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Definitions

model M = (S,→, L) and X ⊆ S

▶ [[φ]] = {s ∈ S | M, s ⊨ φ}
▶ pre∀(X) = {s ∈ S | t ∈ X for all t with s → t}
▶ pre∃(X) = {s ∈ S | s → t for some t ∈ X}
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Lemma

[[⊤]] = S [[p]] = {s ∈ S | p ∈ L(s)}

[[⊥]] = ∅ [[AXφ]] = pre∀([[φ]])

[[¬φ]] = S− [[φ]] [[EXφ]] = pre∃([[φ]])

[[φ ∧ ψ ]] = [[φ]] ∩ [[ψ ]] [[AFφ]] = [[φ]] ∪ pre∀([[AFφ]])

[[φ ∨ ψ ]] = [[φ]] ∪ [[ψ ]] [[EFφ]] = [[φ]] ∪ pre∃([[EFφ]])

[[φ→ ψ ]] = (S− [[φ]]) ∪ [[ψ ]] [[AGφ]] = [[φ]] ∩ pre∀([[AGφ]])

[[EGφ]] = [[φ]] ∩ pre∃([[EGφ]])

[[A[φUψ ]]] = [[ψ ]] ∪ ([[φ]] ∩ pre∀([[A[φUψ ]]]))

pre∀(X) = S− pre∃(S− X) [[E[φUψ ]]] = [[ψ ]] ∪ ([[φ]] ∩ pre∃([[E[φUψ ]]]))
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Lemma

▶ [[AFφ]] is least fixed point of monotone function FAF(X) = [[φ]] ∪ pre∀(X)

▶ [[EGφ]] is greatest fixed point of monotone function FEG(X) = [[φ]] ∩ pre∃(X)

▶ [[E[ψ Uφ]]] is least fixed point of monotone function FEU(X) = [[ψ ]] ∪ ([[φ]] ∩ pre∃(X))

Theorem (Knaster –Tarski)

every monotone function F : P(S) → P(S) with |S| = n admits

▶ least fixed point µF = Fn(∅)

▶ greatest fixed point νF = Fn(S)

symbolic model checking = (CTL) model checking with BDDs
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Definitions

▶ LTL (linear-time temporal logic) formulas are built from

▶ atoms p, q, r, p1, p2, . . .

▶ logical connectives ⊥, ⊤, ¬, ∧, ∨, →
▶ temporal connectives X, F, G, U, W, R

according to following BNF grammar:

φ ::= ⊥ | ⊤ | p | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ) |
(Xφ) | (Fφ) | (Gφ) | (φUφ) | (φWφ) | (φRφ)

▶ path in model M = (S,→, L) is infinite sequence s1 → s2 → · · ·
▶ satisfaction π ⊨ φ of LTL formula φ with respect to path π = s1 → s2 → · · · in model M is

defined by induction on φ

▶ satisfaction M, s ⊨ φ of LTL formula φ with respect to state s ∈ S in model M is defined

as "for all paths π = s → · · · π ⊨ φ"
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Definition

LTL formulas φ and ψ are semantically equivalent (φ ≡ ψ) if

π ⊨ φ ⇐⇒ π ⊨ ψ

for all models M = (S,→, L) and paths π in M

Remark

π ⊭ φ ⇐⇒ π ⊨ ¬φ

M, s ⊨ φ =⇒ M, s ⊭ ¬φ M, s ⊭ φ ≠⇒ M, s ⊨ ¬φ
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Theorem

¬Xφ ≡ X¬φ φUψ ≡ ¬(¬ψ U (¬φ ∧ ¬ψ)) ∧ Fψ

¬Fφ ≡ G¬φ F (φ ∨ ψ) ≡ Fφ ∨ Fψ

¬Gφ ≡ F¬φ G (φ ∧ ψ) ≡ Gφ ∧ Gψ

¬(φUψ) ≡ ¬φR¬ψ Fφ ≡ ⊤Uφ

¬(φRψ) ≡ ¬φU¬ψ Gφ ≡ ⊥Rφ

φUψ ≡ φWψ ∧ Fψ φWψ ≡ ψ R (φ ∨ ψ)
φWψ ≡ φUψ ∨ Gφ φRψ ≡ ψW (φ ∧ ψ)
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Part I: Propositional Logic

algebraic normal forms, binary decision diagrams, conjunctive normal forms, DPLL, Horn

formulas, natural deduction, Post’s adequacy theorem, resolution, SAT, semantics, sorting

networks, soundness and completeness, syntax, Tseitin’s transformation

Part II: Predicate Logic

natural deduction, quantifier equivalences, resolution, semantics, Skolemization, syntax,

undecidability, unification

Part III: Model Checking

adequacy, branching-time temporal logic, CTL∗, fairness, linear-time temporal logic, model

checking algorithms, symbolic model checking

SS 2024 Logic lecture 11 1. Summary of Previous Lecture Overview 9/48



Part I: Propositional Logic

algebraic normal forms, binary decision diagrams, conjunctive normal forms, DPLL, Horn

formulas, natural deduction, Post’s adequacy theorem, resolution, SAT, semantics, sorting

networks, soundness and completeness, syntax, Tseitin’s transformation

Part II: Predicate Logic

natural deduction, quantifier equivalences, resolution, semantics, Skolemization, syntax,

undecidability, unification

Part III: Model Checking

adequacy, branching-time temporal logic, CTL∗, fairness, linear-time temporal logic, model

checking algorithms, symbolic model checking

SS 2024 Logic lecture 11 1. Summary of Previous Lecture Overview 9/48



Outline

1. Summary of Previous Lecture

2. Adequacy

LTL CTL

3. Evaluation

4. Fairness

5. Intermezzo

6. LTL Model Checking Algorithm

7. Further Reading

8. Exam

SS 2024 Logic lecture 11 2. Adequacy 10/48



Theorem

{X, U}, {X,W} and {X, R} are adequate sets of temporal connectives for LTL

Proof

Fφ ≡ ⊤Uφ

φRψ ≡ ψW (φ ∧ ψ) φUψ ≡ ¬(¬φR¬ψ)

Gφ ≡ ¬F¬φ

φUψ ≡ ¬(¬φR¬ψ) Fφ ≡ ⊤Uφ

φRψ ≡ ¬(¬φU¬ψ)

Fφ ≡ ⊤Uφ Gφ ≡ ¬F¬φ

φWψ ≡ φUψ ∨ Gφ

Gφ ≡ ¬F¬φ φWψ ≡ φUψ ∨ Gφ

Theorem

{U,R}, {U,W}, {U,G}, {F,W} and {F,R} are adequate sets of temporal connectives for LTL

fragment consisting of negation-normal forms without X

SS 2024 Logic lecture 11 2. Adequacy LTL 11/48



Theorem

{X, U}, {X,W} and {X, R} are adequate sets of temporal connectives for LTL

Proof

Fφ ≡ ⊤Uφ

φRψ ≡ ψW (φ ∧ ψ) φUψ ≡ ¬(¬φR¬ψ)

Gφ ≡ ¬F¬φ

φUψ ≡ ¬(¬φR¬ψ) Fφ ≡ ⊤Uφ

φRψ ≡ ¬(¬φU¬ψ)

Fφ ≡ ⊤Uφ Gφ ≡ ¬F¬φ

φWψ ≡ φUψ ∨ Gφ

Gφ ≡ ¬F¬φ φWψ ≡ φUψ ∨ Gφ

Theorem

{U,R}, {U,W}, {U,G}, {F,W} and {F,R} are adequate sets of temporal connectives for LTL

fragment consisting of negation-normal forms without X

SS 2024 Logic lecture 11 2. Adequacy LTL 11/48



Theorem

{X, U}, {X,W} and {X, R} are adequate sets of temporal connectives for LTL

Proof

Fφ ≡ ⊤Uφ φRψ ≡ ψW (φ ∧ ψ)

φUψ ≡ ¬(¬φR¬ψ)

Gφ ≡ ¬F¬φ φUψ ≡ ¬(¬φR¬ψ)

Fφ ≡ ⊤Uφ

φRψ ≡ ¬(¬φU¬ψ) Fφ ≡ ⊤Uφ

Gφ ≡ ¬F¬φ

φWψ ≡ φUψ ∨ Gφ Gφ ≡ ¬F¬φ

φWψ ≡ φUψ ∨ Gφ

Theorem

{U,R}, {U,W}, {U,G}, {F,W} and {F,R} are adequate sets of temporal connectives for LTL

fragment consisting of negation-normal forms without X

SS 2024 Logic lecture 11 2. Adequacy LTL 11/48



Theorem

{X, U}, {X,W} and {X, R} are adequate sets of temporal connectives for LTL

Proof

Fφ ≡ ⊤Uφ φRψ ≡ ψW (φ ∧ ψ) φUψ ≡ ¬(¬φR¬ψ)
Gφ ≡ ¬F¬φ φUψ ≡ ¬(¬φR¬ψ) Fφ ≡ ⊤Uφ

φRψ ≡ ¬(¬φU¬ψ) Fφ ≡ ⊤Uφ Gφ ≡ ¬F¬φ
φWψ ≡ φUψ ∨ Gφ Gφ ≡ ¬F¬φ φWψ ≡ φUψ ∨ Gφ

Theorem

{U,R}, {U,W}, {U,G}, {F,W} and {F,R} are adequate sets of temporal connectives for LTL

fragment consisting of negation-normal forms without X

SS 2024 Logic lecture 11 2. Adequacy LTL 11/48



Theorem

{X, U}, {X,W} and {X, R} are adequate sets of temporal connectives for LTL

Proof

Fφ ≡ ⊤Uφ φRψ ≡ ψW (φ ∧ ψ) φUψ ≡ ¬(¬φR¬ψ)
Gφ ≡ ¬F¬φ φUψ ≡ ¬(¬φR¬ψ) Fφ ≡ ⊤Uφ

φRψ ≡ ¬(¬φU¬ψ) Fφ ≡ ⊤Uφ Gφ ≡ ¬F¬φ
φWψ ≡ φUψ ∨ Gφ Gφ ≡ ¬F¬φ φWψ ≡ φUψ ∨ Gφ

Theorem

{U,R}, {U,W}, {U,G}, {F,W} and {F,R} are adequate sets of temporal connectives for LTL

fragment consisting of negation-normal forms without X

SS 2024 Logic lecture 11 2. Adequacy LTL 11/48



Outline

1. Summary of Previous Lecture

2. Adequacy

LTL CTL

3. Evaluation

4. Fairness

5. Intermezzo

6. LTL Model Checking Algorithm

7. Further Reading

8. Exam

SS 2024 Logic lecture 11 2. Adequacy CTL 12/48



Theorem

set of temporal connectives is adequate for CTL ⇐⇒

it contains


at least one of {AX, EX}
at least one of {EG, AF, AU}
EU

Proof ( ⇐= )

▶ AXφ ≡ ¬ EX¬φ and EXφ ≡ ¬ AX¬φ

▶ EFφ ≡ E[⊤Uφ]

▶ AGφ ≡ ¬ EF¬φ
▶ A[φUψ ] ≡ ¬(E[¬ψ U (¬φ ∧ ¬ψ)] ∨ EG¬ψ)
▶ AFφ ≡ A[⊤Uφ]

▶ EGφ ≡ ¬ AF¬φ
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Theorem

set of temporal connectives is adequate for CTL ⇐⇒

it contains


at least one of {AX, EX}
at least one of {EG, AF, AU}
EU

Proof ( =⇒ )

▶ consider model M
0 1 2

p

▶ M,0 ⊭ EXp and M,1 ⊨ EXp

▶ for every CTL formula φ not containing EX and AX:

M,0 ⊨ φ ⇐⇒ M,1 ⊨ φ
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0 1 2

p

Proof ( =⇒ , cont’d)

induction on φ

▶ if φ is atom or φ = ⊥ then M,0 ⊭ φ and M,1 ⊭ φ

▶ if φ = ⊤ then M,0 ⊨ φ and M,1 ⊨ φ

▶ if φ = ¬ψ then M,0 ⊨ φ ⇐⇒ M,0 ⊭ ψ

⇐⇒ M,1 ⊭ ψ ⇐⇒ M,1 ⊨ φ

▶ if φ = ψ1 ∧ ψ2 then

M,0 ⊨ φ ⇐⇒ M,0 ⊨ ψ1 and M,0 ⊨ ψ2

⇐⇒ M,1 ⊨ ψ1 and M,1 ⊨ ψ2

⇐⇒ M,1 ⊨ φ
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0 1 2

p

Proof ( =⇒ , cont’d)
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▶ if φ = AFψ or φ = EFψ then

M,0 ⊨ φ ⇐⇒ M, i ⊨ ψ for some i ∈ {0,1,2}

⇐⇒ M, i ⊨ ψ for some i ∈ {1,2}

⇐⇒ M,1 ⊨ φ

▶ if φ = AGψ or φ = EGψ then

M,0 ⊨ φ ⇐⇒ M, i ⊨ ψ for all i ∈ {0,1,2}
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Theorem

. . . at least one of {EG, AF, AU}

Proof ( =⇒ )

▶ consider model M
· · · 3 2 1

0

· · · 3′ 2′ 1′

p

▶ M, i ⊨ AFp for all i ⩾ 0

and M, i′ ⊭ AFp for all i > 0

▶ for every CTL formula φ not containing EG, AF and AU there exists nφ > 0 such that

M,nφ ⊨ φ ⇐⇒ M,n′φ ⊨ φ
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Theorem

. . . EU

Proof ( =⇒ )
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· · · 2 1 0

· · · 2′ 1′ 0′

p p p

p p p
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▶ M, i ⊨ E[pUq ] and M, i′ ⊭ E[pUq ] for all i ⩾ 0

▶ for every CTL formula φ not containing EU there exists nφ ⩾ 0 such that

M,nφ ⊨ φ ⇐⇒ M,n′φ ⊨ φ
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Online Evaluation in Presence

https://lv-analyse.uibk.ac.at/evasys/public/online/index
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Motivation

▶ model may contain behaviour which is unrealistic or guaranteed not to happen

▶ such behaviour is (typically) not expressible in CTL

▶ eliminate such behaviour by imposing fairness constraints

Definitions

▶ path s1 → s2 → · · · is fair with respect to set C of CTL formulas if for all ψ ∈ C

s i ⊨ ψ for infinitely many i (G Fψ in LTL)

▶ formulas in C are called fairness constraints

▶ AC (EC) denotes A (E) restricted to paths that are fair with respect to C
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Example

model M 1

2 3 4 5

6 7 8

IA IB

PA
IB

RA

IB
IA
RB

IA
PB

RA

PB
RA RB

PA
RB

▶ path 1 (3 7 6)ω is fair with respect to { IB, PB}

but not with respect to { IA}

▶ M,1 ⊭ A{RB}F PB because path 1 (4 7 8)ω is fair with respect to RB but M, i ⊭ PB for

i ∈ {1,4,7,8}
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Lemma

EC [φUψ ] ≡ E[φU (ψ ∧ ECG⊤)]

ECXφ ≡ EX(φ ∧ ECG⊤)

New Algorithm (CTL Model Checking with Fairness Constraints)

required only for ECGφ:

1 restrict graph to states satisfying φ

2 compute non-trivial strongly connected components (SCCs)

3 remove SCC S if there exists constraint ψ ∈ C such that s ⊭ ψ for all states s ∈ S

4 label all states in resulting SCCs

5 compute and label all states that can reach labelled state in restricted graph computed

in step 1
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with session ID 0992 9580

Question

Which of the following statements hold for all models M = (S,→, L) and

states s ∈ S ?

A M, s ⊨ E{p∧q}F(q)

B M, s ⊭ E{p}G(EFp)

C M, s ⊨ A{¬q}F(AX¬q)

D M, s ⊨ E{p}[¬pU p ]
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Theorem

satisfaction of LTL formulas in finite models is decidable

Two Approaches

1 translate into CTL model checking with fairness constraints

2 use automata techniques

Basic Strategy

M, s ⊨ φ ?

▶ construct labelled Büchi automaton A¬φ for ¬φ
▶ combine A¬φ and M into single automaton A¬φ ×M
▶ determine whether there exists accepting path in A¬φ ×M
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formula φ in LTL fragment with U and X as only temporal operators

Definition

closure C(φ) of φ consists of all subformulas of φ and their negations, identifying ¬¬ψ and ψ

Example

C(aU (¬a ∧ b)) = {a, ¬a, b, ¬b, ¬a ∧ b, ¬(¬a ∧ b), aU (¬a ∧ b), ¬(aU (¬a ∧ b))}

▶ {a, b, ¬a ∧ b, aU (¬a ∧ b)} not elementary

▶ {a, b, aU (¬a ∧ b)} not elementary

▶ {a, b, ¬(¬a ∧ b), aU (¬a ∧ b)} elementary

▶ {¬a, ¬b, ¬(¬a ∧ b), aU (¬a ∧ b)} not elementary

▶ {a, b, ¬(¬a ∧ b), ¬(aU (¬a ∧ b))} elementary

▶ {a, ¬b, ¬(¬a ∧ b), ¬(aU (¬a ∧ b))} elementary
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Definition

set B ⊆ C(φ) is elementary if it is

1 consistent with respect to propositional logic

: for all φ1 ∧ φ2 ∈ C(φ)

and ψ ∈ C(φ)

▶ φ1 ∧ φ2 ∈ B ⇐⇒ φ1 ∈ B and φ2 ∈ B

▶ ψ ∈ B =⇒ ¬ψ /∈ B

▶ ⊤ ∈ C(φ) =⇒ ⊤ ∈ B

2 locally consistent with respect to U: for all φ1 Uφ2 ∈ C(φ)

▶ φ2 ∈ B =⇒ φ1 Uφ2 ∈ B

▶ φ1 Uφ2 ∈ B and φ2 /∈ B =⇒ φ1 ∈ B

3 maximal: for all ψ ∈ C(φ)

▶ ψ /∈ B =⇒ ¬ψ ∈ B
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formula φ in LTL fragment with U and X as only temporal operators

Definition

closure C(φ) of φ consists of all subformulas of φ and their negations, identifying ¬¬ψ and ψ

Example

C(aU (¬a ∧ b)) = {a, ¬a, b, ¬b, ¬a ∧ b, ¬(¬a ∧ b), aU (¬a ∧ b), ¬(aU (¬a ∧ b))}

▶ {a, b, ¬a ∧ b, aU (¬a ∧ b)}

not elementary

▶ {a, b, aU (¬a ∧ b)} not elementary

▶ {a, b, ¬(¬a ∧ b), aU (¬a ∧ b)} elementary

▶ {¬a, ¬b, ¬(¬a ∧ b), aU (¬a ∧ b)} not elementary

▶ {a, b, ¬(¬a ∧ b), ¬(aU (¬a ∧ b))} elementary

▶ {a, ¬b, ¬(¬a ∧ b), ¬(aU (¬a ∧ b))} elementary
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Definitions

▶ states of automaton Aφ are elementary subsets of C(φ)

▶ initial states are those states containing φ

▶ transition relation ∆ of Aφ : (A,B) ∈ ∆ if and only if

1 for all Xψ ∈ C(φ) Xψ ∈ A ⇐⇒ ψ ∈ B

2 for all φ1 Uφ2 ∈ C(φ) φ1 Uφ2 ∈ A ⇐⇒ φ2 ∈ A or both φ1 ∈ A and φ1 Uφ2 ∈ B

▶ trace is infinite sequence of valuations of propositional atoms

▶ trace t is accepted if there exists path π in Aφ such that

1 π starts in initial state of Aφ

2 π corresponds to trace t : t i = {p ∈ πi | p is atom} for all i

3 π visits infinitely many states satisfying ¬(ψ1 Uψ2) ∨ ψ2, for every ψ1 Uψ2 ∈ C(φ)
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Example 1

φ = X a

▶ C(φ) = {a, ¬a, X a, ¬X a}
▶ states 1 {a, X a} 2 {a, ¬X a} 3 {¬a, X a} 4 {¬a, ¬X a}
▶ initial states 1 3

▶ transitions 1 2 3 4

1

✓ ✓

{a}

2

✓ ✓

{a}

3

✓ ✓

∅

4

✓ ✓

∅

1 2

3 4

{a}
{a}

{a}
{a}

∅
∅

∅
∅

▶ trace t1 = {a} {a} {a}∅ω

is accepted: path 1 1 2 4 ω

▶ trace t2 = ∅ {a}∅ {a}ω

is accepted: path 3 2 3 1 ω

▶ trace t3 = {a}∅∅ {a}ω

is not accepted
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Definitions

▶ states of automaton Aφ are elementary subsets of C(φ)
▶ initial states are those states containing φ

▶ transition relation ∆ of Aφ : (A,B) ∈ ∆ if and only if

1 for all Xψ ∈ C(φ) Xψ ∈ A ⇐⇒ ψ ∈ B

2 for all φ1 Uφ2 ∈ C(φ) φ1 Uφ2 ∈ A ⇐⇒ φ2 ∈ A or both φ1 ∈ A and φ1 Uφ2 ∈ B

▶ trace is infinite sequence of valuations of propositional atoms

▶ trace t is accepted if there exists path π in Aφ such that

1 π starts in initial state of Aφ

2 π corresponds to trace t : t i = {p ∈ πi | p is atom} for all i

3 π visits infinitely many states satisfying ¬(ψ1 Uψ2) ∨ ψ2, for every ψ1 Uψ2 ∈ C(φ)
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Example 2

φ = aUb

▶ C(φ) = {a, ¬a, b, ¬b, aUb, ¬(aUb)}
▶ states 1 {a, b, φ} 2 {¬a, b, φ} 3 {a, ¬b, φ} 4 {a, ¬b, ¬φ} 5 {¬a, ¬b, ¬φ}
▶ initial states 1 2 3

▶ transitions 1 2 3 4 5

1 ✓ ✓ ✓ ✓ ✓ {a, b}

2 ✓ ✓ ✓ ✓ ✓ {b}
3 ✓ ✓ ✓ {a}
4 ✓ ✓ {a}
5 ✓ ✓ ✓ ✓ ✓ ∅

▶ acceptance condition: paths cycling in state 3 are not accepting

▶ {a}ω is rejected

and {b}∅ {a}ω is accepted
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Basic Strategy

M, s ⊨ φ ?

▶ construct labelled Büchi automaton A¬φ for ¬φ
▶ combine A¬φ and M into single automaton A¬φ ×M
▶ determine whether there exists accepting path in A¬φ ×M

Theorem

M, s ⊨ φ ⇐⇒ A¬φ ×M has no accepting paths
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Example

labelled Büchi automaton A¬φ for φ = aUb

1 2 3 4 5

{a, b, φ} 1 ✓ ✓ ✓ ✓ ✓

{¬a, b, φ} 2 ✓ ✓ ✓ ✓ ✓

{a, ¬b, φ} 3 ✓ ✓ ✓

→ {a, ¬b, ¬φ} 4 ✓ ✓

→ {¬a, ¬b, ¬φ} 5 ✓ ✓ ✓ ✓ ✓

acceptance condition: paths cycling in state 3 are not accepting

model M

0 1

2 3

{a} {a, b}

∅ {b}

▶ product automaton A¬φ ×M

→ 4 0

{ 4 1, 4 2, 4 3, 5 1, 5 2, 5 3}

→ 5 0

∅
5 2 { 1 3, 2 3, 3 3, 4 3, 5 3}

2 3 { 1 3, 2 3, 3 3, 4 3, 5 3}

▶ accepting path 4 0
{a}−−→ 5 2

∅−→ 2 3
{b}−−→ 2 3

{b}−−→ · · · =⇒ M,0 ⊭ φ
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Basic Strategy

M, s ⊨ φ ?

▶ construct labelled Büchi automaton A¬φ for ¬φ
▶ combine A¬φ and M into single automaton A¬φ ×M
▶ determine whether there exists accepting path in A¬φ ×M

Theorem

M, s ⊨ φ ⇐⇒ A¬φ ×M has no accepting paths
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Huth and Ryan

▶ Section 3.2.5

▶ Section 3.4.5

▶ Section 3.6.2

▶ Section 3.6.3

Baier and Katoen

▶ Section 5.2 of Principles of Model Checking (MIT Press 2008)
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Important Concepts

▶ AC

▶ Aφ

▶ adequacy

▶ closure

▶ EC

▶ elementary set

▶ fair path

▶ fairness constraints

▶ labelled Büchi automaton

▶ trace

homework for June 6
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First Exam on June 24

▶ registration in LFU:online is required before 23:59 on June 10

▶ strict deadline: late email requests will be ignored

▶ deregistration is possible until 23:59 on June 20

▶ closed book

▶ second exam on September 20, third exam on February 26, 2025

Preparation

▶ study previous exams

▶ review homework exercises and solutions

▶ study slides

▶ visit Tutorium Wednesday, 16:15 – 17:00, SR 13

▶ visit consultation hours AM Wednesday, 11:30 – 13:00, 3M07
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