Logic

Diana Gründlinger
Alexander Montag Johannes Niederhauser

Fabian Mitterwallner

Aart Middeldorp

Daniel Rainer

Outline

1. Summary of Previous Lecture
2. Symbolic Model Checking
3. Intermezzo
4. Linear-Time Temporal Logic (LTL)
5. Further Reading

Definitions

boolean function f is

- monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$ for all $x_{1} \leqslant y_{1}, \ldots, x_{n} \leqslant y_{n}$
- self-dual if $f\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)}$
- affine if $f\left(x_{1}, \ldots, x_{n}\right)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}$ for some $c_{0}, \ldots, c_{n} \in\{0,1\}$

Theorem (Post's Adequacy Theorem)

set X of boolean functions is adequate if and only if following conditions hold:
(1) $\exists f_{1} \in X$ such that $f_{1}(0, \ldots, 0) \neq 0$
(4) $\exists f_{4} \in X$ which is not self-dual
(2) $\exists f_{2} \in X$ such that $f_{2}(1, \ldots, 1) \neq 1$
(5) $\exists f_{5} \in X$ which is not affine
(3) $\exists f_{3} \in X$ which is not monotone

Definitions

- CTL (computation tree logic) formulas are built from atoms, logical connectives, and temporal connectives AX, EX, AF, EF, AG, EG, AU, EU according to BNF grammar

$$
\begin{aligned}
\varphi::= & \perp|\top| p|(\neg \varphi)|(\varphi \wedge \varphi)|(\varphi \vee \varphi)|(\varphi \rightarrow \varphi)|(\operatorname{AX} \varphi)|(\operatorname{EX} \varphi) \mid \\
& (\operatorname{AF} \varphi)|(\operatorname{EF} \varphi)|(\operatorname{AG} \varphi)|(\operatorname{EG} \varphi)| \operatorname{A}[\varphi \mathrm{U} \varphi] \mid \mathrm{E}[\varphi \mathrm{U} \varphi]
\end{aligned}
$$

- transition system (model) is triple $\mathcal{M}=(S, \rightarrow, L)$ with
- set of states S
- transition relation $\rightarrow \subseteq S \times S$ such that $\forall s \in S \quad \exists t \in S$ with $s \rightarrow t$ ("no deadlock")
- labelling function $L: S \rightarrow \mathcal{P}$ (atoms)
- satisfaction $\mathcal{M}, s \vDash \varphi$ of CTL formula φ in state $s \in S$ of model $\mathcal{M}=(S, \rightarrow, L)$ is defined by induction on φ

Definition

CTL formulas φ and ψ are semantically equivalent $(\varphi \equiv \psi)$ if

$$
\mathcal{M}, s \vDash \varphi \quad \Longleftrightarrow \quad \mathcal{M}, s \vDash \psi
$$

for all models $\mathcal{M}=(S, \rightarrow, L)$ and states $s \in S$

Theorem

$$
\begin{aligned}
\neg \mathrm{AF} \varphi & \equiv \mathrm{EG} \neg \varphi & \mathrm{AF} \varphi & \equiv \mathrm{~A}[\mathrm{~T} \mathrm{U} \varphi] \\
\neg \mathrm{EF} \varphi & \equiv \mathrm{AG} \neg \varphi & \mathrm{EF} \varphi & \equiv \mathrm{E}[\mathrm{~T} \mathrm{U} \varphi] \\
\neg \mathrm{AX} \varphi & \equiv \mathrm{EX} \neg \varphi & \mathrm{~A}[\varphi \cup \psi] & \equiv \neg(\mathrm{E}[\neg \psi \mathrm{U}(\neg \varphi \wedge \neg \psi)] \vee \mathrm{EG} \neg \psi)
\end{aligned}
$$

Theorem

satisfaction of CTL formulas in finite models is decidable

SS 2024
Logic
lecture 10

CTL Model Checking Algorithm

input: \quad model $\mathcal{M}=(S, \rightarrow, L)$ and CTL formula φ
output: • $\{s \in S \mid \mathcal{M}, s \vDash \varphi\}$
label each state $s \in S$ by those subformulas of φ that are satisfied in s
$p \quad$ label $s \Longleftrightarrow p \in L(s) \Longleftrightarrow \quad \neg \varphi$ label $s \Longleftrightarrow s$ is not labelled with φ
$\varphi \wedge \psi \quad$ label $s \quad \Longleftrightarrow \quad s$ is labelled with both φ and ψ
$\operatorname{EX} \varphi \quad$ label $s \Longleftrightarrow t$ is labelled with φ for some t with $s \rightarrow t$
EG $\varphi \quad$ (1) label every s that is labelled with φ
(2) remove label from $s \Longleftrightarrow t$ is not labelled with $\mathrm{EG} \varphi$ for all t with $s \rightarrow t$
(3) repeat (2) until no change
$\mathrm{E}[\varphi \cup \psi]$ label $s \Longleftrightarrow$ (1) s is labelled with ψ
(2) s is labelled with φ and t with $\mathrm{E}[\varphi \cup \psi]$ for some t with $s \rightarrow t$
(3) repeat (2) until no change

Part I: Propositional Logic

algebraic normal forms, binary decision diagrams, conjunctive normal forms, DPLL, Horn formulas, natural deduction, Post's adequacy theorem, resolution, SAT, semantics, sorting networks, soundness and completeness, syntax, Tseitin's transformation

Part II: Predicate Logic

natural deduction, quantifier equivalences, resolution, semantics, Skolemization, syntax, undecidability, unification

Part III: Model Checking

adequacy, branching-time temporal logic, CTL*, fairness, linear-time temporal logic, model checking algorithms, symbolic model checking

Outline

1. Summary of Previous Lecture

2. Symbolic Model Checking
3. Intermezzo
4. Linear-Time Temporal Logic (LTL)
5. Further Reading

Questions

- how to represent sets of states?
- how to represent transition relation?
- how to implement model checking algorithm?

Example

model $\mathcal{M}=(S, \rightarrow, L)$

$$
S=\{1,2,3,4,5,6,7,8\}
$$

$$
\begin{array}{ll}
L(1)=\left\{I_{A}, I_{B}\right\} & L(5)=\left\{I_{A}, P_{B}\right\} \\
L(2)=\left\{P_{A}, I_{B}\right\} & L(6)=\left\{R_{A}, P_{B}\right\} \\
L(3)=\left\{R_{A}, I_{B}\right\} & L(7)=\left\{R_{A}, R_{B}\right\} \\
L(4)=\left\{I_{A}, R_{B}\right\} & L(8)=\left\{P_{A}, R_{B}\right\}
\end{array}
$$

- 8 states require 3 boolean variables

state	x	y	z		state	x	y	z	
1	0	0	0	$\bar{x} \bar{y} \bar{z}$	5	1	0	0	$x \bar{y} \bar{z}$
2	0	0	1	$\bar{x} \bar{y} z$	6	1	0	1	$x \bar{y} z$
3	0	1	0	$\bar{x} y \bar{z}$	7	1	1	0	$x y \bar{z}$
4	0	1	1	$\bar{x} y z$	8	1	1	1	$x y z$

Example (cont'd)

state	state	state	state				
1	$\bar{x} \bar{y} \bar{z}$	3	$\bar{x} y \bar{z}$	5	$x \bar{y} \bar{z}$	7	$x y \bar{z}$

Example (cont'd)

state	state	state	state
$1 \bar{x} \bar{y} \bar{z}$	$3 \bar{x} y \bar{z}$	$5 x \bar{y} \bar{z}$	$7 x y \bar{z}$
$2 \bar{x} \bar{y} z$	$4 \bar{x} y z$	$6 x \bar{y} z$	$8 x y z$

transition relation

$$
\begin{aligned}
& \bar{x} \bar{y}\left(\bar{z} \bar{x}^{\prime} y^{\prime}+z\left(\bar{x}^{\prime} \bar{y}^{\prime} \bar{z}^{\prime}+x^{\prime} y^{\prime} z^{\prime}\right)\right) \\
+ & \bar{x} y\left(\bar{z}\left(\bar{x}^{\prime} \bar{y}^{\prime} z^{\prime}+x^{\prime} y^{\prime} \bar{z}^{\prime}\right)+z x^{\prime} \bar{z}^{\prime}\right) \\
+ & x \bar{y}\left(\bar{z}\left(\bar{x}^{\prime} \bar{y}^{\prime} \bar{z}^{\prime}+x^{\prime} \bar{y}^{\prime} z^{\prime}\right)+z \bar{x}^{\prime} y^{\prime} \bar{z}^{\prime}\right) \\
+ & x y\left(\bar{z} x^{\prime} z^{\prime}+z \bar{x}^{\prime} y^{\prime} z^{\prime}\right)
\end{aligned}
$$

reduced OBDD with variable ordering $\left[x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right]$ has 24 nodes $\left(B_{\rightarrow}\right)$

Definition

model $\mathcal{M}=(S, \rightarrow, L) \quad X \subseteq S$

- $\llbracket \varphi \rrbracket=\{s \in S \mid \mathcal{M}, s \vDash \varphi\}$
- $\operatorname{pre}_{\forall}(X)=\{s \in S \mid t \in X$ for all t with $s \rightarrow t\}$
- $\operatorname{pre}_{\exists}(X)=\{s \in S \mid s \rightarrow t$ for some $t \in X\}$

Lemma

$$
\begin{aligned}
\llbracket \top \rrbracket & =S & \llbracket p \rrbracket & =\{s \in S \mid p \in L(s) \\
\llbracket \perp \rrbracket & =\varnothing & & \llbracket \mathrm{AX} \varphi \rrbracket
\end{aligned}=\operatorname{pre}_{\forall}(\llbracket \varphi \rrbracket)
$$

SS 2024
Logic
lecture 10
2. Symbolic Model Checking

Model Checking Operations

Symbolic Model Checking Operations

required operations BDD representation

```
complement \(\quad S-X \quad\) apply \(\left(\oplus, B_{S}, B_{X}\right)\)
union \(\quad X \cup Y \quad\) apply \(\left(+, B_{X}, B_{Y}\right)\)
intersection
                \(X \cap Y \quad\) apply \(\left(\cdot, B_{X}, B_{Y}\right)\)
            \(\operatorname{pre}_{\exists}(X) \quad \operatorname{exists}(x_{1}^{\prime}, \cdots(\operatorname{exists}(x_{n}^{\prime}, \operatorname{apply}(\cdot, B_{\rightarrow}, \underbrace{B_{x^{\prime}}}))) \cdots)\)
                                    replace \(x_{1}, \ldots, x_{n}\) by \(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\) in \(B_{X}\)
```

$\operatorname{exists}\left(x^{\prime}, B\right)=\operatorname{apply}\left(+, \operatorname{restrict}\left(0, x^{\prime}, B\right), \operatorname{restrict}\left(1, x^{\prime}, B\right)\right)$

Lemma

$$
\begin{aligned}
\llbracket \mathrm{AF} \varphi \rrbracket & =\llbracket \varphi \rrbracket \cup \operatorname{pre}_{\forall}(\llbracket \mathrm{AF} \varphi \rrbracket) & \llbracket \mathrm{EF} \varphi \rrbracket & =\llbracket \varphi \rrbracket \cup \operatorname{pre}_{\exists}(\llbracket \mathrm{EF} \varphi \rrbracket) \\
\llbracket \mathrm{AG} \varphi \rrbracket & =\llbracket \varphi \rrbracket \cap \operatorname{pre}_{\forall}(\llbracket \mathrm{AG} \varphi \rrbracket) & \llbracket \mathrm{EG} \varphi \rrbracket & =\llbracket \varphi \rrbracket \cap \operatorname{pre}_{\ni}(\llbracket \mathrm{EG} \varphi \rrbracket) \\
\llbracket \mathrm{A}[\varphi \mathrm{U} \psi] \rrbracket & =\llbracket \psi \rrbracket \cup\left(\llbracket \varphi \rrbracket \cap \operatorname{pre}_{\forall}(\llbracket \mathrm{A}[\varphi \cup \psi] \rrbracket)\right) & \llbracket \mathrm{E}[\varphi \mathrm{U} \psi] \rrbracket & =\llbracket \psi \rrbracket \cup\left(\llbracket \varphi \rrbracket \cap \operatorname{pre}_{\exists}(\llbracket \mathrm{E}[\varphi \cup \psi] \rrbracket)\right)
\end{aligned}
$$

Remark

- 【AF $\varphi \rrbracket$ is least fixed point of function $F_{\text {AF }}(X)=\llbracket \varphi \rrbracket \cup \operatorname{pre}_{\forall}(X)$- 【EG $\varphi \rrbracket$ is greatest fixed point of function $F_{\mathrm{EG}}(X)=\llbracket \varphi \rrbracket \cap \operatorname{pre}_{\exists}(X)$

Theorem (Knaster-Tarski)

every monotone function $F: \mathcal{P}(S) \rightarrow \mathcal{P}(S)$ with $|S|=n$ admits

- least fixed point $\quad \mu F=F^{n}(\varnothing)$
- greatest fixed point $\quad \nu F=F^{n}(S)$

SS 2024
Logic
lecture 10
2. Symbolic Model Checking

Model Checking Operations

Theorem (Knaster-Tarski)

every monotone function $F: \mathcal{P}(S) \rightarrow \mathcal{P}(S)$ with $|S|=n$ admits

- least fixed point $\mu F=F^{n}(\varnothing)$
- greatest fixed point $\quad \nu F=F^{n}(S)$
function $F: \mathcal{P}(S) \rightarrow \mathcal{P}(S)$ is monotone if $F(X) \subseteq F(Y)$ whenever $X \subseteq Y \subseteq S$

Proof

see overlay version of slides

SS 2024
Logic
lecture 10
2. Symbolic Model Checking

Model Checking Operations

Definition

function $F_{\mathrm{AF}}: \mathcal{P}(S) \rightarrow \mathcal{P}(S): \quad F_{\mathrm{AF}}(X)=\llbracket \varphi \rrbracket \cup \operatorname{pre}_{\forall}(X)$

Example

$$
\begin{aligned}
\varphi & =I_{B} \quad X=\varnothing \\
F_{\mathrm{AF}}(X) & =\llbracket \varphi \rrbracket=\{1,2,3\} \\
F_{\mathrm{AF}}^{2}(X) & =F_{\mathrm{AF}}\left(F_{\mathrm{AF}}(X)\right)=\{1,2,3\} \cup\{6\} \\
F_{\mathrm{AF}}^{3}(X) & =\{1,2,3\} \cup\{5,6\} \\
F_{\mathrm{AF}}^{4}(X) & =\{1,2,3\} \cup\{5,6\} \\
\llbracket \mathrm{AF} I_{\mathrm{B}} \rrbracket & =\{1,2,3,5,6\}
\end{aligned}
$$

Definition

function $F_{\mathrm{EG}}: \mathcal{P}(S) \rightarrow \mathcal{P}(S): \quad F_{\mathrm{EG}}(X)=\llbracket \varphi \rrbracket \cap \operatorname{pre}_{\exists}(X)$

Example

$$
\begin{aligned}
\varphi & =P_{A} \vee I_{B} \\
X & =\{1,2,3,4,5,6,7,8\}=\operatorname{pre}_{\exists}(X) \\
F_{\mathrm{EG}}(X) & =\llbracket \varphi \rrbracket=\{1,2,3,8\} \\
F_{\mathrm{EG}}^{2}(X) & =\{1,2,3,8\} \cap\{1,2,3,5,6,7\} \\
F_{\mathrm{EG}}^{3}(X) & =\{1,2,3,8\} \cap\{1,2,3,5,6\} \\
\llbracket \mathrm{EG}\left(P_{A} \vee I_{B}\right) \rrbracket & =\{1,2,3\}
\end{aligned}
$$

Definition

function $F_{\mathrm{EU}}: \mathcal{P}(S) \rightarrow \mathcal{P}(S): \quad F_{\mathrm{EU}}(X)=\llbracket \psi \rrbracket \cup\left(\llbracket \varphi \rrbracket \cap \operatorname{pre}_{\exists}(X)\right)$

Lemma

$\llbracket \mathrm{E}[\varphi \mathrm{U} \psi] \rrbracket$ is least fixed point of monotone function $\boldsymbol{F}_{\mathrm{E} U}$

Algorithm

```
W := \llbracket\varphi\rrbracket;
X := \varnothing;
Y := \llbracket\llbracket\psi\rrbracket;
repeat until X = Y
    X := Y;
    Y := Y U(W\cap pre }\mp@subsup{\exists}{\exists}{(Y)}
return Y
```

SS 2024
Logic
lecture 10
2. Symbolic Model Checking

Model Checking Operations

Example (Huth and Ryan, Exercise 6.12.2(a))

model $\mathcal{M}=(S, \rightarrow, L)$

state	x	y
0	1	0
1	0	1
2	0	0
-	1	1

$\rightarrow: \bar{x} \bar{x}^{\prime} y^{\prime}+\bar{x} x^{\prime} \bar{y}^{\prime}+x \bar{x}^{\prime} \bar{y} \bar{y}^{\prime}$

$$
p: x \bar{y} \quad S, \top: x \bar{y}+\bar{x} y+\bar{x} \bar{y}=\bar{x}+\bar{y}
$$

$$
q: \bar{x} y \quad \neg p \wedge q:((\bar{x}+\bar{y}) \oplus x \bar{y}) \cdot \bar{x} y=\bar{x} y
$$

$$
\mathrm{W}: \bar{x}+\bar{y}
$$

$$
\mathrm{AG}(p \vee \neg q) \equiv \neg \mathrm{E}[\top \cup \neg p \wedge q]
$$

```
\(\mathrm{W}:=\llbracket \top \rrbracket ;\)
\(\mathrm{X}:=\varnothing\);
\(\mathrm{Y}:=\llbracket \neg p \wedge q \rrbracket ;\)
repeat until \(X=Y\)
    \(\mathrm{X}:=\mathrm{Y}\);
    \(\mathrm{Y}:=\mathrm{Y} \cup\left(\mathrm{W} \cap \operatorname{pre}_{\exists}(\mathrm{Y})\right)\)
return Y
```

$\mathrm{X}_{0} 0 \quad \mathrm{X}_{1} \bar{x} y \quad \mathrm{X}_{2} \bar{x} \quad \mathrm{X}_{3} \bar{x}+\bar{y}$
$\mathrm{Y}_{0} \bar{x} y \quad \mathrm{Y}_{1} \bar{x} \quad \mathrm{Y}_{2} \bar{x}+\bar{y} \quad \mathrm{Y}_{3} \bar{x}+\bar{y} \quad \mathrm{X}_{3}=\mathrm{Y}_{3}$
$\mathrm{E}[\top \cup \neg p \wedge q]: \bar{x}+\bar{y}$

$$
\mathrm{AG}(p \vee \neg q): \quad(\bar{x}+\bar{y}) \oplus(\bar{x}+\bar{y})=0
$$

Outline

1. Summary of Previous Lecture

2. Symbolic Model Checking

3. Intermezzo

4. Linear-Time Temporal Logic (LTL)
5. Further Reading

Drticify with session ID 09929580

Question

Which of the following statements about symbolic model checking are true ?
A For a model with 2 states the reduced $\operatorname{BDD} B_{\rightarrow}$ has at most 5 nodes.
B The set $\llbracket p \vee \neg p \rrbracket$ corresponds to the reduced BDD 0 .
C Every monotone function $F: \mathcal{P}(S) \rightarrow \mathcal{P}(S)$ with $|S|=n$ admits a least fixed point $\mu F=F^{n}(S)$.

D $\llbracket \varphi \rightarrow \perp \rrbracket=(S-\llbracket \varphi \rrbracket)$

Outline

1. Summary of Previous Lecture

2. Symbolic Model Checking
3. Intermezzo
4. Linear-Time Temporal Logic (LTL)

Syntax Semantics Example
5. Further Reading

Definitions

- LTL (linear-time temporal logic) formulas are built from
- atoms
- logical connectives
- temporal connectives
$p, q, r, p_{1}, p_{2}, \ldots$
$\perp, \top, \neg, \wedge, \vee, \rightarrow$
X, F, G, U, W, R
according to following BNF grammar:

$$
\begin{aligned}
\varphi::= & \perp|\top| p|(\neg \varphi)|(\varphi \wedge \varphi)|(\varphi \vee \varphi)|(\varphi \rightarrow \varphi) \mid \\
& (\mathrm{X} \varphi)|(\mathrm{F} \varphi)|(\mathrm{G} \varphi)|(\varphi \mathrm{U} \varphi)|(\varphi \mathrm{W} \varphi) \mid(\varphi \mathrm{R} \varphi)
\end{aligned}
$$

- notational conventions:
- binding precedence

$$
\neg, \mathrm{X}, \mathrm{~F}, \mathrm{G}>\mathrm{U}, \mathrm{~W}, \mathrm{R}>\wedge, \vee>\rightarrow
$$

- omit outer parentheses
- $\rightarrow, \wedge, \vee$ are right-associative

Example

formula

$$
\mathrm{F}(p \rightarrow \mathrm{G} r) \vee \neg q \cup p
$$

$$
\mathrm{F} p \rightarrow(\mathrm{G} r \vee \neg q) \cup p
$$

parse tree

X	next state	F	\exists future state	W
U until	G	\forall states globally	R	release

Outline

1. Summary of Previous Lecture

2. Symbolic Model Checking
3. Intermezzo
4. Linear-Time Temporal Logic (LTL)

Syntax Semantics Example
5. Further Reading

Definition

- path in model $\mathcal{M}=(S, \rightarrow, L)$ is infinite sequence $s_{1} \rightarrow s_{2} \rightarrow \cdots$
- \forall paths $\pi=s_{1} \rightarrow s_{2} \rightarrow \cdots \quad \forall i \geqslant 1 \quad \pi^{i}=s_{i} \rightarrow s_{i+1} \rightarrow \cdots$

Definition

satisfaction of LTL formula φ with respect to path $\pi=s_{1} \rightarrow S_{2} \rightarrow \cdots$ in model $\mathcal{M}=(S, \rightarrow, L)$

$$
\pi \vDash \varphi
$$

is defined by induction on φ :

$\pi \vDash$ T	$\pi \not \models \perp$	$\pi \vDash \varphi \wedge \psi$	\Longrightarrow	$\pi \vDash \varphi$	$\pi \vDash \psi$
$\pi \vDash p$	$p \in L\left(s_{1}\right)$	$\pi \vDash \varphi \vee \psi$	$\stackrel{ }{ }$	$\pi \vDash \varphi$	$\pi \vDash \psi$
$\pi \vDash \neg \varphi$	$\pi \nvdash \varphi$	$\pi \vDash \varphi \rightarrow \psi$	\Longleftrightarrow	$\pi \nvdash \varphi$	$\pi \vDash \psi$

Example

$$
\begin{aligned}
& \pi_{1}=1 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow 2 \rightarrow \cdots \\
& \pi_{2}=7 \rightarrow 6 \rightarrow 3 \rightarrow 7 \rightarrow 6 \rightarrow 3 \rightarrow \cdots
\end{aligned}
$$

special notation for infinite paths:

$$
\pi_{1}=(132)^{\omega} \quad \pi_{2}=(763)^{\omega}
$$

$$
\begin{array}{ll}
\pi_{1} \not \vDash I_{A} & \pi_{1} \not \models R_{A} \wedge I_{B} \\
\pi_{2} \not \models I_{A} & \pi_{2}^{6} \not \vDash R_{A} \wedge I_{B}
\end{array}
$$

$$
\pi_{1} \not \models I_{B} \rightarrow P_{A} \vee R_{B}
$$

$$
\pi_{2} \vDash I_{B} \rightarrow P_{A} \vee R_{B}
$$

Definition

satisfaction of LTL formula φ with respect to path $\pi=s_{1} \rightarrow s_{2} \rightarrow \cdots$ in model $\mathcal{M}=(S, \rightarrow, L)$

$$
\pi \vDash \varphi
$$

is defined by induction on φ :

$$
\begin{array}{ll}
\pi \vDash \mathrm{X} \varphi & \Longleftrightarrow \pi^{2} \vDash \varphi \\
\pi \vDash \mathrm{~F} \varphi & \Longleftrightarrow \exists i \geqslant 1 \quad \pi^{i} \vDash \varphi \\
\pi \vDash \mathrm{G} \varphi & \Longleftrightarrow \forall i \geqslant 1 \quad \pi^{i} \vDash \varphi \\
\pi \vDash \varphi \mathrm{\cup} \psi & \Longleftrightarrow \exists i \geqslant 1 \quad \pi^{i} \vDash \psi \text { and } \forall j<i \quad \pi^{j} \vDash \varphi \\
\pi \vDash \varphi \mathrm{~W} \psi & \Longleftrightarrow\left(\exists i \geqslant 1 \quad \pi^{i} \vDash \psi \text { and } \forall j<i \quad \pi^{j} \vDash \varphi\right) \text { or } \forall i \geqslant 1 \pi^{i} \vDash \varphi \\
\pi \vDash \varphi \mathrm{R} \psi & \Longleftrightarrow\left(\exists i \geqslant 1 \quad \pi^{i} \vDash \varphi \text { and } \forall j \leqslant i \quad \pi^{j} \vDash \psi\right) \text { or } \forall i \geqslant 1 \quad \pi^{i} \vDash \psi
\end{array}
$$

Example

$$
\begin{aligned}
& \pi_{1} \not \vDash \mathrm{X}\left(R_{A} \vee R_{B}\right) \\
& \pi_{2} \not \models \mathrm{~F} P_{A} \\
& \pi_{1} \not \models I_{A} \cup P_{A}
\end{aligned}
$$

$$
\pi_{1}=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)^{\omega}
$$

$$
\pi_{2}=(763)^{\omega}
$$

$\pi_{1} \not \models \mathrm{XX} \mathrm{P}_{B}$
$\pi_{2} \vDash G F P_{B}$
$\pi_{2} \not \models P_{B} \mathrm{R} R_{B}$

Definition

model $\mathcal{M}=(S, \rightarrow, L)$, state $s \in S$, LTL formula φ
$\mathcal{M}, s \vDash \varphi \quad \Longleftrightarrow \quad \forall$ paths $\pi=s \rightarrow \cdots \quad \pi \vDash \varphi$
"formula φ holds in state s of model \mathcal{M} "

Example

$$
\begin{aligned}
& \mathcal{M}, 1 \not \models \mathrm{G}\left(R_{A} \rightarrow \mathrm{~F} P_{A}\right) \\
& \mathcal{M}, 4 \not \models \neg\left(R_{B} \cup P_{B}\right) \\
& \mathcal{M}, 4 \not \models \quad R_{B} \cup P_{B} \\
& \mathcal{M}, 6 \vDash \mathrm{X}\left(\mathrm{~F} I_{B} \wedge\left(\left(\mathrm{X} \neg P_{B}\right) \mathrm{R} R_{A}\right)\right)
\end{aligned}
$$

Definition

LTL formulas φ and ψ are semantically equivalent $(\varphi \equiv \psi)$ if
\forall models $\mathcal{M}=(S, \rightarrow, L)$
\forall paths π in \mathcal{M}

$$
\pi \vDash \varphi \quad \Longleftrightarrow \quad \pi \vDash \psi
$$

Theorem

$$
\begin{array}{rlrl}
\neg \mathrm{X} \varphi & \equiv \mathrm{X} \neg \varphi & \varphi \mathrm{U} \psi & \equiv \neg(\neg \psi \cup(\neg \varphi \wedge \neg \psi)) \wedge \mathrm{F} \psi \\
\neg \mathrm{~F} \varphi & \equiv \mathrm{G} \neg \varphi & \mathrm{~F}(\varphi \vee \psi) & \equiv \mathrm{F} \varphi \vee \mathrm{~F} \psi \\
\neg \mathrm{G} \varphi & \equiv \mathrm{~F} \neg \varphi & \neg(\varphi \mathrm{U} \psi) & \equiv \neg \varphi \mathrm{R} \neg \psi \\
\neg(\varphi \mathrm{R} \psi) & \equiv \neg \varphi \mathrm{U} \neg \psi & \mathrm{G}(\varphi \wedge \psi) & \equiv \mathrm{G} \varphi \wedge \mathrm{G} \psi \\
\varphi \mathrm{U} \psi & \equiv \varphi \mathrm{~W} \psi \wedge \mathrm{~F} \psi & \mathrm{~F} \varphi & \equiv \mathrm{~T} \cup \varphi \\
\varphi \mathrm{~W} \psi & \equiv \varphi \mathrm{U} \psi \psi \vee \mathrm{G} \varphi & & \equiv \perp \mathrm{R} \varphi \\
\mathrm{~W} \psi & \equiv \psi \mathrm{R}(\varphi \vee \psi) \\
& \varphi \mathrm{R} \psi & \equiv \psi \mathrm{~W}(\varphi \wedge \psi)
\end{array}
$$

Theorem

$$
\varphi \cup \psi \equiv \neg(\neg \psi \cup(\neg \varphi \wedge \neg \psi)) \wedge \mathbf{F} \psi
$$

see overlay version for proof

Outline

1. Summary of Previous Lecture

2. Symbolic Model Checking
3. Intermezzo
4. Linear-Time Temporal Logic (LTL)
Syntax
Semantics
Example
5. Further Reading

Mutual Exclusion

- concurrent processes sharing resource
- identify critical sections (including access to shared resource) in each process' code
- at most one process can be in its critical section at any time desired:
protocol for determining which process is allowed to enter its critical section at which time expected properties:
safety only one process is in its critical section at any time
liveness whenever process requests to enter its critical section, it will eventually be permitted to do so
non-blocking each process can always request to enter its critical section

Mutual Exclusion (first modeling attempt)

- two processes have three states each:
(n) non-critical state
(t) trying to enter critical state
(c) critical state
- each process undergoes transitions in cycle $n_{i} \rightarrow t_{i} \rightarrow c_{i} \rightarrow n_{i} \rightarrow \cdots\left(n_{i} t_{i} c_{i}\right)^{\omega}$
- asynchronous interleaving
- model (protocol):
- safety: $G \neg\left(c_{1} \wedge c_{2}\right)$

Mutual Exclusion (second modeling attempt)

- safety: $\quad \mathrm{G} \neg\left(c_{1} \wedge c_{2}\right) \quad \checkmark$
- liveness: $\mathrm{G}\left(t_{1} \rightarrow \mathrm{~F} c_{1}\right) \quad \sqrt{ }$

NuSMV (New Symbolic Model Verifier)

provides language for describing models and checks satisfaction of LTL and CTL formulas

Logic
lecture 10
4. Linear-Time Temporal Logic (LTL)

Example

Mutual Exclusion Protocol in NuSMV

```
MODULE main
VAR
    pr1 : process prc ( pr2.st, turn, FALSE ) ;
    turn : boolean ;
ASSIGN
    init ( turn ) := FALSE ;
LTLSPEC G ! (( pr1.st = c ) & ( pr2.st = c )) -- safety
LTLSPEC G (( pr1.st = t ) -> F ( pr1.st = c )) -- liveness
LTLSPEC G (( pr2.st = t ) -> F ( pr2.st = c )) -- liveness
MODULE prc ( other-st, turn, myturn )
VAR st : { n, t, c } ;
ASSIGN
    init ( st ) := n ;
    next ( st ) := case
        ( st = n ) : { n, t } ;
        ( st = t ) & ( other-st = n ) : c ;
        ( st = t ) & ( other-st = t ) : c ;
        ( st = c ) : st ;
        TRUE : st ;
    esac ;
    next ( turn ) := case
        turn = myturn & st = c : ! turn ;
        TRUE : turn ;
    esac ;
FAIRNESS running
FAIRNESS ! ( st = c )
```

SS 2024
Logic
lecture 10
4. Linear-Time Temporal Logic (LTL)

Example

Outline

```
1. Summary of Previous Lecture
2. Symbolic Model Checking
3. Intermezzo
4. Linear-Time Temporal Logic (LTL)
```

5. Further Reading

Huth and Ryan

- Section 3.1
- Section 3.2
- Section 3.3
- Section 3.7
- Section 6.3

Model Checking Tools

- NuSMV
- Spin

SS 2024
Logic
lecture 10
5. Further Reading

Important Concepts

```
- \llbracket\varphi\rrbracket
```

- linear-time temporal logic
- liveness
- LTL
- non-blocking
- path
${ }^{-} \operatorname{pre}_{\forall}$
- R
- safety
- symbolic model checking
- U
- W
- X
- pre_{\exists}

homework for June 6

next week (June 3): online evaluation in presence $\quad \Longrightarrow$ bring device

