
SS 2024 lecture 9

Logic

Diana Gründlinger Aart Middeldorp Fabian Mitterwallner

Alexander Montag Johannes Niederhauser Daniel Rainer

Outline

1. Summary of Previous Lecture

2. Post’s Adequacy Theorem

3. Intermezzo

4. Model Checking

5. Branching-Time Temporal Logic (CTL)

6. CTL Model Checking Algorithm

7. Further Reading

SS 2024 Logic lecture 9 2/42

Definitions

▶ atomic formula: P | P(t, . . . , t)

▶ literal is atomic formula or negation of atomic formula

▶ clause is set of literals {ℓ1, . . . , ℓn}

▶ clausal form is set of clauses {C1, . . . , Cm}, representing ∀ (C1 ∧ · · · ∧ Cm)

▶ clauses C1 and C2 without common variables clash on literals ℓ1 ∈ C1 and ℓ2 ∈ C2

if ℓ1 and ℓc2 are unifiable

▶ resolvent of clauses C1 and C2 clashing on literals ℓ1 ∈ C1 and ℓ2 ∈ C2 is clause

((C1 \ {ℓ1}) ∪ (C2 \ {ℓ2}))θ

where θ is mgu of ℓ1 and ℓc2

▶ Cσ is factor of C if two or more literals in C have mgu σ

SS 2024 Logic lecture 9 1. Summary of Previous Lecture 3/42

Resolution with Factoring

input: clausal form S

output: yes if S is satisfiable

no if S is unsatisfiable

∞ if S is satisfiable

1 repeatedly add resolvents (renaming clauses if necessary) and factors

2 return no as soon as empty clause 2 is derived

3 return yes if all clashing clauses have been resolved and factoring produces no new clauses

(modulo renaming)

Theorem

resolution with factoring is sound and complete:

clausal form S is unsatisfiable if and only if S admits refutation

SS 2024 Logic lecture 9 1. Summary of Previous Lecture 4/42

http://cl-informatik.uibk.ac.at/teaching/ss24/lics
http://cl-informatik.uibk.ac.at/~ami

Decision Problem (Church’s Theorem)

instance: set of formulas Γ, first-order formula ψ

question: Γ ⊨ ψ ?

is undecidable even when Γ = ∅

Definition

set X of boolean functions is called adequate or functionally complete if every boolean

function can be expressed using functions from X

Theorem (Algebraic Normal Form)

every boolean function f : {0,1}n → {0,1} can be uniquely written as

f(x1, . . . , xn) =
⊕

A⊆{1,...,n}

cA ·
∏
i∈A

xi

with cA ∈ {0,1} for all A ⊆ {1, . . . , n}

SS 2024 Logic lecture 9 1. Summary of Previous Lecture 5/42

Part I: Propositional Logic

algebraic normal forms, binary decision diagrams, conjunctive normal forms, DPLL, Horn

formulas, natural deduction, Post’s adequacy theorem, resolution, SAT, semantics, sorting

networks, soundness and completeness, syntax, Tseitin’s transformation

Part II: Predicate Logic

natural deduction, quantifier equivalences, resolution, semantics, Skolemization, syntax,

undecidability, unification

Part III: Model Checking

adequacy, branching-time temporal logic, CTL∗, fairness, linear-time temporal logic, model

checking algorithms, symbolic model checking

SS 2024 Logic lecture 9 1. Summary of Previous Lecture Overview 6/42

Outline

1. Summary of Previous Lecture

2. Post’s Adequacy Theorem

3. Intermezzo

4. Model Checking

5. Branching-Time Temporal Logic (CTL)

6. CTL Model Checking Algorithm

7. Further Reading

SS 2024 Logic lecture 9 2. Post’s Adequacy Theorem 7/42

Theorem (Post’s Adequacy Theorem)

set X of boolean functions is adequate if and only if following conditions hold:

1 there exists f ∈ X such that f(0, . . . , 0) ̸= 0

2 there exists f ∈ X such that f(1, . . . , 1) ̸= 1

3 there exists f ∈ X which is not monotone

4 there exists f ∈ X which is not self-dual

5 there exists f ∈ X which is not affine

Definitions

boolean function f is

▶ monotone if f(x1, . . . , xn) ⩽ f(y1, . . . , yn) for all x1 ⩽ y1, . . . , xn ⩽ yn

▶ self-dual if f(x1, . . . , xn) = f(x1, . . . , xn)

▶ affine if f(x1, . . . , xn) = c0 ⊕ c1x1 ⊕ · · · ⊕ cnxn for some c0, . . . , cn ∈ {0,1}

SS 2024 Logic lecture 9 2. Post’s Adequacy Theorem 8/42

Lemma

boolean function f is not monotone if and only if

f(b1, . . . , bi−1, x,bi+1, . . . , bn) = x for all x ∈ {0,1}

for some i and b1, . . . , bi−1, bi+1, . . . , bn ∈ {0,1}

Lemma

boolean function f is not self-dual if and only if

f(b1, . . . , bn) = f(b1, . . . , bn)

for some b1, . . . , bn ∈ {0,1}

Remark

boolean function f is affine if and only if algebraic normal form of f is linear

SS 2024 Logic lecture 9 2. Post’s Adequacy Theorem 9/42

Examples

· + = ⊕ | 0 1

f(0, . . . , 0) ̸= 0 ✓ × × ✓ × ✓ × ✓

f(1, . . . , 1) ̸= 1 ✓ × × × ✓ ✓ ✓ ×
not monotone ✓ × × ✓ ✓ ✓ × ×

not self-dual × ✓ ✓ ✓ ✓ ✓ ✓ ✓

not affine × ✓ ✓ × × ✓ × ×

Definitions

boolean function f is

▶ monotone if f(x1, . . . , xn) ⩽ f(y1, . . . , yn) for all x1 ⩽ y1, . . . , xn ⩽ yn

▶ self-dual if f(x1, . . . , xn) = f(x1, . . . , xn)

▶ affine if f(x1, . . . , xn) = c0 ⊕ c1x1 ⊕ · · · ⊕ cnxn for some c0, . . . , cn ∈ {0,1}

SS 2024 Logic lecture 9 2. Post’s Adequacy Theorem 10/42

Theorem (Post’s Adequacy Theorem)

set X of boolean functions is adequate if and only if following conditions hold:

1 ∃ f1 ∈ X such that f1(0, . . . , 0) ̸= 0

2 ∃ f2 ∈ X such that f2(1, . . . , 1) ̸= 1

3 ∃ f3 ∈ X which is not monotone

4 ∃ f4 ∈ X which is not self-dual

5 ∃ f5 ∈ X which is not affine

Proof (⇐=)

▶ first task: define 0, 1, x

▶ define g(x) = f1(x, . . . , x) and h(x) = f2(x, . . . , x)

▶ g(x) = 1 or g(x) = x and h(x) = 0 or h(x) = x

▶ we distinguish four cases: 1 g(x) = 1 and h(x) = x 3 g(x) = 1 and h(x) = 0

2 g(x) = x and h(x) = 0 4 g(x) = x and h(x) = x

SS 2024 Logic lecture 9 2. Post’s Adequacy Theorem 11/42

Proof (⇐=)

▶ first task: define 0, 1, x

1 g(x) = 1 and h(x) = x h(g(x)) = 0

2 g(x) = x and h(x) = 0 g(h(x)) = 1

3 g(x) = 1 and h(x) = 0

there exist i ∈ {1, . . . ,m} and b1, . . . , bi−1, bi+1, . . . , bm ∈ {0,1} such that

f3(b1, . . . , bi−1, x, bi+1, . . . , bm) = x

bj = g(x) or bj = h(x) for j ̸= i

so x is defined using f3, g, h

3 there exists f3 ∈ X which is not monotone

SS 2024 Logic lecture 9 2. Post’s Adequacy Theorem 12/42

Proof (⇐=)

▶ first task: define 0, 1, x

4 g(x) = x and h(x) = x

there exists b1, . . . , bk ∈ {0,1} such that f4(b1, . . . , bk) = f4(b1, . . . , bk)

define i(x) = f4(x⊕ b1, . . . , x⊕ bk)

x⊕ bj = x or x⊕ bj = x = g(x), so i(x) is defined using f4 and g

i(x) = 0 or i(x) = 1

g(i(x)) = 1 or g(i(x)) = 0

4 there exists f4 ∈ X which is not self-dual

SS 2024 Logic lecture 9 2. Post’s Adequacy Theorem 13/42

Proof (⇐=)

▶ second task: define xy

there exist g1, g2, g3, g4 such that (wlog)

f5(x1, . . . , xl) = x1x2g1(x3, . . . , xl)⊕ x1g2(x3, . . . , xl)⊕ x2g3(x3, . . . , xl)⊕ g4(x3, . . . , xl)

with g1(x3, . . . , xl) ̸= 0

there exist c3, . . . , cl ∈ {0,1} such that g1(c3, . . . , cl) = 1

define c = g2(c3, . . . , cl), d = g3(c3, . . . , cl), e = g4(c3, . . . , cl)

f5(x1, x2, c3, . . . , cl) = x1x2 ⊕ x1c⊕ x2d⊕ e

define h(x, y) = f5(x⊕ d, y⊕ c, c3, . . . , cl)⊕ cd⊕ e

h(x, y) = (x⊕ d)(y⊕ c)⊕ (x⊕ d)c⊕ (y⊕ c)d⊕ e⊕ cd⊕ e = xy

5 there exists f5 ∈ X which is not affine

SS 2024 Logic lecture 9 2. Post’s Adequacy Theorem 14/42

Remark

proof of "if direction" is constructive

Demo

BoolTool

by Patrick Muxel (2004), Philipp Ruff (2006), Caroline Terzer (2006), Markus Plattner (2007),

Elias Zischg (2012)

BoolTool Reloaded

by Martin Neuner (2023)

Proof sketch (=⇒)

▶ suppose X has no functions that satisfy condition i

▶ claim: all functions constructed from X violate condition i

▶ X cannot be adequate because x | y cannot be expressed

SS 2024 Logic lecture 9 2. Post’s Adequacy Theorem 15/42

Outline

1. Summary of Previous Lecture

2. Post’s Adequacy Theorem

3. Intermezzo

4. Model Checking

5. Branching-Time Temporal Logic (CTL)

6. CTL Model Checking Algorithm

7. Further Reading

SS 2024 Logic lecture 9 3. Intermezzo 16/42

http://cl-informatik.uibk.ac.at/software/booltool/
https://booltool-informatik.uibk.ac.at/

with session ID 0992 9580

Question

Which of the following statements are true ?

A If f(1, . . . , 1) = 0 and f is monotone then f(x1, . . . , xn) = 0

B A set containing only constants and unary functions can be

adequate.

C {∨} is adequate where x∨ y = x ∨ y.

D There are more affine than non-affine binary boolean functions.

SS 2024 Logic lecture 9 3. Intermezzo 17/42

Outline

1. Summary of Previous Lecture

2. Post’s Adequacy Theorem

3. Intermezzo

4. Model Checking

5. Branching-Time Temporal Logic (CTL)

6. CTL Model Checking Algorithm

7. Further Reading

SS 2024 Logic lecture 9 4. Model Checking 18/42

Formal Verification comprises

▶ framework for modeling systems (description language)

▶ specification language for describing properties to be verified

▶ verification method to establish whether description of system satisfies specification

Model Checking

automatic formal verification approach for concurrent systems based on temporal logic

Temporal Logic

▶ formulas are not statically true or false in model

▶ models of temporal logic contain several states and truth is dynamic

▶ formula can be true in some states and false in others

SS 2024 Logic lecture 9 4. Model Checking 19/42

Model Checking

▶ models are transition systems M
▶ properties are formulas φ in temporal logic

▶ model checker determines whether M ⊨ φ is true or not

Two Temporal Logics

▶ computation tree logic (CTL) lectures 9 and 10

▶ linear-time temporal logic (LTL) lectures 10 and 11

Impact

both logics have been proven to be extremely fruitful in verifying hardware and communication

protocols, and are increasingly applied to software verification

SS 2024 Logic lecture 9 4. Model Checking 20/42

https://ars.uibk.ac.at/p/09929580
https://ars.uibk.ac.at/p/09929580
https://ars.uibk.ac.at/p/09929580

ACM Turing Awards

1996 Amir Pnueli

2007 Edmund M. Clarke, E. Allen Emerson, Joseph Sifakis

SS 2024 Logic lecture 9 4. Model Checking 21/42

Outline

1. Summary of Previous Lecture

2. Post’s Adequacy Theorem

3. Intermezzo

4. Model Checking

5. Branching-Time Temporal Logic (CTL)

Syntax Semantics

6. CTL Model Checking Algorithm

7. Further Reading

SS 2024 Logic lecture 9 5. Branching-Time Temporal Logic (CTL) 22/42

Definition

▶ CTL (computation tree logic) formulas are built from

▶ atoms p, q, r, p1, p2, . . .

▶ logical connectives ⊥, ⊤, ¬, ∧, ∨, →
▶ temporal connectives AX, EX, AF, EF, AG, EG, AU, EU

according to following BNF grammar:

φ ::= ⊥ | ⊤ | p | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ) | (AXφ) | (EXφ) |
(AFφ) | (EFφ) | (AGφ) | (EGφ) | A[φUφ] | E[φUφ]

▶ notational conventions:

▶ binding precedence ¬, AX, EX, AF, EF, AG, EG > ∧, ∨ > →, AU, EU

▶ omit outer parentheses

▶ →, ∧, ∨ are right-associative

SS 2024 Logic lecture 9 5. Branching-Time Temporal Logic (CTL) Syntax 23/42

Example

formula ¬A[EXpU¬q] AG(p → A[pU¬p ∧ A[¬pUq]])

parse tree ¬

AU

EX

p

¬

q

AG

→

p AU

p ∧

¬

p

AU

¬

p

q

A ∀ paths G ∀ states globally X next state

E ∃ path F ∃ state future U until

SS 2024 Logic lecture 9 5. Branching-Time Temporal Logic (CTL) Syntax 24/42

https://amturing.acm.org/award_winners/pnueli_4725172.cfm
https://amturing.acm.org/award_winners/clarke_1167964.cfm
https://amturing.acm.org/award_winners/emerson_1671460.cfm
https://amturing.acm.org/award_winners/sifakis_1701095.cfm

Outline

1. Summary of Previous Lecture

2. Post’s Adequacy Theorem

3. Intermezzo

4. Model Checking

5. Branching-Time Temporal Logic (CTL)

Syntax Semantics

6. CTL Model Checking Algorithm

7. Further Reading

SS 2024 Logic lecture 9 5. Branching-Time Temporal Logic (CTL) Semantics 25/42

Definition

transition system (model) is triple M = (S,→, L) with

1 set of states S

2 transition relation → ⊆ S× S such that ∀ s ∈ S ∃ t ∈ S with s → t ("no deadlock")

3 labelling function L : S → P(atoms)

Example

1

2 3 4 5

6 7 8

model M = (S,→, L)

S = {1,2,3,4,5,6,7,8}

L(1) = { IA, IB} L(5) = { IA, PB}
L(2) = {PA, IB} L(6) = {RA, PB}
L(3) = {RA, IB} L(7) = {RA,RB}
L(4) = { IA,RB} L(8) = {PA,RB}

SS 2024 Logic lecture 9 5. Branching-Time Temporal Logic (CTL) Semantics 26/42

Definition

satisfaction of CTL formula φ in state s ∈ S of model M = (S,→, L)

M, s ⊨ φ

is defined by induction on φ:

M, s ⊨ ⊤

⇐⇒

M, s ⊭ ⊥ M, s ⊨ φ ∧ ψ ⇐⇒ M, s ⊨ φ and M, s ⊨ ψ

M, s ⊨ p ⇐⇒ p ∈ L(s) M, s ⊨ φ ∨ ψ ⇐⇒ M, s ⊨ φ or M, s ⊨ ψ

M, s ⊨ ¬φ ⇐⇒ M, s ⊭ φ M, s ⊨ φ→ ψ ⇐⇒ M, s ⊭ φ or M, s ⊨ ψ

M, s ⊨ AXφ ⇐⇒ ∀ paths s = s1 → s2 → s3 → · · · M, s2 ⊨ φ

M, s ⊨ EXφ ⇐⇒ ∃ path s = s1 → s2 → s3 → · · · M, s2 ⊨ φ

M, s ⊨ AFφ ⇐⇒ ∀ paths s = s1 → s2 → s3 → · · · ∃ i ⩾ 1 M, s i ⊨ φ

M, s ⊨ EFφ ⇐⇒ ∃ path s = s1 → s2 → s3 → · · · ∃ i ⩾ 1 M, s i ⊨ φ

SS 2024 Logic lecture 9 5. Branching-Time Temporal Logic (CTL) Semantics 27/42

Definition (cont’d)

satisfaction of CTL formula φ in state s ∈ S of model M = (S,→, L)

M, s ⊨ φ

is defined by induction on φ:

M, s ⊨ AGφ ⇐⇒ ∀ paths s = s1 → s2 → s3 → · · · ∀ i ⩾ 1 M, s i ⊨ φ

M, s ⊨ EGφ ⇐⇒ ∃ path s = s1 → s2 → s3 → · · · ∀ i ⩾ 1 M, s i ⊨ φ

M, s ⊨ A[φUψ] ⇐⇒ ∀ paths s = s1 → s2 → s3 → · · ·
∃ i ⩾ 1 M, s i ⊨ ψ and ∀ j < i M, s j ⊨ φ

M, s ⊨ E[φUψ] ⇐⇒ ∃ path s = s1 → s2 → s3 → · · ·
∃ i ⩾ 1 M, s i ⊨ ψ and ∀ j < i M, s j ⊨ φ

SS 2024 Logic lecture 9 5. Branching-Time Temporal Logic (CTL) Semantics 28/42

Example

model M 1

2 3 4 5

6 7 8

IA IB

PA
IB

RA

IB
IA
RB

IA
PB

RA

PB
RA RB

PA
RB

M,1 ⊭ IA ∧ RB M,1 ⊭ IB → PA ∨ RB

M,4 ⊨ IA ∧ RB M,2 ⊨ IB → PA ∨ RB

M,1 ⊨ AX(RA ∨ RB) M,1 ⊭ EX PB

M,3 ⊭ AX PA M,3 ⊨ EX PA

M,1 ⊨ AF(RA ∨ RB) M,1 ⊨ EF(RA ∧ RB)

M,5 ⊭ AFRB M,5 ⊭ EF(PA ∧ PB)

M,1 ⊨ AG(RA → EF PA) M,2 ⊨ EG(¬PA → RB)

M,1 ⊭ AG(RA → AF PA) M,2 ⊭ EG PA

M,1 ⊨ ¬A[RA U PA] M,1 ⊨ EX E[RA U PA]

M,7 ⊨ A[PA URA] M,7 ⊭ E[PA ∧ PB U IA ∨ IB]

SS 2024 Logic lecture 9 5. Branching-Time Temporal Logic (CTL) Semantics 29/42

Theorem

satisfaction of CTL formulas in finite models is decidable

Definition

CTL formulas φ and ψ are semantically equivalent (φ ≡ ψ) if

M, s ⊨ φ ⇐⇒ M, s ⊨ ψ

for all models M = (S,→, L) and states s ∈ S

Theorem

¬ AFφ ≡ EG¬φ AFφ ≡ A[⊤Uφ]

¬ EFφ ≡ AG¬φ EFφ ≡ E[⊤Uφ]

¬ AXφ ≡ EX¬φ A[φUψ] ≡ ¬(E[¬ψ U (¬φ ∧ ¬ψ)] ∨ EG¬ψ)

SS 2024 Logic lecture 9 5. Branching-Time Temporal Logic (CTL) Semantics 30/42

Outline

1. Summary of Previous Lecture

2. Post’s Adequacy Theorem

3. Intermezzo

4. Model Checking

5. Branching-Time Temporal Logic (CTL)

6. CTL Model Checking Algorithm

7. Further Reading

SS 2024 Logic lecture 9 6. CTL Model Checking Algorithm 31/42

CTL Model Checking Algorithm 1

input: • model M = (S,→, L) and CTL formula φ

output: • {s ∈ S | M, s ⊨ φ}

label each state s ∈ S by those subformulas of φ that are satisfied in s

⊤ label every state

⊥ label no state

p label s ⇐⇒ p ∈ L(s)

¬φ label s ⇐⇒ s is not labelled with φ

φ ∧ ψ label s ⇐⇒ s is labelled with both φ and ψ

φ ∨ ψ label s ⇐⇒ s is labelled with φ or ψ

φ→ ψ label s ⇐⇒ s is not labelled with φ or s is labelled with ψ

AXφ label s ⇐⇒ t is labelled with φ for all t with s → t

SS 2024 Logic lecture 9 6. CTL Model Checking Algorithm 32/42

CTL Model Checking Algorithm 2

EXφ label s ⇐⇒ t is labelled with φ for some t with s → t

AFφ label s ⇐⇒ 1 s is labelled with φ

2 t is labelled with AFφ for all t with s → t

3 repeat 2 until no change

EFφ label s ⇐⇒ 1 s is labelled with φ

2 t is labelled with EFφ for some t with s → t

3 repeat 2 until no change

AGφ 1 label every s that is labelled with φ

2 remove label from s ⇐⇒ t is not labelled with AGφ for some t with s → t

3 repeat 2 until no change

SS 2024 Logic lecture 9 6. CTL Model Checking Algorithm 33/42

CTL Model Checking Algorithm 3

EGφ 1 label every s that is labelled with φ

2 remove label from s ⇐⇒ t is not labelled with EGφ for all t with s → t

3 repeat 2 until no change

A[φUψ] label s ⇐⇒ 1 s is labelled with ψ

2 s is labelled with φ and t with A[φUψ] for all t with s → t

3 repeat 2 until no change

E[φUψ] label s ⇐⇒ 1 s is labelled with ψ

2 s is labelled with φ and t with E[φUψ] for some t with s → t

3 repeat 2 until no change

SS 2024 Logic lecture 9 6. CTL Model Checking Algorithm 34/42

Example 1

model M 1

2 3 4 5

6 7 8

IA IB

PA
IB

RA

IB
IA
RB

IA
PB

RA

PB
RA RB

PA
RB

RA PA AF PA RA → AF PA AG(RA → AF PA)

1 ✓ (1 → 3)

2 ✓ ✓ ✓ (2 → 1)

3 ✓

4 ✓ (4 → 7)

5 ✓ (5 → 6)

6 ✓

7 ✓

8 ✓ ✓ ✓ (8 → 4)

SS 2024 Logic lecture 9 6. CTL Model Checking Algorithm 35/42

Example 2

model M 1

2 3 4 5

6 7 8

IA IB

PA
IB

RA

IB
IA
RB

IA
PB

RA

PB
RA RB

PA
RB

RA PA EF PA RA → EF PA AG(RA → EF PA)

1 ✓ ✓ ✓

2 ✓ ✓ ✓ ✓

3 ✓ ✓ ✓ ✓

4 ✓ ✓ ✓

5 ✓ ✓ ✓

6 ✓ ✓ ✓ ✓

7 ✓ ✓ ✓ ✓

8 ✓ ✓ ✓ ✓

SS 2024 Logic lecture 9 6. CTL Model Checking Algorithm 36/42

Example 3

model M 1

2 3 4 5

6 7 8

IA IB

PA
IB

RA

IB
IA
RB

IA
PB

RA

PB
RA RB

PA
RB

RB ¬RB PB E[¬RB U PB] ¬E[¬RB U PB]

1 ✓ ✓

2 ✓ ✓

3 ✓ ✓

4 ✓ ✓

5 ✓ ✓ ✓

6 ✓ ✓ ✓

7 ✓ ✓

8 ✓ ✓

SS 2024 Logic lecture 9 6. CTL Model Checking Algorithm 37/42

More Efficient Algorithm for EG

EGφ 1 restrict graph to states satisfying φ:

S′ = {s ∈ S | M, s ⊨ φ}

→′ = {(s, t) | s → t and s, t ∈ S′}

2 compute non-trivial strongly connected components of (S′,→′)

3 label all states in such SCCs

4 compute and label all states that in (S′,→′) can reach labelled state

Complexity

O(f · (V + E)) with

f : # connectives

V : # states

E : # transitions

instead of O(f · V · (V + E))

SS 2024 Logic lecture 9 6. CTL Model Checking Algorithm 38/42

State Explosion Problem

size of model is more often than not exponential in number of variables and number of

components which execute in parallel

▶ OBDDs to represent sets of states lecture 11

▶ abstraction

▶ partial order reduction

▶ induction

▶ composition

Demo

CMCV

by Matthias Perktold (2014)

SS 2024 Logic lecture 9 6. CTL Model Checking Algorithm 39/42

Outline

1. Summary of Previous Lecture

2. Post’s Adequacy Theorem

3. Intermezzo

4. Model Checking

5. Branching-Time Temporal Logic (CTL)

6. CTL Model Checking Algorithm

7. Further Reading

SS 2024 Logic lecture 9 7. Further Reading 40/42

http://cl-informatik.uibk.ac.at/software/cmcv/

Huth and Ryan

▶ Section 3.4.1

▶ Section 3.4.2

▶ Section 3.6.1

Post Adequacy Theorem

▶ Post’s Functional Completeness Theorem

Francis Jeffry Pelletier and Norman M. Martin

Notre Dame Journal of Formal Logic 31(2), pp. 462 – 475, 1990

doi: 10.1305/ndjfl/1093635508

▶ Boolean Function and Computation Models

Peter Clote and Evangelos Kranakis

Texts in Theoretical Computer Science, Springer, 2012

doi: 10.1007/978-3-662-04943-3

SS 2024 Logic lecture 9 7. Further Reading 41/42

Important Concepts

▶ AF

▶ affinity

▶ AG

▶ AU

▶ AX

▶ computation tree logic

▶ CTL

▶ EF

▶ EG

▶ EU

▶ EX

▶ model

▶ monotonicity

▶ Post’s adequacy theorem

▶ self-duality

▶ temporal connective

homework for May 23

SS 2024 Logic lecture 9 7. Further Reading 42/42

https://www.cambridge.org/core/services/aop-cambridge-core/content/view/362A23C81428830F20C49894E9ED8949/9780511810275c3_p172-255_CBO.pdf/verification_by_model_checking.pdf#page=37
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/362A23C81428830F20C49894E9ED8949/9780511810275c3_p172-255_CBO.pdf/verification_by_model_checking.pdf#page=40
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/362A23C81428830F20C49894E9ED8949/9780511810275c3_p172-255_CBO.pdf/verification_by_model_checking.pdf#page=51
https://doi.org/10.1305/ndjfl/1093635508
https://doi.org/10.1305/ndjfl/1093635508
https://doi.org/10.1305/ndjfl/1093635508
https://doi.org/10.1305/ndjfl/1093635508
https://doi.org/10.1007/978-3-662-04943-3
https://doi.org/10.1007/978-3-662-04943-3
https://doi.org/10.1007/978-3-662-04943-3
https://doi.org/10.1007/978-3-662-04943-3
http://cl-informatik.uibk.ac.at/teaching/ss24/lics/exercises/09.pdf

	lecture 9
	Summary of Previous Lecture
	Overview

	Post's Adequacy Theorem
	Intermezzo
	Model Checking
	Branching-Time Temporal Logic ¶CTL
	Syntax
	Semantics

	CTL Model Checking Algorithm
	Further Reading

