s$ is labelled with $\varphi$ and $t$ with $\mathrm{A}[\varphi \cup \psi]$ for all $t$ with $s \rightarrow t$
(3) repeat (2) until no change

## CTL Model Checking Algorithm 3

EG $\varphi \quad$ (1) label every $s$ that is labelled with $\varphi$
(2) remove label from $s \Longleftrightarrow t$ is not labelled with $\mathrm{EG} \varphi$ for all $t$ with $s \rightarrow t$
(3) repeat (2) until no change
$\mathrm{A}[\varphi \cup \psi]$ label $s \Longleftrightarrow$ (1) $s$ is labelled with $\psi$
(2) $s$ is labelled with $\varphi$ and $t$ with $\mathrm{A}[\varphi \cup \psi]$ for all $t$ with $s \rightarrow t$
(3) repeat (2) until no change
$\mathrm{E}[\varphi \cup \psi]$ label $s \Longleftrightarrow$ (1) $s$ is labelled with $\psi$
(2) $s$ is labelled with $\varphi$ and $t$ with $\mathrm{E}[\varphi \mathrm{U} \psi]$ for some $t$ with $s \rightarrow t$
(3) repeat (2) until no change

SS 2024
Logic
lecture 9
6. CTL Model Checking Algorithm

## Example 1



## Example 1

model $\mathcal{M}$

## Example 1



## Example 1

model $\mathcal{M}$

## Example 1



## Example 2



## Example 2



## Example 2



## Example ${ }^{2}$



## Example 2



## Example 2

model $\mathcal{M}$

## Example 2



## Example 2



## Example 2



## Example 2

model $\mathcal{M}$

## Example 2



## Example 2



## Example 3



## More Efficient Algorithm for EG

EG $\varphi$ (1) restrict graph to states satisfying $\varphi$ :

$$
\begin{aligned}
S^{\prime} & =\{s \in S \mid \mathcal{M}, s \vDash \varphi\} \\
\rightarrow^{\prime} & =\left\{(s, t) \mid s \rightarrow t \text { and } s, t \in S^{\prime}\right\}
\end{aligned}
$$

## More Efficient Algorithm for EG

EG $\varphi$ (1) restrict graph to states satisfying $\varphi$ :

$$
\begin{aligned}
S^{\prime} & =\{s \in S \mid \mathcal{M}, s \vDash \varphi\} \\
\rightarrow^{\prime} & =\left\{(s, t) \mid s \rightarrow t \text { and } s, t \in S^{\prime}\right\}
\end{aligned}
$$

(2) compute non-trivial strongly connected components of $\left(S^{\prime}, \rightarrow^{\prime}\right)$

## More Efficient Algorithm for EG

EG $\varphi$ (1) restrict graph to states satisfying $\varphi$ :

$$
\begin{aligned}
S^{\prime} & =\{s \in S \mid \mathcal{M}, s \vDash \varphi\} \\
\rightarrow^{\prime} & =\left\{(s, t) \mid s \rightarrow t \text { and } s, t \in S^{\prime}\right\}
\end{aligned}
$$

(2) compute non-trivial strongly connected components of $\left(S^{\prime}, \rightarrow^{\prime}\right)$

## More Efficient Algorithm for EG

EG $\varphi$ (1) restrict graph to states satisfying $\varphi$ :

$$
\begin{aligned}
S^{\prime} & =\{s \in S \mid \mathcal{M}, s \vDash \varphi\} \\
\rightarrow^{\prime} & =\left\{(s, t) \mid s \rightarrow t \text { and } s, t \in S^{\prime}\right\}
\end{aligned}
$$

(2) compute non-trivial strongly connected components of $\left(S^{\prime}, \rightarrow^{\prime}\right)$
(3) label all states in such SCCs

## More Efficient Algorithm for EG

EG $\varphi$ (1) restrict graph to states satisfying $\varphi$ :

$$
\begin{aligned}
S^{\prime} & =\{s \in S \mid \mathcal{M}, s \vDash \varphi\} \\
\rightarrow^{\prime} & =\left\{(s, t) \mid s \rightarrow t \text { and } s, t \in S^{\prime}\right\}
\end{aligned}
$$

(2) compute non-trivial strongly connected components of $\left(S^{\prime}, \rightarrow^{\prime}\right)$
(3) label all states in such SCCs
(4) compute and label all states that in $\left(S^{\prime}, \rightarrow^{\prime}\right)$ can reach labelled state

## More Efficient Algorithm for EG

EG $\varphi$ (1) restrict graph to states satisfying $\varphi$ :

$$
\begin{aligned}
S^{\prime} & =\{s \in S \mid \mathcal{M}, s \vDash \varphi\} \\
\rightarrow^{\prime} & =\left\{(s, t) \mid s \rightarrow t \text { and } s, t \in S^{\prime}\right\}
\end{aligned}
$$

(2) compute non-trivial strongly connected components of $\left(S^{\prime}, \rightarrow^{\prime}\right)$
(3) label all states in such SCCs
(4) compute and label all states that in $\left(S^{\prime}, \rightarrow^{\prime}\right)$ can reach labelled state

## Complexity

f: \# connectives
$\mathcal{O}(f \cdot(V+E))$ with $V$ : \# states
E: \# transitions

## More Efficient Algorithm for EG

EG $\varphi$ (1) restrict graph to states satisfying $\varphi$ :

$$
\begin{aligned}
S^{\prime} & =\{s \in S \mid \mathcal{M}, s \vDash \varphi\} \\
\rightarrow^{\prime} & =\left\{(s, t) \mid s \rightarrow t \text { and } s, t \in S^{\prime}\right\}
\end{aligned}
$$

(2) compute non-trivial strongly connected components of $\left(S^{\prime}, \rightarrow^{\prime}\right)$
(3) label all states in such SCCs
(4) compute and label all states that in $\left(S^{\prime}, \rightarrow^{\prime}\right)$ can reach labelled state

## Complexity

$\mathcal{O}(f \cdot(V+E))$ \# connectives | with\# states <br> $E:$ \# transitions instead of $\mathcal{O}(f \cdot V \cdot(V+E))$, |
| :--- |

size of model is more often than not exponential in number of variables and number of components which execute in parallel

## State Explosion Problem

size of model is more often than not exponential in number of variables and number of components which execute in parallel

- OBDDs to represent sets of states
- abstraction
- partial order reduction
- induction
- composition


## State Explosion Problem

size of model is more often than not exponential in number of variables and number of components which execute in parallel

- OBDDs to represent sets of states
- abstraction
- partial order reduction
- induction
- composition


## State Explosion Problem

size of model is more often than not exponential in number of variables and number of components which execute in parallel

- OBDDs to represent sets of states
- abstraction
- partial order reduction
- induction
- composition


## Demo

CMCV
by Matthias Perktold (2014)

SS 2024
Logic
lecture 9
6. CTL Model Checking Algorithm

## Outline

```
1. Summary of Previous Lecture
2. Post's Adequacy Theorem
3. Intermezzo
4. Model Checking
5. Branching-Time Temporal Logic (CTL)
6. CTL Model Checking Algorithm
```

7. Further Reading

## Huth and Ryan

- Section 3.4.1
- Section 3.4.2
- Section 3.6.1


## Huth and Ryan

- Section 3.4.1
- Section 3.4.2
- Section 3.6.1


## Post Adequacy Theorem

- Post's Functional Completeness Theorem

Francis Jeffry Pelletier and Norman M. Martin
Notre Dame Journal of Formal Logic 31(2), pp. 462-475, 1990 doi: 10.1305/ndjfl/1093635508

- Boolean Function and Computation Models

Peter Clote and Evangelos Kranakis
Texts in Theoretical Computer Science, Springer, 2012
doi: 10.1007/978-3-662-04943-3

## Important Concepts

- AF
- affinity
- AG
- AU
- AX
- computation tree logic
- CTL
- EF
- EG
- EU
- EX
- model
- monotonicity
- Post's adequacy theorem
- self-duality
- temporal connective


## Important Concepts

- AF
- affinity
- AG
- AU
- AX
- computation tree logic
- CTL
- EF
- EG
- EU
- EX
- model
- monotonicity
- Post's adequacy theorem
- self-duality
- temporal connective
homework for May 23

