

SS 2024 lecture 9

Logic

Diana Gründlinger	Aart Middeldorp	Fabian Mitterwallner
Alexander Montag	Johannes Niederhauser	Daniel Rainer

Outline

- 1. Summary of Previous Lecture
- 2. Post's Adequacy Theorem
- 3. Intermezzo
- 4. Model Checking
- 5. Branching-Time Temporal Logic (CTL)
- 6. CTL Model Checking Algorithm
- 7. Further Reading

universität SS 2024 Logic lecture 9

Definitions

- atomic formula: $P \mid P(t, ..., t)$
- ► literal is atomic formula or negation of atomic formula
- clause is set of literals $\{\ell_1, \ldots, \ell_n\}$
- ▶ clausal form is set of clauses $\{C_1, ..., C_m\}$, representing $\forall (C_1 \land \cdots \land C_m)$
- ▶ clauses C_1 and C_2 without common variables clash on literals $\ell_1 \in C_1$ and $\ell_2 \in C_2$ if ℓ_1 and ℓ_2^c are unifiable
- ▶ resolvent of clauses C_1 and C_2 clashing on literals $\ell_1 \in C_1$ and $\ell_2 \in C_2$ is clause

 $((C_1 \setminus \{\ell_1\}) \cup (C_2 \setminus \{\ell_2\}))\theta$

where θ is mgu of ℓ_1 and ℓ_2^c

• $C\sigma$ is factor of C if two or more literals in C have mgu σ

Resolution with Factoring

- input: clausal form S
- output: yes if S is satisfiable
 - no if *S* is unsatisfiable
 - ∞ if *S* is satisfiable
- 1 repeatedly add resolvents (renaming clauses if necessary) and factors
- ② return no as soon as empty clause \Box is derived
- return yes if all clashing clauses have been resolved and factoring produces no new clauses (modulo renaming)

Theorem

resolution with factoring is sound and complete:

clausal form S is unsatisfiable if and only if S admits refutation

Decision Problem (Church's Theorem)

instance: set of formulas Γ , first-order formula ψ question: $\Gamma \vDash \psi$?

is undecidable even when $\Gamma = \emptyset$

Definition

set X of boolean functions is called adequate or functionally complete if every boolean function can be expressed using functions from X

Theorem (Algebraic Normal Form)

every boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$ can be uniquely written as

$$f(x_1,\ldots,x_n) = \bigoplus_{A \subseteq \{1,\ldots,n\}} c_A \cdot \prod_{i \in A} x_i$$

with $c_A \in \{0, 1\}$ for all $A \subseteq \{1, ..., n\}$

universität SS 2024 Logic lecture 9 1. Summary of Previous Lecture

Part I: Propositional Logic

algebraic normal forms, binary decision diagrams, conjunctive normal forms, DPLL, Horn formulas, natural deduction, Post's adequacy theorem, resolution, SAT, semantics, sorting networks, soundness and completeness, syntax, Tseitin's transformation

Part II: Predicate Logic

natural deduction, quantifier equivalences, resolution, semantics, Skolemization, syntax, undecidability, unification

Part III: Model Checking

adequacy, **branching-time temporal logic**, CTL*, fairness, linear-time temporal logic, **model checking algorithms**, symbolic model checking

universität innsbruck	SS 2024	Logic	lecture 9	1. Summary of Previous Lecture	Overview
I I I I SUI LIG K					

_A_M_

Outline

1. Summary of Previous Lecture

2. Post's Adequacy Theorem

- 3. Intermezzo
- 4. Model Checking
- 5. Branching-Time Temporal Logic (CTL)
- 6. CTL Model Checking Algorithm
- 7. Further Reading

Theorem (Post's Adequacy Theorem)

- set *X* of boolean functions is adequate if and only if following conditions hold:
- there exists $f \in X$ such that $f(0, \ldots, 0) \neq 0$
- **2** there exists $f \in X$ such that $f(1, \ldots, 1) \neq 1$
- **③** there exists $f \in X$ which is not monotone
- **4** there exists $f \in X$ which is not self-dual
- **5** there exists $f \in X$ which is not affine

Definitions

boolean function f is

- monotone if $f(x_1, \ldots, x_n) \leq f(y_1, \ldots, y_n)$ for all $x_1 \leq y_1, \ldots, x_n \leq y_n$
- self-dual if $f(x_1, \ldots, x_n) = \overline{f(\overline{x}_1, \ldots, \overline{x}_n)}$
- affine if $f(x_1, \ldots, x_n) = c_0 \oplus c_1 x_1 \oplus \cdots \oplus c_n x_n$ for some $c_0, \ldots, c_n \in \{0, 1\}$

A.M_

A.M_

Lemma

boolean function *f* is **not monotone** if and only if

$$f(b_1,\ldots,b_{i-1},x,b_{i+1},\ldots,b_n) = \overline{x}$$
 for all $x \in \{0,1\}$

for some i and $b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n \in \{0, 1\}$

Lemma

boolean function *f* is not self-dual if and only if

$$f(b_1,\ldots,b_n)=f(\overline{b}_1,\ldots,\overline{b}_n)$$

for some $b_1, ..., b_n \in \{0, 1\}$

Remark

boolean function f is affine if and only if algebraic normal form of f is linear

universität SS 2024 Logic lecture 9 2. Post's Adequacy Theorem

Examples

	-	•	+	=	\oplus		0	1
$f(0,\ldots,0) \neq 0$	\checkmark	×	×	\checkmark	×	\checkmark	×	\checkmark
$f(1,\ldots,1) eq 1$	\checkmark	\times	\times	\times	\checkmark	\checkmark	\checkmark	\times
not monotone	\checkmark	\times	\times	\checkmark	\checkmark	\checkmark	\times	\times
not self-dual	×	\checkmark						
not affine	×	\checkmark	\checkmark	×	×	\checkmark	×	×

Definitions

AM_

9/42

AM

11/42

boolean function f is

- monotone if $f(x_1, \ldots, x_n) \leq f(y_1, \ldots, y_n)$ for all $x_1 \leq y_1, \ldots, x_n \leq y_n$
- self-dual if $f(x_1, \ldots, x_n) = \overline{f(\overline{x}_1, \ldots, \overline{x}_n)}$
- ▶ affine if $f(x_1, ..., x_n) = c_0 \oplus c_1 x_1 \oplus \cdots \oplus c_n x_n$ for some $c_0, ..., c_n \in \{0, 1\}$

universität innsbruck	SS 2024	Logic	lecture 9	2. Post's Adequacy Theorem
--------------------------	---------	-------	-----------	----------------------------

Theorem (Post's Adequacy Theorem)

set X of boolean functions is adequate if and only if following conditions hold:

- **1** $\exists f_1 \in X$ such that $f_1(0, \ldots, 0) \neq 0$
- **4** \exists $f_4 \in X$ which is not self-dual
- **2** $\exists f_2 \in X$ such that $f_2(1, \ldots, 1) \neq 1$ **3** $\exists f_5 \in X$ which is not affine
- **3** \exists $f_3 \in X$ which is not monotone

Proof (⇐)

- First task: define 0, 1, \overline{x}
- define $g(x) = f_1(x, ..., x)$ and $h(x) = f_2(x, ..., x)$
- g(x) = 1 or $g(x) = \overline{x}$ and h(x) = 0 or $h(x) = \overline{x}$

▶ we distinguish four cases: ①
$$g(x) = 1$$
 and $h(x) = \overline{x}$ ③ $g(x) = 1$ and $h(x) = 0$
② $g(x) = \overline{x}$ and $h(x) = 0$ ④ $g(x) = \overline{x}$ and $h(x) = \overline{x}$

Proof (\Leftarrow)

- First task: define 0, 1, \overline{x}
- ① g(x) = 1 and $h(x) = \overline{x}$ h(g(x)) = 0
- (2) $g(x) = \overline{x}$ and h(x) = 0 g(h(x)) = 1
- (3) g(x) = 1 and h(x) = 0

there exist $i \in \{1, \ldots, m\}$ and $b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_m \in \{0, 1\}$ such that

$$f_3(b_1,\ldots,b_{i-1},x,b_{i+1},\ldots,b_m)=\overline{x}$$

 $b_j = g(x)$ or $b_j = h(x)$ for $j \neq i$ so \overline{x} is defined using f_3 , g, h

i there exists $f_3 \in X$ which is not monotone

a.m

Proof (⇐)

▶ first task: define 0, 1, \overline{x} ④ $g(x) = \overline{x}$ and $h(x) = \overline{x}$ there exists $b_1, \ldots, b_k \in \{0, 1\}$ such that $f_4(\overline{b}_1, \ldots, \overline{b}_k) = f_4(b_1, \ldots, b_k)$ define $i(x) = f_4(x \oplus b_1, \ldots, x \oplus b_k)$ $x \oplus b_j = x$ or $x \oplus b_j = \overline{x} = g(x)$, so i(x) is defined using f_4 and g i(x) = 0 or i(x) = 1g(i(x)) = 1 or g(i(x)) = 0

() there exists $f_4 \in X$ which is not self-dual

universität SS 2024 Logic lecture 9 2. Post's Adequacy Theorem innsbruck

Proof (⇐)

second task: define xy

there exist g_1 , g_2 , g_3 , g_4 such that (wlog)

 $f_{5}(x_{1}, \dots, x_{l}) = x_{1}x_{2}g_{1}(x_{3}, \dots, x_{l}) \oplus x_{1}g_{2}(x_{3}, \dots, x_{l}) \oplus x_{2}g_{3}(x_{3}, \dots, x_{l}) \oplus g_{4}(x_{3}, \dots, x_{l})$ with $g_{1}(x_{3}, \dots, x_{l}) \neq 0$ there exist $c_{3}, \dots, c_{l} \in \{0, 1\}$ such that $g_{1}(c_{3}, \dots, c_{l}) = 1$ define $c = g_{2}(c_{3}, \dots, c_{l}), d = g_{3}(c_{3}, \dots, c_{l}), e = g_{4}(c_{3}, \dots, c_{l})$ $f_{5}(x_{1}, x_{2}, c_{3}, \dots, c_{l}) = x_{1}x_{2} \oplus x_{1}c \oplus x_{2}d \oplus e$ define $h(x, y) = f_{5}(x \oplus d, y \oplus c, c_{3}, \dots, c_{l}) \oplus cd \oplus e$ $h(x, y) = (x \oplus d)(y \oplus c) \oplus (x \oplus d)c \oplus (y \oplus c)d \oplus e \oplus cd \oplus e = xy$

6 there exists $f_5 \in X$ which is not affine

universität SS 2024 Logic lecture 9 2. Post's Adequacy Theorem

_A_M_

Remark

proof of "if direction" is constructive

Demo

BoolTool

by Patrick Muxel (2004), Philipp Ruff (2006), Caroline Terzer (2006), Markus Plattner (2007), Elias Zischg (2012)

BoolTool Reloaded

by Martin Neuner (2023)

Proof sketch (\Longrightarrow)

- suppose X has no functions that satisfy condition 1
- claim: all functions constructed from X violate condition 0
- ► X cannot be adequate because x | y cannot be expressed

Outline

A.M_

AМ

15/42

13/42

- **1. Summary of Previous Lecture**
- 2. Post's Adequacy Theorem

3. Intermezzo

- 4. Model Checking
- 5. Branching-Time Temporal Logic (CTL)
- 6. CTL Model Checking Algorithm
- 7. Further Reading

Particify with session ID 0992 9580

Question

Which of the following statements are true ?

- A If $f(1, \ldots, 1) = 0$ and f is monotone then $f(x_1, \ldots, x_n) = 0$
- A set containing only constants and unary functions can be adequate.

A.M_

17/42

- **C** $\{\overline{\vee}\}$ is adequate where $x \overline{\vee} y = \overline{x \vee y}$.
- D There are more affine than non-affine binary boolean functions.

Outline

- **1. Summary of Previous Lecture**
- 2. Post's Adequacy Theorem
- 3. Intermezzo

4. Model Checking

- 5. Branching-Time Temporal Logic (CTL)
- 6. CTL Model Checking Algorithm
- 7. Further Reading

universität SS 2024 Logic lecture 9 3. Intermezzo

universität SS 2024 Logic lecture 9 4. Model Checking innsbruck

Formal Verification comprises

- framework for modeling systems (description language)
- specification language for describing properties to be verified
- verification method to establish whether description of system satisfies specification

Model Checking

automatic formal verification approach for concurrent systems based on temporal logic

Temporal Logic

- formulas are not statically true or false in model
- models of temporal logic contain several states and truth is dynamic
- formula can be true in some states and false in others

Model Checking

- \blacktriangleright models are transition systems ${\cal M}$
- properties are formulas φ in temporal logic
- model checker determines whether $\mathcal{M} \models \varphi$ is true or not

Two Temporal Logics	
► computation tree logic (CTL)	lectures 9 and 10
▶ linear-time temporal logic (LTL)	lectures 10 and 11

Impact

both logics have been proven to be **extremely fruitful** in verifying hardware and communication protocols, and are increasingly applied to software verification

ACM Turing Awards

1996 Amir Pnueli

2007 Edmund M. Clarke, E. Allen Emerson, Joseph Sifakis

Outline

- **1. Summary of Previous Lecture**
- 2. Post's Adequacy Theorem
- 3. Intermezzo
- 4. Model Checking

5. Branching-Time Temporal Logic (CTL) Syntax Semantics

- 6. CTL Model Checking Algorithm
- 7. Further Reading

universität SS 2024 Logic lecture 9 4. Model Checking

universität SS 2024 Logic lecture 9 5. Branching-Time Temporal Logic (CTL)
Innsbruck

___A_M__ 22/42

Definition • CTL (computation tree logic) formulas are built from • atoms $p, q, r, p_1, p_2, ...$ • logical connectives $\bot, \top, \neg, \land, \lor, \rightarrow$ • temporal connectives AX, EX, AF, EF, AG, EG, AU, EU according to following BNF grammar: $\varphi ::= \bot | \top | p | (\neg \varphi) | (\varphi \land \varphi) | (\varphi \lor \varphi) | (\varphi \rightarrow \varphi) | (AX \varphi) | (EX \varphi) |$ (AF $\varphi) | (EF \varphi) | (AG \varphi) | (EG \varphi) | A[\varphi \cup \varphi] | E[\varphi \cup \varphi]$ • notational conventions: • binding precedence $\neg, AX, EX, AF, EF, AG, EG > \land, \lor > \rightarrow, AU, EU$ • omit outer parentheses • \rightarrow, \land, \lor are right-associative

Example							
formul	а	$\neg A[EXpU\neg q]$		$AG(p o A[p U^{-}$	$p \wedge A[\neg p \cup q]]$)	
parse tre	е	_ 		AG			
		AU		\rightarrow			
		EX		p AU	、		
		p q		p			
					AU		
				p	q		
					p		
	Δ	∀ naths	G	∀ states globally	X	nevt state	
	E	∃ path	F	∃ state future	N U	until	
	_	- p	•		Ŭ		A.M
 universitat innsbruck 	SS 20	24 Logic lecture 9	5. Branching-T	ime Temporal Logic (CTL) Syn	ax		24/42

universität SS 2024 Logic lecture 9 5. Branching-Time Temporal Logic (CTL) Syntax
 innsbruck

A.M

Outline

- **1. Summary of Previous Lecture**
- 2. Post's Adequacy Theorem
- 3. Intermezzo
- 4. Model Checking

5. Branching-Time Temporal Logic (CTL)

yntax Semantics

- 6. CTL Model Checking Algorithm
- 7. Further Reading

					_
universität innsbruck	SS 2024	Logic	lecture 9	5. Branching-Time Temporal Logic (CTL) Semantics	

Definition

transition system (model) is triple $\mathcal{M} = (S, \rightarrow, L)$ with

① set of states S

(2) transition relation $\rightarrow \subseteq S \times S$ such that $\forall s \in S \exists t \in S$ with $s \rightarrow t$ ("no deadlock")

③ labelling function $L: S \rightarrow \mathcal{P}(atoms)$

Example

Definition

satisfaction of CTL formula φ in state $s \in S$ of model $\mathcal{M} = (S, \rightarrow, L)$

 $\mathcal{M}, \pmb{s} \vDash \varphi$

is defined by induction on φ :

$\mathcal{M}, \pmb{s} \vDash op$		$\mathcal{M}, \textit{s} \nvDash \perp$	$\mathcal{M}, \pmb{s} \vDash \varphi \land \psi$	\iff	$\mathcal{M}, \pmb{s} \vDash \varphi \text{ and } \mathcal{M}, \pmb{s} \vDash \psi$
$\mathcal{M}, \pmb{s} \vDash \pmb{p}$	\iff	$p \in L(s)$	$\mathcal{M}, \pmb{s} \vDash \varphi \lor \psi$	\iff	$\mathcal{M}, \pmb{s} \vDash \varphi \ \text{or} \ \mathcal{M}, \pmb{s} \vDash \psi$
$\mathcal{M}, \pmb{s} \vDash \neg \varphi$	\iff	$\mathcal{M}, \mathbf{s} \nvDash \varphi$	$\mathcal{M}, \mathbf{S} \vDash \varphi ightarrow \psi$	\iff	$\mathcal{M}, \pmb{s} \nvDash \varphi \text{or} \mathcal{M}, \pmb{s} \vDash \psi$
$\mathcal{M}, \pmb{s} \vDash AX \varphi$	\iff	\forall paths $s = s_1$	$ ightarrow$ $s_2 ightarrow$ $s_3 ightarrow$ \cdots	$\cdot \mathcal{M}$	$\mathbf{s_2} \models \varphi$
$\mathcal{M}, \pmb{s} \vDash EX \varphi$	\iff	\exists path $s = s_1$	$ ightarrow$ $s_2 ightarrow$ $s_3 ightarrow$ \cdots	$\cdot \mathcal{M}$	$\mathbf{s_2} \models \varphi$
$\mathcal{M}, \pmb{s} \vDash AF \varphi$	\iff	\forall paths $s = s_1$	$ ightarrow$ $s_2 ightarrow$ $s_3 ightarrow$ \cdots	· ∃ <i>i</i>	\geqslant 1 $\mathcal{M}, \mathbf{s}_i \vDash \varphi$
$\mathcal{M}, \pmb{s} \vDash EF \varphi$	\iff	\exists path $s = s_1$	\rightarrow s ₂ \rightarrow s ₃ \rightarrow · ·	• ∃ <i>i</i>	\geqslant 1 $\mathcal{M}, \mathbf{s}_{i} \vDash arphi$

Definition (cont'd)

satisfaction of CTL formula φ in state $s \in S$ of model $\mathcal{M} = (S, \rightarrow, L)$

 $\mathcal{M}, \boldsymbol{s} \models \varphi$

is defined by induction on φ :

$\mathcal{M}, \pmb{s} \vDash AG \varphi$	\iff	$\forall \text{ paths } s = \textbf{s_1} \rightarrow \textbf{s_2} \rightarrow \textbf{s_3} \rightarrow \cdots \forall i \geqslant 1 \mathcal{M}, \textbf{s_i} \vDash \varphi$
$\mathcal{M}, \pmb{s} \vDash EG \varphi$	\iff	$\exists \text{ path } s = \textbf{s_1} \rightarrow \textbf{s_2} \rightarrow \textbf{s_3} \rightarrow \cdots \forall i \ge \textbf{1} \mathcal{M}, \textbf{s_i} \vDash \varphi$
$\mathcal{M}, \mathbf{s} \vDash A[\varphi U \psi]$	\iff	\forall paths $s = s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \cdots$
		$\exists i \geqslant 1 \mathcal{M}, \mathbf{s}_i \vDash \psi \text{ and } \forall j < i \mathcal{M}, \mathbf{s}_j \vDash \varphi$
$\mathcal{M}, \pmb{s} \vDash E[\varphi U \psi]$	\iff	\exists path $s = s_1 ightarrow s_2 ightarrow s_3 ightarrow \cdots$
		$\exists i \ge 1 \mathcal{M}, \mathbf{s}_i \vDash \psi \text{ and } \forall j < i \mathcal{M}, \mathbf{s}_i \vDash \varphi$

A.M

universität SS 2024 Logic lecture 9 5. Branching-Time Temporal Logic (CTL) Semantics

Theorem

satisfaction of CTL formulas in finite models is decidable

Definition

CTL formulas φ and ψ are semantically equivalent ($\varphi \equiv \psi$) if

$$\mathcal{M}, \boldsymbol{s} \vDash \varphi \quad \Longleftrightarrow \quad \mathcal{M}, \boldsymbol{s} \vDash \psi$$

for all models $\mathcal{M} = (S, \rightarrow, L)$ and states $s \in S$

Theorem			
	$\neg \operatorname{AF} \varphi \equiv \operatorname{EG} \neg \varphi$	$AF\varphi \equiv A[\topU\varphi]$	
	$\neg \operatorname{EF} \varphi \equiv \operatorname{AG} \neg \varphi$	$EF\varphi \equiv E[\topU\varphi]$	
	$\neg \operatorname{AX} \varphi \equiv \operatorname{EX} \neg \varphi$	$A[\varphi U\psi] \equiv \neg (E[\neg \psi U(\neg \varphi \land \neg \psi)] \lor EG\neg \psi)$	
			A.M
universität innsbruck	SS 2024 Logic lecture 9	5. Branching-Time Temporal Logic (CTL) Semantics	30/42

Outline

- **1. Summary of Previous Lecture**
- 2. Post's Adequacy Theorem
- 3. Intermezzo
- 4. Model Checking
- 5. Branching-Time Temporal Logic (CTL)

6. CTL Model Checking Algorithm

7. Further Reading

M 31/42

CTL Mo	CTL Model Checking Algorithm 1						
input: output:	• model $\mathcal{M} = (S, \rightarrow, L)$ and CTL formula φ :: • $\{s \in S \mid \mathcal{M}, s \models \varphi\}$						
label eac	h state <i>s</i>	$\in S$ by	those subformulas of $ \varphi $ that are satisfied in $ {\it s}$				
Т	label eve	ery stat	e				
\perp	label no s	state					
р	label <i>s</i>	\iff	$ ho\in L(s)$				
$\neg \varphi$	label s	\iff	s is not labelled with $arphi$				
$\varphi \wedge \psi$	label <i>s</i>	\iff	${\pmb s}$ is labelled with both φ and ψ				
$\varphi \vee \psi$	label s	\iff	s is labelled with $arphi$ or ψ				
$\varphi \to \psi$	label s	\iff	${\pmb s}$ is not labelled with φ or ${\pmb s}$ is labelled with ψ				
$AX\varphi$	label s	\iff	t is labelled with φ for all t with $s \to t$				

CTL Model Checking Algorithm 🥹	CTL Model Checking Algorithm 🛛 🛛
$EXarphi$ label $s \iff t$ is labelled with $arphi$ for some t with $s o t$	EG φ ① label every <i>s</i> that is labelled with φ
$AF \varphi$ label $s \iff 0$ s is labelled with φ (2) t is labelled with $AF \varphi$ for all t with $s \to t$ (3) repeat (2) until no change $EF \varphi$ label $s \iff 0$ s is labelled with φ (2) t is labelled with $EF \varphi$ for some t with $s \to t$ (3) repeat (2) until no change	(2) remove label from s \iff t is not labelled with EG φ for all t with s \rightarrow t (3) repeat (2) until no change $A[\varphi \cup \psi] \text{ label } s \iff (1 s \text{ is labelled with } \psi$ $(2 s \text{ is labelled with } \varphi \text{ and } t \text{ with } A[\varphi \cup \psi] \text{ for all } t \text{ with } s \rightarrow t$ $(3) \text{ repeat } (2) \text{ until no change}$ $E[\varphi \cup \psi] \text{ label } s \iff (1 s \text{ is labelled with } \psi$
AG φ ① label every <i>s</i> that is labelled with φ ② remove label from <i>s</i> \iff <i>t</i> is not labelled with AG φ for some <i>t</i> with <i>s</i> \rightarrow <i>t</i>	 (2) s is labelled with φ and t with $E[\varphi \cup \psi]$ for some t with $s \to t$ (3) repeat (2) until no change
③ repeat ② until no change	
AM_ Instruck SS 2024 Logic lecture 9 6. CTL Model Checking Algorithm 33/42	universität SS 2024 Logic lecture 9 6. CTL Model Checking Algorithm 34/42

Example 0								
I _A I _B		R _A	P _A	AF P _A	$R_A ightarrow { m AF} P_A$	$AG(R_{A} o AFP_{A})$		
model \mathcal{M} $(1)_{\kappa}$	1				\checkmark	(1 ightarrow 3)		
	2		\checkmark	\checkmark	\checkmark	(2 ightarrow 1)		
P_A (2) (3) R_A I_A (4) (5) I_A	3	\checkmark						
$I_B \xrightarrow{2} I_B R_B \xrightarrow{4} P_B$	4				\checkmark	(4 ightarrow 7)		
	5				\checkmark	(5 ightarrow 6)		
$\left(\begin{array}{c} P_{B} \\ P_{B} \\ G \\ $	6	\checkmark						
R _A R _B	7	\checkmark						
	8		\checkmark	\checkmark	\checkmark	(8 ightarrow 4)		

I _A I _B		R _A	P _A	EF P _A	$R_A ightarrow {\sf EF} P_A$	$AG(R_{A} \to EFP_{A})$	
model \mathcal{M} $(1)_{\mathcal{K}}$	1			\checkmark	\checkmark	\checkmark	
			\checkmark	\checkmark	\checkmark	\checkmark	
P_A (2) (3) R_A I_A (4) (5) I_A	3	\checkmark		\checkmark	\checkmark	\checkmark	
	4			\checkmark	\checkmark	\checkmark	
$\left(\begin{array}{c} B_{A} \\ \end{array}\right)$	5			\checkmark	\checkmark	\checkmark	
$\begin{pmatrix} P_{B} & 6 \\ P_{B} & R_{A} & R_{B} \end{pmatrix}$	6	\checkmark		\checkmark	\checkmark	\checkmark	
NA NB	7	\checkmark		\checkmark	\checkmark	\checkmark	
	8		\checkmark	\checkmark	\checkmark	\checkmark	

universität SS 2024 Logic lecture 9 6. CTL Model Checking Algorithm innsbruck

Example 🕄

$I_A I_B$		R _B	$\neg R_B$	P _B	$E[\neg R_B \cup P_B]$	$\neg E[\neg R_B \cup P_B]$
model \mathcal{M} (1)	1		\checkmark			\checkmark
	2		\checkmark			\checkmark
P_A (2) (3) $(R_A I_A 4)$ (4) (5) I_A	3		\checkmark			\checkmark
$I_{B} \xrightarrow{P_{B}} I_{B} \xrightarrow{R_{B}} \xrightarrow{P_{B}} P_{B}$	4	\checkmark				\checkmark
	5		\checkmark	\checkmark	\checkmark	
	6		\checkmark	\checkmark	\checkmark	
	7	\checkmark				\checkmark
	8	\checkmark				\checkmark

universität Innsbruck SS 2024 Logic lecture 9 6. CTL Model Checking Algorithm 37/42

More Efficient Algorithm for EG

EG φ ① restrict graph to states satisfying φ :

$$S' = \{ s \in S \mid \mathcal{M}, s \models \varphi \}$$
$$\rightarrow' = \{ (s, t) \mid s \rightarrow t \text{ and } s, t \in S' \}$$

- ② compute non-trivial strongly connected components of (S',
 ightarrow ')
- ③ label all states in such SCCs
- 4 compute and label all states that in (S',
 ightarrow') can reach labelled state

Complexity

$\mathcal{O}(f \cdot (V + E))$)) with	f: V: E:	# connectives # states # transitions	instead of	$\mathcal{O}(f \cdot V \cdot (V + E))$	
						AM
universität	S 2024 Lo	gic lectu	ire 9 6. CTL Model C	hecking Algorithm		38/42

State Explosion Problem

size of model is more often than not exponential in number of variables and number of components which execute in parallel

- OBDDs to represent sets of states
- abstraction
- partial order reduction
- induction
- composition

Demo

CMCV

by Matthias Perktold (2014)

Outline

lecture 11

A.M_

39/42

- **1. Summary of Previous Lecture**
- 2. Post's Adequacy Theorem
- 3. Intermezzo
- 4. Model Checking
- 5. Branching-Time Temporal Logic (CTL)
- 6. CTL Model Checking Algorithm

7. Further Reading

Huth and Ryan

- Section 3.4.1
- ► Section 3.4.2
- Section 3.6.1

Post Adequacy Theorem

- Post's Functional Completeness Theorem
 Francis Jeffry Pelletier and Norman M. Martin
 Notre Dame Journal of Formal Logic 31(2), pp. 462–475, 1990
 doi: 10.1305/ndjfl/1093635508
- Boolean Function and Computation Models
 Peter Clote and Evangelos Kranakis
 Texts in Theoretical Computer Science, Springer, 2012
 doi: 10.1007/978-3-662-04943-3

universität SS 2024 Logic lecture 9 7. Further Reading innsbruck ____A_M__ 41/42 Important Concepts

AF AX

- affinity
 computation tree logic
- ► AG ► CTL
- ► AU ► EF

- monotonicity
 - Post's adequacy theorem
- self-duality
- temporal connective

homework for May 23

► EG

► EU

► EX

model

____A.M__

universität SS 2024 Logic lecture 9 7. Further Reading
Innsbruck