

SS 2024 lecture 11

Logic

Diana Gründlinger

Aart Middeldorp

Fabian Mitterwallner

Alexander Montag

Johannes Niederhauser

Daniel Rainer

Outline

- **1. Summary of Previous Lecture**
- 2. Adequacy
- 3. Evaluation
- 4. Fairness
- 5. Intermezzo
- 6. LTL Model Checking Algorithm
- 7. Further Reading
- 8. Exam

- model $\mathcal{M} = (S, \rightarrow, L)$ and $X \subseteq S$
- $\blacktriangleright \ \llbracket \varphi \rrbracket = \{ s \in S \mid \mathcal{M}, s \vDash \varphi \}$
- $\operatorname{pre}_{\forall}(X) = \{s \in S \mid t \in X \text{ for all } t \text{ with } s \to t\}$
- $\operatorname{pre}_{\exists}(X) = \{s \in S \mid s \to t \text{ for some } t \in X\}$

Lemma

 $\llbracket \top \rrbracket = S$ $\llbracket \bot \rrbracket = \varnothing$ $\llbracket \neg \varphi \rrbracket = S - \llbracket \varphi \rrbracket$ $\llbracket \varphi \land \psi \rrbracket = \llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket$ $\llbracket \varphi \lor \psi \rrbracket = \llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket$ $\llbracket \varphi \to \psi \rrbracket = (S - \llbracket \varphi \rrbracket) \cup \llbracket \psi \rrbracket$ $\operatorname{pre}_{\forall}(X) = S - \operatorname{pre}_{\exists}(S - X)$

 $[[p]] = \{ s \in S \mid p \in L(s) \}$ $\llbracket \mathsf{AX} \varphi \rrbracket = \mathsf{pre}_{\forall}(\llbracket \varphi \rrbracket)$ $\llbracket \mathsf{EX} \varphi \rrbracket = \mathsf{pre}_{\exists} (\llbracket \varphi \rrbracket)$ $\llbracket \mathsf{AF} \varphi \rrbracket = \llbracket \varphi \rrbracket \cup \mathsf{pre}_{\forall} (\llbracket \mathsf{AF} \varphi \rrbracket)$ $\llbracket \mathsf{EF} \varphi \rrbracket = \llbracket \varphi \rrbracket \cup \mathsf{pre}_{\exists} (\llbracket \mathsf{EF} \varphi \rrbracket)$ $\llbracket \mathsf{A}\mathsf{G}\varphi \rrbracket = \llbracket \varphi \rrbracket \cap \mathsf{pre}_{\forall}(\llbracket \mathsf{A}\mathsf{G}\varphi \rrbracket)$ $\llbracket \mathsf{E}\mathsf{G}\varphi \rrbracket = \llbracket \varphi \rrbracket \cap \mathsf{pre}_{\exists}(\llbracket \mathsf{E}\mathsf{G}\varphi \rrbracket)$ $\llbracket \mathsf{A}[\varphi \, \mathsf{U} \, \psi] \rrbracket = \llbracket \psi \rrbracket \cup (\llbracket \varphi \rrbracket \cap \mathsf{pre}_{\forall} (\llbracket \mathsf{A}[\varphi \, \mathsf{U} \, \psi] \rrbracket))$ $\llbracket \mathsf{E}[\varphi \, \mathsf{U} \, \psi] \rrbracket = \llbracket \psi \rrbracket \cup (\llbracket \varphi \rrbracket \cap \mathsf{pre}_{\exists} (\llbracket \mathsf{E}[\varphi \, \mathsf{U} \, \psi] \rrbracket))$

Lemma

- $\llbracket AF \varphi \rrbracket$ is least fixed point of monotone function $F_{AF}(X) = \llbracket \varphi \rrbracket \cup \operatorname{pre}_{\forall}(X)$
- $\llbracket EG \varphi \rrbracket$ is greatest fixed point of monotone function $F_{EG}(X) = \llbracket \varphi \rrbracket \cap \operatorname{pre}_{\exists}(X)$
- ▶ $\llbracket E[\psi \cup \varphi] \rrbracket$ is least fixed point of monotone function $F_{EU}(X) = \llbracket \psi \rrbracket \cup (\llbracket \varphi \rrbracket \cap pre_\exists (X))$

Theorem (Knaster-Tarski)

every monotone function $F \colon \mathcal{P}(S) \to \mathcal{P}(S)$ with |S| = n admits

- least fixed point $\mu F = F^n(\emptyset)$
- greatest fixed point $\nu F = F^n(S)$

symbolic model checking = (CTL) model checking with BDDs

- LTL (linear-time temporal logic) formulas are built from
 - atoms $p, q, r, p_1, p_2, ...$
 - ► logical connectives \bot , \top , \neg , \land , \lor , \rightarrow
 - temporal connectives X, F, G, U, W, R

according to following BNF grammar:

$$\varphi ::= \bot |\top |p| (\neg \varphi) | (\varphi \land \varphi) | (\varphi \lor \varphi) | (\varphi \to \varphi) | (X \varphi) | (F \varphi) | (G \varphi) | (\varphi U \varphi) | (\varphi W \varphi) | (\varphi R \varphi)$$

- ▶ path in model $\mathcal{M} = (S, \rightarrow, L)$ is infinite sequence $s_1 \rightarrow s_2 \rightarrow \cdots$
- ▶ satisfaction $\pi \models \varphi$ of LTL formula φ with respect to path $\pi = s_1 \rightarrow s_2 \rightarrow \cdots$ in model \mathcal{M} is defined by induction on φ
- ▶ satisfaction $\mathcal{M}, s \models \varphi$ of LTL formula φ with respect to state $s \in S$ in model \mathcal{M} is defined as "for all paths $\pi = s \rightarrow \cdots \quad \pi \models \varphi$ "

LTL formulas φ and ψ are semantically equivalent ($\varphi \equiv \psi$) if

$$\pi \vDash \varphi \iff \pi \vDash \psi$$

for all models $\mathcal{M} = (S, \rightarrow, L)$ and paths π in \mathcal{M}

LTL formulas φ and ψ are semantically equivalent ($\varphi \equiv \psi$) if

$$\pi \vDash \varphi \iff \pi \vDash \psi$$

for all models $\mathcal{M} = (S,
ightarrow, L)$ and paths π in \mathcal{M}

Remark

$$\pi\nvDash\varphi\iff\pi\vDash\neg\varphi$$

LTL formulas φ and ψ are semantically equivalent ($\varphi \equiv \psi$) if

$$\pi \vDash \varphi \iff \pi \vDash \psi$$

for all models $\mathcal{M} = (S,
ightarrow, L)$ and paths π in \mathcal{M}

Remark

$$\pi \nvDash \varphi \iff \pi \vDash \neg \varphi \qquad \mathcal{M}, s \vDash \varphi \implies \mathcal{M}, s \nvDash \neg \varphi$$

LTL formulas φ and ψ are semantically equivalent ($\varphi \equiv \psi$) if

$$\pi \vDash \varphi \iff \pi \vDash \psi$$

for all models $\mathcal{M} = (S,
ightarrow, L)$ and paths π in \mathcal{M}

Remark

$$\pi \nvDash \varphi \iff \pi \vDash \neg \varphi \qquad \mathcal{M}, s \vDash \varphi \implies \mathcal{M}, s \nvDash \neg \varphi \qquad \mathcal{M}, s \nvDash \varphi \implies \mathcal{M}, s \vDash \neg \varphi$$

$$\neg X \varphi \equiv X \neg \varphi$$
$$\neg F \varphi \equiv G \neg \varphi$$
$$\neg G \varphi \equiv F \neg \varphi$$
$$\neg (\varphi U \psi) \equiv \neg \varphi R \neg \psi$$
$$\neg (\varphi R \psi) \equiv \neg \varphi U \neg \psi$$
$$\varphi U \psi \equiv \varphi W \psi \land F \psi$$
$$\varphi W \psi \equiv \varphi U \psi \lor G \varphi$$

 $\varphi \mathsf{U} \psi \equiv \neg (\neg \psi \mathsf{U} (\neg \varphi \land \neg \psi)) \land \mathsf{F} \psi$ $\mathsf{F} (\varphi \lor \psi) \equiv \mathsf{F} \varphi \lor \mathsf{F} \psi$ $\mathsf{G} (\varphi \land \psi) \equiv \mathsf{G} \varphi \land \mathsf{G} \psi$ $\mathsf{F} \varphi \equiv \top \mathsf{U} \varphi$ $\mathsf{G} \varphi \equiv \bot \mathsf{R} \varphi$ $\varphi \mathsf{W} \psi \equiv \psi \mathsf{R} (\varphi \lor \psi)$ $\varphi \mathsf{R} \psi \equiv \psi \mathsf{W} (\varphi \land \psi)$

universität SS 2024 Logic lecture 11 1. Summary of Previous Lecture innsbruck

Part I: Propositional Logic

algebraic normal forms, binary decision diagrams, conjunctive normal forms, DPLL, Horn formulas, natural deduction, Post's adequacy theorem, resolution, SAT, semantics, sorting networks, soundness and completeness, syntax, Tseitin's transformation

Part II: Predicate Logic

natural deduction, quantifier equivalences, resolution, semantics, Skolemization, syntax, undecidability, unification

Part III: Model Checking

adequacy, branching-time temporal logic, CTL*, fairness, linear-time temporal logic, model checking algorithms, symbolic model checking

Part I: Propositional Logic

algebraic normal forms, binary decision diagrams, conjunctive normal forms, DPLL, Horn formulas, natural deduction, Post's adequacy theorem, resolution, SAT, semantics, sorting networks, soundness and completeness, syntax, Tseitin's transformation

Part II: Predicate Logic

natural deduction, quantifier equivalences, resolution, semantics, Skolemization, syntax, undecidability, unification

Part III: Model Checking

adequacy, branching-time temporal logic, CTL*, fairness, linear-time temporal logic, model checking algorithms, symbolic model checking

Outline

- **1. Summary of Previous Lecture**
- 2. Adequacy
 - LTL CTL
- 3. Evaluation
- 4. Fairness
- 5. Intermezzo
- 6. LTL Model Checking Algorithm
- 7. Further Reading

8. Exam

 $\{X, U\}$, $\{X, W\}$ and $\{X, R\}$ are adequate sets of temporal connectives for LTL

 $\{X, U\}$, $\{X, W\}$ and $\{X, R\}$ are adequate sets of temporal connectives for LTL

Proof

$$\begin{split} \mathbf{F}\,\varphi &\equiv \top\,\mathbf{U}\,\varphi\\ \mathbf{G}\,\varphi &\equiv \neg\,\mathbf{F}\,\neg\,\varphi\\ \varphi\,\mathbf{R}\,\psi &\equiv \neg\,(\neg\,\varphi\,\mathbf{U}\,\neg\,\psi)\\ \varphi\,\mathbf{W}\,\psi &\equiv \varphi\,\mathbf{U}\,\psi\vee\mathbf{G}\,\varphi \end{split}$$

 $\{X,U\},\;\{X,W\}$ and $\{X,R\}$ are adequate sets of temporal connectives for LTL

Proof

$$\begin{split} \mathbf{F}\,\varphi &\equiv \top\,\mathbf{U}\,\varphi & \varphi\,\mathbf{R}\,\psi \equiv \psi\,\mathbf{W}\,(\varphi\wedge\psi) \\ \mathbf{G}\,\varphi &\equiv \neg\,\mathbf{F}\,\neg\varphi & \varphi\,\mathbf{U}\,\psi \equiv \neg\,(\neg\,\varphi\,\mathbf{R}\,\neg\psi) \\ \varphi\,\mathbf{R}\,\psi &\equiv \neg\,(\neg\,\varphi\,\mathbf{U}\,\neg\psi) & \mathbf{F}\,\varphi \equiv \top\,\mathbf{U}\,\varphi \\ \varphi\,\mathbf{W}\,\psi \equiv \varphi\,\mathbf{U}\,\psi\vee\mathbf{G}\,\varphi & \mathbf{G}\,\varphi \equiv \neg\,\mathbf{F}\,\neg\varphi \end{split}$$

 $\{X,U\},\,\{X,W\}$ and $\{X,R\}$ are adequate sets of temporal connectives for LTL

Proof

$F\varphi$	\equiv	op U $arphi$
${\bf G}\varphi$	\equiv	$\neg F \neg \varphi$
$\varphiR\psi$	≡	$\neg (\neg \varphi U \neg \psi)$
$\varphi W \psi$	\equiv	$\varphiU\psi\lorG\varphi$

$$\begin{split} \varphi \, \mathsf{R} \, \psi &\equiv \psi \, \mathsf{W} \left(\varphi \wedge \psi \right) \\ \varphi \, \mathsf{U} \, \psi &\equiv \neg \left(\neg \varphi \, \mathsf{R} \neg \psi \right) \\ \mathsf{F} \, \varphi &\equiv \top \, \mathsf{U} \, \varphi \\ \mathsf{G} \, \varphi &\equiv \neg \, \mathsf{F} \, \neg \varphi \end{split}$$

$$\begin{split} \varphi \, \mathsf{U} \, \psi &\equiv \neg \left(\neg \varphi \, \mathsf{R} \neg \psi \right) \\ \mathsf{F} \, \varphi &\equiv \top \, \mathsf{U} \, \varphi \\ \mathsf{G} \, \varphi &\equiv \neg \, \mathsf{F} \neg \varphi \\ \varphi \, \mathsf{W} \, \psi &\equiv \varphi \, \mathsf{U} \, \psi \lor \mathsf{G} \, \varphi \end{split}$$

universität SS 2024 Logic lecture 11 2. Adequacy LTL innsbruck

 $\{X,U\},\ \{X,W\}$ and $\{X,R\}$ are adequate sets of temporal connectives for LTL

Proof

$F\varphi\equiv\topU\varphi$	$arphiR\psi\equiv\psiW(arphi\wedge\psi)$	$arphi U \psi \equiv \neg (\neg arphi R \neg \psi)$
$G\varphi\equiv \negF\neg\varphi$	$arphi U \psi \equiv \neg (\neg arphi R \neg \psi)$	$F\varphi\equiv\topU\varphi$
$arphi R \psi \equiv \neg (\neg arphi U \neg \psi)$	$F\varphi\equiv\topU\varphi$	$G\varphi\equiv \negF\neg\varphi$
$\varphiW\psi\equiv\varphiU\psi\veeG\varphi$	$G\varphi\equiv \negF\neg\varphi$	$\varphiW\psi\equiv\varphiU\psi\veeG\varphi$

Theorem

 $\{U, R\}$, $\{U, W\}$, $\{U, G\}$, $\{F, W\}$ and $\{F, R\}$ are adequate sets of temporal connectives for LTL fragment consisting of negation-normal forms without X

Outline

- **1. Summary of Previous Lecture**
- 2. Adequacy
 - LTL CTL
- 3. Evaluation
- 4. Fairness
- 5. Intermezzo
- 6. LTL Model Checking Algorithm
- 7. Further Reading

8. Exam

```
set of temporal connectives is adequate for CTL \iff
it contains 
\begin{cases} at least one of {AX, EX}
at least one of {EG, AF, AU}
EU \end{cases}
```

```
set of temporal connectives is adequate for CTL \iff
it contains 
\begin{cases} at least one of {AX, EX} \\ at least one of {EG, AF, AU} \\ EU \end{cases}
```

Proof (⇐)

• AX $\varphi \equiv \neg$ EX $\neg \varphi$ and EX $\varphi \equiv \neg$ AX $\neg \varphi$

```
set of temporal connectives is adequate for CTL \iff
it contains 
\begin{cases} at least one of {AX, EX} \\ at least one of {EG, AF, AU} \\ EU \end{cases}
```

- AX $\varphi \equiv \neg$ EX $\neg \varphi$ and EX $\varphi \equiv \neg$ AX $\neg \varphi$
- $\blacktriangleright \ \mathsf{EF}\,\varphi \equiv \mathsf{E}[\top\,\mathsf{U}\,\varphi]$
- AG $\varphi \equiv \neg$ EF $\neg \varphi$

```
set of temporal connectives is adequate for CTL \iff
it contains 
\begin{cases} at least one of {AX, EX} \\ at least one of {EG, AF, AU} \\ EU \end{cases}
```

- $\blacktriangleright \ \mathsf{AX}\, \varphi \equiv \neg \ \mathsf{EX}\, \neg \, \varphi \ \text{ and } \ \mathsf{EX}\, \varphi \equiv \neg \ \mathsf{AX}\, \neg \, \varphi$
- $\blacktriangleright \ \mathsf{EF}\,\varphi \equiv \mathsf{E}[\top\,\mathsf{U}\,\varphi]$
- $\blacktriangleright \ \mathsf{AG}\,\varphi \equiv \neg \,\mathsf{EF}\,\neg\,\varphi$
- $\blacktriangleright \mathsf{A}[\varphi \mathsf{U} \psi] \equiv \neg (\mathsf{E}[\neg \psi \mathsf{U} (\neg \varphi \land \neg \psi)] \lor \mathsf{EG} \neg \psi)$
- $\blacktriangleright \mathsf{AF}\,\varphi \equiv \mathsf{A}[\top\,\mathsf{U}\,\varphi]$

```
set of temporal connectives is adequate for CTL \iff
it contains 
\begin{cases} at least one of {AX, EX} \\ at least one of {EG, AF, AU} \\ EU \end{cases}
```

- $\blacktriangleright \ \mathsf{AX}\, \varphi \equiv \neg \ \mathsf{EX}\, \neg \, \varphi \ \text{ and } \ \mathsf{EX}\, \varphi \equiv \neg \ \mathsf{AX}\, \neg \, \varphi$
- $\blacktriangleright \ \mathsf{EF}\,\varphi \equiv \mathsf{E}[\top\,\mathsf{U}\,\varphi]$
- $\blacktriangleright \operatorname{AG} \varphi \equiv \neg \operatorname{EF} \neg \varphi$
- $\blacktriangleright \mathsf{A}[\varphi \mathsf{U} \psi] \equiv \neg (\mathsf{E}[\neg \psi \mathsf{U} (\neg \varphi \land \neg \psi)] \lor \mathsf{EG} \neg \psi)$
- $\blacktriangleright \ \mathsf{EG}\,\varphi \equiv \neg \,\mathsf{AF}\,\neg \varphi$

```
set of temporal connectives is adequate for CTL \iff
it contains 
\begin{cases} at least one of {AX, EX} \\ at least one of {EG, AF, AU} \\ EU \end{cases}
```

- $\blacktriangleright \ \mathsf{AX}\, \varphi \equiv \neg \ \mathsf{EX}\, \neg \, \varphi \ \text{ and } \ \mathsf{EX}\, \varphi \equiv \neg \ \mathsf{AX}\, \neg \, \varphi$
- $\blacktriangleright \ \mathsf{EF}\,\varphi \equiv \mathsf{E}[\top\,\mathsf{U}\,\varphi]$
- $\blacktriangleright \mathsf{AG}\,\varphi \equiv \neg \mathsf{EF}\,\neg \varphi$
- $\blacktriangleright \mathsf{AF}\,\varphi \equiv \mathsf{A}[\top\,\mathsf{U}\,\varphi]$
- $\blacktriangleright \ \mathsf{EG}\,\varphi \equiv \neg \,\mathsf{AF}\,\neg \varphi$

```
set of temporal connectives is adequate for CTL \iff
it contains 
\begin{cases} at least one of {AX, EX} \\ at least one of {EG, AF, AU} \\ EU \end{cases}
```

Proof (\Longrightarrow)

 \blacktriangleright consider model ${\cal M}$


```
set of temporal connectives is adequate for CTL \iff
it contains 
\begin{cases} at least one of \{AX, EX\} \\ at least one of \{EG, AF, AU\} \\ EU \end{cases}
```

Proof (\Longrightarrow)

 \blacktriangleright consider model ${\cal M}$

▶ $\mathcal{M}, 0 \nvDash \mathsf{EX}p$ and $\mathcal{M}, 1 \vDash \mathsf{EX}p$

```
set of temporal connectives is adequate for CTL \iff
it contains 
\begin{cases} at least one of \{AX, EX\} \\ at least one of \{EG, AF, AU\} \\ EU \end{cases}
```

Proof (\Longrightarrow)

consider model *M*

- ▶ $\mathcal{M}, 0 \nvDash \mathsf{EX}p$ and $\mathcal{M}, 1 \vDash \mathsf{EX}p$
- \blacktriangleright for every CTL formula φ not containing EX and AX:

$$\mathcal{M}, \mathbf{0} \vDash \varphi \iff \mathcal{M}, \mathbf{1} \vDash \varphi$$

Proof (\Longrightarrow , cont'd)

induction on $\,\varphi\,$

Proof (\Longrightarrow , cont'd)

induction on $\,\varphi\,$

• if φ is atom or $\varphi = \bot$ then $\mathcal{M}, \mathbf{0} \nvDash \varphi$ and $\mathcal{M}, \mathbf{1} \nvDash \varphi$

induction on $\,\varphi\,$

- $\blacktriangleright \text{ if } \varphi \text{ is atom or } \varphi = \bot \text{ then } \mathcal{M}, \mathbf{0} \nvDash \varphi \text{ and } \mathcal{M}, \mathbf{1} \nvDash \varphi$
- ▶ if $\varphi = \top$ then $\mathcal{M}, \mathbf{0} \vDash \varphi$ and $\mathcal{M}, \mathbf{1} \vDash \varphi$

induction on $\,\varphi\,$

- $\blacktriangleright \ \, \text{if} \ \, \varphi \ \, \text{is atom or} \ \, \varphi = \bot \ \, \text{then} \ \, \mathcal{M}, \mathbf{0} \not\vDash \varphi \ \, \text{and} \ \, \mathcal{M}, \mathbf{1} \not\vDash \varphi$
- if $\varphi = \top$ then $\mathcal{M}, \mathbf{0} \vDash \varphi$ and $\mathcal{M}, \mathbf{1} \vDash \varphi$
- $\blacktriangleright \ \text{if} \ \varphi = \neg \psi \ \text{then} \ \mathcal{M}, \mathbf{0} \vDash \varphi \ \iff \ \mathcal{M}, \mathbf{0} \nvDash \psi$

induction on φ

- $\blacktriangleright \text{ if } \varphi \text{ is atom or } \varphi = \bot \text{ then } \mathcal{M}, \mathbf{0} \nvDash \varphi \text{ and } \mathcal{M}, \mathbf{1} \nvDash \varphi$
- if $\varphi = \top$ then $\mathcal{M}, \mathbf{0} \vDash \varphi$ and $\mathcal{M}, \mathbf{1} \vDash \varphi$
- $\blacktriangleright \text{ if } \varphi = \neg \psi \text{ then } \mathcal{M}, \mathbf{0} \vDash \varphi \iff \mathcal{M}, \mathbf{0} \nvDash \psi \iff \mathcal{M}, \mathbf{1} \nvDash \psi$

Proof (\Longrightarrow , cont'd)

induction on $\,\varphi\,$

- $\blacktriangleright \text{ if } \varphi \text{ is atom or } \varphi = \bot \text{ then } \mathcal{M}, \mathbf{0} \nvDash \varphi \text{ and } \mathcal{M}, \mathbf{1} \nvDash \varphi$
- if $\varphi = \top$ then $\mathcal{M}, \mathbf{0} \vDash \varphi$ and $\mathcal{M}, \mathbf{1} \vDash \varphi$
- $\blacktriangleright \ \text{if} \ \varphi = \neg \psi \ \text{then} \ \mathcal{M}, \mathbf{0} \vDash \varphi \ \Longleftrightarrow \ \mathcal{M}, \mathbf{0} \nvDash \psi \ \Longleftrightarrow \ \mathcal{M}, \mathbf{1} \nvDash \psi \ \Longleftrightarrow \ \mathcal{M}, \mathbf{1} \vDash \varphi$

induction on $\,\varphi\,$

- $\blacktriangleright \text{ if } \varphi \text{ is atom or } \varphi = \bot \text{ then } \mathcal{M}, \mathbf{0} \nvDash \varphi \text{ and } \mathcal{M}, \mathbf{1} \nvDash \varphi$
- $\blacktriangleright \ \ \text{if} \ \varphi = \top \ \text{then} \ \ \mathcal{M}, \mathbf{0} \vDash \varphi \ \ \text{and} \ \ \mathcal{M}, \mathbf{1} \vDash \varphi$
- $\blacktriangleright \ \text{if} \ \varphi = \neg \psi \ \text{then} \ \mathcal{M}, \mathbf{0} \vDash \varphi \iff \mathcal{M}, \mathbf{0} \nvDash \psi \iff \mathcal{M}, \mathbf{1} \nvDash \psi \iff \mathcal{M}, \mathbf{1} \vDash \varphi$
- ▶ if $\varphi = \psi_1 \wedge \psi_2$ then

$$\mathcal{M}, \mathbf{0} \vDash \varphi \quad \Longleftrightarrow \quad \mathcal{M}, \mathbf{0} \vDash \psi_1 \text{ and } \mathcal{M}, \mathbf{0} \vDash \psi_2$$

Proof (\implies , cont'd)

induction on φ

- $\blacktriangleright \text{ if } \varphi \text{ is atom or } \varphi = \bot \text{ then } \mathcal{M}, \mathbf{0} \nvDash \varphi \text{ and } \mathcal{M}, \mathbf{1} \nvDash \varphi$
- $\blacktriangleright \ \ \text{if} \ \varphi = \top \ \text{then} \ \ \mathcal{M}, \mathbf{0} \vDash \varphi \ \ \text{and} \ \ \mathcal{M}, \mathbf{1} \vDash \varphi$
- $\blacktriangleright \ \text{if} \ \varphi = \neg \psi \ \text{then} \ \mathcal{M}, \mathbf{0} \vDash \varphi \iff \mathcal{M}, \mathbf{0} \nvDash \psi \iff \mathcal{M}, \mathbf{1} \nvDash \psi \iff \mathcal{M}, \mathbf{1} \vDash \varphi$
- ▶ if $\varphi = \psi_1 \wedge \psi_2$ then

$$\begin{aligned} \mathcal{M}, \mathbf{0} \vDash \varphi & \Longleftrightarrow & \mathcal{M}, \mathbf{0} \vDash \psi_1 \text{ and } \mathcal{M}, \mathbf{0} \vDash \psi_2 \\ & \Longleftrightarrow & \mathcal{M}, \mathbf{1} \vDash \psi_1 \text{ and } \mathcal{M}, \mathbf{1} \vDash \psi_2 \end{aligned}$$

Proof (\implies , cont'd)

induction on φ

- $\blacktriangleright \text{ if } \varphi \text{ is atom or } \varphi = \bot \text{ then } \mathcal{M}, \mathbf{0} \nvDash \varphi \text{ and } \mathcal{M}, \mathbf{1} \nvDash \varphi$
- $\blacktriangleright \ \ \text{if} \ \varphi = \top \ \text{then} \ \ \mathcal{M}, \mathbf{0} \vDash \varphi \ \ \text{and} \ \ \mathcal{M}, \mathbf{1} \vDash \varphi$
- $\blacktriangleright \ \text{if} \ \varphi = \neg \psi \ \text{then} \ \mathcal{M}, \mathbf{0} \vDash \varphi \iff \mathcal{M}, \mathbf{0} \nvDash \psi \iff \mathcal{M}, \mathbf{1} \nvDash \psi \iff \mathcal{M}, \mathbf{1} \vDash \varphi$
- ▶ if $\varphi = \psi_1 \wedge \psi_2$ then

$$\begin{array}{cccc} \mathcal{M}, \mathbf{0} \vDash \varphi & \Longleftrightarrow & \mathcal{M}, \mathbf{0} \vDash \psi_1 \text{ and } \mathcal{M}, \mathbf{0} \vDash \psi_2 \\ & \Leftrightarrow & \mathcal{M}, \mathbf{1} \vDash \psi_1 \text{ and } \mathcal{M}, \mathbf{1} \vDash \psi_2 & \Longleftrightarrow & \mathcal{M}, \mathbf{1} \vDash \varphi \end{array}$$

induction on $\,\varphi\,$

 \blacktriangleright if $\varphi = \operatorname{AF} \psi$ or $\varphi = \operatorname{EF} \psi$ then

 $\mathcal{M}, \mathbf{0} \vDash \varphi \iff \mathcal{M}, i \vDash \psi \text{ for some } i \in \{\mathbf{0}, \mathbf{1}, \mathbf{2}\}$

induction on $\,\varphi\,$

 \blacktriangleright if $\varphi = \operatorname{AF} \psi$ or $\varphi = \operatorname{EF} \psi$ then

$$\mathcal{M}, \mathbf{0} \vDash \varphi \iff \mathcal{M}, i \vDash \psi \text{ for some } i \in \{0, 1, 2\}$$
$$\iff \mathcal{M}, i \vDash \psi \text{ for some } i \in \{1, 2\}$$

induction on $\,\varphi\,$

 \blacktriangleright if $\varphi = \operatorname{AF} \psi$ or $\varphi = \operatorname{EF} \psi$ then

$$\begin{array}{lll} \mathcal{M}, \mathbf{0} \vDash \varphi & \Longleftrightarrow & \mathcal{M}, i \vDash \psi \text{ for some } i \in \{0, 1, 2\} \\ & \Longleftrightarrow & \mathcal{M}, i \vDash \psi \text{ for some } i \in \{1, 2\} & \iff & \mathcal{M}, \mathbf{1} \vDash \varphi \end{array}$$

induction on $\,\varphi\,$

• if
$$\varphi = \operatorname{AF} \psi$$
 or $\varphi = \operatorname{EF} \psi$ then

$$\begin{array}{lll} \mathcal{M}, \mathbf{0} \vDash \varphi & \Longleftrightarrow & \mathcal{M}, i \vDash \psi \text{ for some } i \in \{\mathbf{0}, \mathbf{1}, \mathbf{2}\} \\ & \longleftrightarrow & \mathcal{M}, i \vDash \psi \text{ for some } i \in \{\mathbf{1}, \mathbf{2}\} & \Longleftrightarrow & \mathcal{M}, \mathbf{1} \vDash \varphi \end{array}$$

 $\blacktriangleright \mbox{ if } \varphi = \operatorname{AG} \psi \mbox{ or } \varphi = \operatorname{EG} \psi \mbox{ then }$

$$\mathcal{M}, \mathbf{0} \vDash \varphi \iff \mathcal{M}, i \vDash \psi \text{ for all } i \in \{\mathbf{0}, \mathbf{1}, \mathbf{2}\}$$

induction on $\,\varphi\,$

• if
$$\varphi = \operatorname{AF} \psi$$
 or $\varphi = \operatorname{EF} \psi$ then

$$\begin{array}{lll} \mathcal{M}, \mathbf{0} \vDash \varphi & \Longleftrightarrow & \mathcal{M}, i \vDash \psi \text{ for some } i \in \{\mathbf{0}, \mathbf{1}, \mathbf{2}\} \\ & \longleftrightarrow & \mathcal{M}, i \vDash \psi \text{ for some } i \in \{\mathbf{1}, \mathbf{2}\} & \Longleftrightarrow & \mathcal{M}, \mathbf{1} \vDash \varphi \end{array}$$

• if $\varphi = \operatorname{AG} \psi$ or $\varphi = \operatorname{EG} \psi$ then

$$\mathcal{M}, \mathbf{0} \vDash \varphi \iff \mathcal{M}, i \vDash \psi \text{ for all } i \in \{0, 1, 2\}$$
$$\iff \mathcal{M}, i \vDash \psi \text{ for all } i \in \{1, 2\}$$

induction on $\,\varphi\,$

• if
$$\varphi = \operatorname{AF} \psi$$
 or $\varphi = \operatorname{EF} \psi$ then

• if $\varphi = \operatorname{AG} \psi$ or $\varphi = \operatorname{EG} \psi$ then

$$\begin{array}{lll} \mathcal{M}, \mathbf{0} \vDash \varphi & \Longleftrightarrow & \mathcal{M}, i \vDash \psi \text{ for all } i \in \{\mathbf{0}, \mathbf{1}, \mathbf{2}\} \\ & \longleftrightarrow & \mathcal{M}, i \vDash \psi \text{ for all } i \in \{\mathbf{1}, \mathbf{2}\} & \iff & \mathcal{M}, \mathbf{1} \vDash \varphi \end{array}$$

induction on $\,\varphi\,$

• if
$$\varphi = \mathsf{A}[\psi_1 \, \mathsf{U} \, \psi_2]$$
 or $\varphi = \mathsf{E}[\psi_1 \, \mathsf{U} \, \psi_2]$ then

$$\begin{split} \mathcal{M}, \mathbf{0} \vDash \varphi &\iff & \mathcal{M}, \mathbf{0} \vDash \psi_2 \text{ or} \\ & & \mathcal{M}, \mathbf{1} \vDash \psi_2 \text{ and } \mathcal{M}, \mathbf{0} \vDash \psi_1 \text{ or} \\ & & \mathcal{M}, \mathbf{2} \vDash \psi_2 \text{ and } \mathcal{M}, \mathbf{0} \vDash \psi_1 \text{ and } \mathcal{M}, \mathbf{1} \vDash \psi_2 \end{split}$$

universität SS 2024 Logic lecture 11 2. Adequacy CTL
innsbruck

induction on $\,\varphi\,$

• if
$$\varphi = A[\psi_1 \cup \psi_2]$$
 or $\varphi = E[\psi_1 \cup \psi_2]$ then
 $\mathcal{M}, 0 \vDash \varphi \iff \mathcal{M}, 0 \vDash \psi_2$ or
 $\mathcal{M}, 1 \vDash \psi_2$ and $\mathcal{M}, 0 \vDash \psi_1$ or
 $\mathcal{M}, 2 \vDash \psi_2$ and $\mathcal{M}, 0 \vDash \psi_1$ and $\mathcal{M}, 1 \vDash \psi_1$
 $\iff \mathcal{M}, 1 \vDash \psi_2$ or

 $\mathcal{M}, \mathbf{2} \vDash \psi_{\mathbf{2}} \text{ and } \mathcal{M}, \mathbf{1} \vDash \psi_{\mathbf{1}}$

induction on $\,\varphi\,$

▶ if
$$\varphi = A[\psi_1 \cup \psi_2]$$
 or $\varphi = E[\psi_1 \cup \psi_2]$ then
 $\mathcal{M}, 0 \models \varphi \iff \mathcal{M}, 0 \models \psi_2$ or
 $\mathcal{M}, 1 \models \psi_2$ and $\mathcal{M}, 0 \models \psi_1$ or
 $\mathcal{M}, 2 \models \psi_2$ and $\mathcal{M}, 0 \models \psi_1$ and $\mathcal{M}, 1 \models$
 $\iff \mathcal{M}, 1 \models \psi_2$ or
 $\mathcal{M}, 2 \models \psi_2$ and $\mathcal{M}, 1 \models \psi_1$
 $\iff \mathcal{M}, 1 \models \varphi$

 ψ_1

 \dots at least one of {EG, AF, AU}

Proof (\Longrightarrow)

 \blacktriangleright consider model ${\cal M}$

 \dots at least one of {EG, AF, AU}

Proof (\Longrightarrow)

 \blacktriangleright consider model ${\cal M}$

• $\mathcal{M}, i \vDash \mathsf{AF} p$ for all $i \ge 0$

 \dots at least one of {EG, AF, AU}

Proof (\Longrightarrow)

 \blacktriangleright consider model ${\cal M}$

• $\mathcal{M}, i \vDash \mathsf{AF}p$ for all $i \ge 0$ and $\mathcal{M}, i' \nvDash \mathsf{AF}p$ for all i > 0

 \dots at least one of {EG, AF, AU}

Proof (\Longrightarrow)

 \blacktriangleright consider model ${\cal M}$

- ▶ $M, i \vDash AFp$ for all $i \ge 0$ and $M, i' \nvDash AFp$ for all i > 0
- ▶ for every CTL formula φ not containing EG, AF and AU there exists $n_{\varphi} > 0$ such that

$$\mathcal{M}, n_{\varphi} \vDash \varphi \quad \Longleftrightarrow \quad \mathcal{M}, n'_{\varphi} \vDash \varphi$$

... EU

Proof (\Longrightarrow)

 \blacktriangleright consider model \mathcal{M} p р р 2 -0 . . . q 2′ 1′ 0′ . . . p p /p

... EU

Proof (\Longrightarrow)

• $\mathcal{M}, i \models \mathsf{E}[p \cup q]$ and $\mathcal{M}, i' \nvDash \mathsf{E}[p \cup q]$ for all $i \ge 0$

... EU

Proof (\Longrightarrow)

- ► consider model \mathcal{M} \cdots \xrightarrow{p} \xrightarrow{p}
- $\mathcal{M}, i \vDash \mathsf{E}[p \cup q]$ and $\mathcal{M}, i' \nvDash \mathsf{E}[p \cup q]$ for all $i \ge 0$
- ▶ for every CTL formula φ not containing EU there exists $n_{\varphi} \ge 0$ such that

$$\mathcal{M}, n_{\varphi} \vDash \varphi \quad \Longleftrightarrow \quad \mathcal{M}, n'_{\varphi} \vDash \varphi$$

Outline

- **1. Summary of Previous Lecture**
- 2. Adequacy

3. Evaluation

- 4. Fairness
- 5. Intermezzo
- 6. LTL Model Checking Algorithm
- 7. Further Reading
- 8. Exam

https://lv-analyse.uibk.ac.at/evasys/public/online/index

Outline

- **1. Summary of Previous Lecture**
- 2. Adequacy
- 3. Evaluation

4. Fairness

- 5. Intermezzo
- 6. LTL Model Checking Algorithm
- 7. Further Reading
- 8. Exam

model may contain behaviour which is unrealistic or guaranteed not to happen

- model may contain behaviour which is unrealistic or guaranteed not to happen
- such behaviour is (typically) not expressible in CTL

- model may contain behaviour which is unrealistic or guaranteed not to happen
- such behaviour is (typically) not expressible in CTL
- eliminate such behaviour by imposing fairness constraints

- model may contain behaviour which is unrealistic or guaranteed not to happen
- such behaviour is (typically) not expressible in CTL
- eliminate such behaviour by imposing fairness constraints

Definitions

▶ path $s_1 \rightarrow s_2 \rightarrow \cdots$ is fair with respect to set *C* of CTL formulas if for all $\psi \in C$

 $s_i \models \psi$ for infinitely many *i*

- model may contain behaviour which is unrealistic or guaranteed not to happen
- such behaviour is (typically) not expressible in CTL
- eliminate such behaviour by imposing fairness constraints

Definitions

▶ path $s_1 \rightarrow s_2 \rightarrow \cdots$ is fair with respect to set *C* of CTL formulas if for all $\psi \in C$

 $s_i \vDash \psi$ for infinitely many *i* (GF ψ in LTL)

- model may contain behaviour which is unrealistic or guaranteed not to happen
- such behaviour is (typically) not expressible in CTL
- eliminate such behaviour by imposing fairness constraints

Definitions

▶ path $s_1 \rightarrow s_2 \rightarrow \cdots$ is fair with respect to set *C* of CTL formulas if for all $\psi \in C$

 $s_i \models \psi$ for infinitely many *i* (GF ψ in LTL)

► formulas in *C* are called **fairness constraints**

- model may contain behaviour which is unrealistic or guaranteed not to happen
- such behaviour is (typically) not expressible in CTL
- eliminate such behaviour by imposing fairness constraints

Definitions

▶ path $s_1 \rightarrow s_2 \rightarrow \cdots$ is fair with respect to set *C* of CTL formulas if for all $\psi \in C$

 $s_i \models \psi$ for infinitely many *i* (GF ψ in LTL)

- ► formulas in *C* are called fairness constraints
- $A_{C}(E_{C})$ denotes A (E) restricted to paths that are fair with respect to C

▶ path $1(376)^{\omega}$ is fair with respect to $\{I_B, P_B\}$

universität SS 2024 Logic lecture 11 4. Fairness

▶ path $1(376)^{\omega}$ is fair with respect to $\{I_B, P_B\}$ but not with respect to $\{I_A\}$

- ▶ path $1(376)^{\omega}$ is fair with respect to $\{I_B, P_B\}$ but not with respect to $\{I_A\}$
- ▶ $\mathcal{M}, 1 \nvDash A_{\{R_B\}} F P_B$

- ▶ path $1(376)^{\omega}$ is fair with respect to $\{I_B, P_B\}$ but not with respect to $\{I_A\}$
- ▶ $\mathcal{M}, 1 \nvDash A_{\{R_B\}} \vdash P_B$ because path $1(478)^{\omega}$ is fair with respect to R_B but $\mathcal{M}, i \nvDash P_B$ for $i \in \{1, 4, 7, 8\}$

Lemma

$\mathsf{E}_{\mathsf{C}}[\varphi \,\mathsf{U}\,\psi] \equiv \mathsf{E}[\varphi \,\mathsf{U}\,(\psi \wedge \mathsf{E}_{\mathsf{C}}\mathsf{G}\,\top)]$

Lemma

$$\mathsf{E}_{\mathbf{C}}[\varphi \,\mathsf{U}\,\psi] \equiv \mathsf{E}[\varphi \,\mathsf{U}\,(\psi \wedge \mathsf{E}_{\mathbf{C}}\mathsf{G}\,\top)]$$

$$\mathsf{E}_{\mathsf{C}}\mathsf{X}\,\varphi \equiv \mathsf{E}\mathsf{X}(\varphi \wedge \mathsf{E}_{\mathsf{C}}\mathsf{G}\,\top)$$

universität SS 2024 Logic lecture 11 4. Fairness innsbruck

Lemma

$$\mathsf{E}_{\mathbf{C}}[\varphi \,\mathsf{U}\,\psi] \equiv \mathsf{E}[\varphi \,\mathsf{U}\,(\psi \wedge \mathsf{E}_{\mathbf{C}}\mathsf{G}\,\top)]$$

$$\mathsf{E}_{\mathbf{C}}\mathsf{X}\,\varphi \equiv \mathsf{E}\mathsf{X}(\varphi \wedge \mathsf{E}_{\mathbf{C}}\mathsf{G}\,\top)$$

New Algorithm (CTL Model Checking with Fairness Constraints)

required only for $E_C G \varphi$:

(1) restrict graph to states satisfying φ

$$\mathsf{E}_{\mathbf{C}}[\varphi \,\mathsf{U}\,\psi] \equiv \mathsf{E}[\varphi \,\mathsf{U}\,(\psi \wedge \mathsf{E}_{\mathbf{C}}\mathsf{G}\,\top)]$$

$$\mathsf{E}_{\mathbf{C}}\mathsf{X}\,\varphi \equiv \mathsf{E}\mathsf{X}(\varphi \wedge \mathsf{E}_{\mathbf{C}}\mathsf{G}\,\top)$$

New Algorithm (CTL Model Checking with Fairness Constraints)

required only for $E_C G \varphi$:

- ① restrict graph to states satisfying φ
- ② compute non-trivial strongly connected components (SCCs)
$$\mathsf{E}_{\mathbf{C}}[\varphi \,\mathsf{U}\,\psi] \equiv \mathsf{E}[\varphi \,\mathsf{U}\,(\psi \wedge \mathsf{E}_{\mathbf{C}}\mathsf{G}\,\top)]$$

$$\mathsf{E}_{\mathbf{C}}\mathsf{X}\,\varphi \equiv \mathsf{E}\mathsf{X}(\varphi \wedge \mathsf{E}_{\mathbf{C}}\mathsf{G}\,\top)$$

New Algorithm (CTL Model Checking with Fairness Constraints)

required only for $E_C G \varphi$:

- (1) restrict graph to states satisfying φ
- ② compute non-trivial strongly connected components (SCCs)
- ③ remove SCC S if there exists constraint $\psi \in C$ such that $s \nvDash \psi$ for all states $s \in S$

$$\mathsf{E}_{\mathbf{C}}[\varphi \,\mathsf{U}\,\psi] \equiv \mathsf{E}[\varphi \,\mathsf{U}\,(\psi \wedge \mathsf{E}_{\mathbf{C}}\mathsf{G}\,\top)]$$

$$\mathsf{E}_{\mathbf{C}}\mathsf{X}\,\varphi \equiv \mathsf{E}\mathsf{X}(\varphi \wedge \mathsf{E}_{\mathbf{C}}\mathsf{G}\,\top)$$

New Algorithm (CTL Model Checking with Fairness Constraints)

required only for $E_C G \varphi$:

- (1) restrict graph to states satisfying φ
- ② compute non-trivial strongly connected components (SCCs)
- ③ remove SCC S if there exists constraint $\psi \in C$ such that $s \nvDash \psi$ for all states $s \in S$
- ④ label all states in resulting SCCs

$$\mathsf{E}_{\mathbf{C}}[\varphi \,\mathsf{U}\,\psi] \equiv \mathsf{E}[\varphi \,\mathsf{U}\,(\psi \wedge \mathsf{E}_{\mathbf{C}}\mathsf{G}\,\top)]$$

$$\mathsf{E}_{\mathbf{C}}\mathsf{X}\,\varphi \equiv \mathsf{E}\mathsf{X}(\varphi \wedge \mathsf{E}_{\mathbf{C}}\mathsf{G}\,\top)$$

New Algorithm (CTL Model Checking with Fairness Constraints)

required only for $E_C G \varphi$:

- (1) restrict graph to states satisfying φ
- ② compute non-trivial strongly connected components (SCCs)
- ③ remove SCC S if there exists constraint $\psi \in C$ such that $s \nvDash \psi$ for all states $s \in S$
- ④ label all states in resulting SCCs
- (5) compute and label all states that can reach labelled state in restricted graph computed in step (1)

Outline

- **1. Summary of Previous Lecture**
- 2. Adequacy
- 3. Evaluation
- 4. Fairness

5. Intermezzo

- 6. LTL Model Checking Algorithm
- 7. Further Reading

8. Exam

Furticify with session ID 0992 9580

Question

universität innsbruck

Which of the following statements hold for all models $\mathcal{M} = (S, \rightarrow, L)$ and states $s \in S$?

- **A** $\mathcal{M}, s \models \mathsf{E}_{\{p \land q\}}\mathsf{F}(q)$
- **B** $\mathcal{M}, s \nvDash E_{\{p\}}G(EFp)$
- **C** $\mathcal{M}, s \models A_{\{\neg q\}}F(AX \neg q)$
- **D** $\mathcal{M}, s \models \mathsf{E}_{\{p\}}[\neg p \cup p]$

SS 2024

Logic

Outline

- **1. Summary of Previous Lecture**
- 2. Adequacy
- 3. Evaluation
- 4. Fairness
- 5. Intermezzo

6. LTL Model Checking Algorithm

7. Further Reading

8. Exam

satisfaction of LTL formulas in finite models is decidable

satisfaction of LTL formulas in finite models is decidable

Two Approaches

① translate into CTL model checking with fairness constraints

satisfaction of LTL formulas in finite models is decidable

Two Approaches

- ① translate into CTL model checking with fairness constraints
- use automata techniques

satisfaction of LTL formulas in finite models is decidable

Two Approaches

- ① translate into CTL model checking with fairness constraints
- use automata techniques

Basic Strategy

 $\mathcal{M}, \boldsymbol{s} \vDash \varphi$?

satisfaction of LTL formulas in finite models is decidable

Two Approaches

- ① translate into CTL model checking with fairness constraints
- ② use automata techniques

Basic Strategy

 $\mathcal{M}, \mathbf{s} \models \varphi$?

► construct labelled Büchi automaton $A_{\neg \varphi}$ for $\neg \varphi$

satisfaction of LTL formulas in finite models is decidable

Two Approaches

- ① translate into CTL model checking with fairness constraints
- ② use automata techniques

Basic Strategy

$\mathcal{M}, \mathbf{s} \models \varphi$?

- ► construct labelled Büchi automaton $A_{\neg \varphi}$ for $\neg \varphi$
- ▶ combine $A_{\neg \varphi}$ and M into single automaton $A_{\neg \varphi} \times M$

satisfaction of LTL formulas in finite models is decidable

Two Approaches

- ① translate into CTL model checking with fairness constraints
- ② use automata techniques

Basic Strategy

$\mathcal{M}, \mathbf{s} \models \varphi$?

- ► construct labelled Büchi automaton $A_{\neg \varphi}$ for $\neg \varphi$
- ▶ combine $A_{\neg \varphi}$ and M into single automaton $A_{\neg \varphi} \times M$
- ▶ determine whether there exists accepting path in $A_{\neg \varphi} \times \mathcal{M}$

satisfaction of LTL formulas in finite models is decidable

Two Approaches

- ① translate into CTL model checking with fairness constraints
- ② use automata techniques

Basic Strategy

$\mathcal{M}, \mathbf{s} \models \varphi$?

- ► construct labelled Büchi automaton $\mathbf{A}_{\neg \varphi}$ for $\neg \varphi$
- ▶ combine $A_{\neg \varphi}$ and M into single automaton $A_{\neg \varphi} \times M$
- ▶ determine whether there exists accepting path in $A_{\neg \varphi} \times \mathcal{M}$

formula $\,\varphi\,$ in LTL fragment with U and X as only temporal operators

closure $C(\varphi)$ of φ consists of all subformulas of φ and their negations, identifying $\neg \neg \psi$ and ψ

closure $C(\varphi)$ of φ consists of all subformulas of φ and their negations, identifying $\neg \neg \psi$ and ψ

Example

 $\mathcal{C}(a \cup (\neg a \land b)) = \{a, \neg a, b, \neg b, \neg a \land b, \neg (\neg a \land b), a \cup (\neg a \land b), \neg (a \cup (\neg a \land b))\}$

- set $B \subseteq \mathcal{C}(\varphi)$ is elementary if it is
- ① consistent with respect to propositional logic

- set $B \subseteq \mathcal{C}(\varphi)$ is elementary if it is
- ① consistent with respect to propositional logic : for all $\varphi_1 \land \varphi_2 \in \mathcal{C}(\varphi)$
 - $\varphi_1 \land \varphi_2 \in B \iff \varphi_1 \in B \text{ and } \varphi_2 \in B$

- set $B \subseteq \mathcal{C}(\varphi)$ is elementary if it is
- ① consistent with respect to propositional logic: for all $\varphi_1 \land \varphi_2 \in \mathcal{C}(\varphi)$ and $\psi \in \mathcal{C}(\varphi)$
 - $\varphi_1 \land \varphi_2 \in B \iff \varphi_1 \in B \text{ and } \varphi_2 \in B$
 - $\bullet \ \psi \in B \qquad \implies \neg \psi \notin B$

- set $B \subseteq \mathcal{C}(\varphi)$ is elementary if it is
- ① consistent with respect to propositional logic : for all $\varphi_1 \land \varphi_2 \in \mathcal{C}(\varphi)$ and $\psi \in \mathcal{C}(\varphi)$
 - $\varphi_1 \land \varphi_2 \in B \iff \varphi_1 \in B \text{ and } \varphi_2 \in B$
 - $\blacktriangleright \ \psi \in \mathbf{B} \qquad \qquad \Longrightarrow \quad \neg \psi \notin \mathbf{B}$
 - $\blacktriangleright \ \top \in \mathcal{C}(\varphi) \qquad \implies \ \top \in \mathcal{B}$

- ① consistent with respect to propositional logic: for all $\varphi_1 \land \varphi_2 \in \mathcal{C}(\varphi)$ and $\psi \in \mathcal{C}(\varphi)$
 - $\varphi_1 \land \varphi_2 \in B \iff \varphi_1 \in B \text{ and } \varphi_2 \in B$
 - $\bullet \ \psi \in \mathbf{B} \qquad \qquad \Longrightarrow \quad \neg \psi \notin \mathbf{B}$
 - $\blacktriangleright \ \top \in \mathcal{C}(\varphi) \qquad \implies \ \top \in \mathcal{B}$
- ② locally consistent with respect to U

- ① consistent with respect to propositional logic : for all $\varphi_1 \land \varphi_2 \in \mathcal{C}(\varphi)$ and $\psi \in \mathcal{C}(\varphi)$
 - $\varphi_1 \land \varphi_2 \in B \iff \varphi_1 \in B \text{ and } \varphi_2 \in B$
 - $\bullet \ \psi \in \mathbf{B} \qquad \implies \neg \psi \notin \mathbf{B}$
 - $\blacktriangleright \ \top \in \mathcal{C}(\varphi) \qquad \implies \ \top \in \mathcal{B}$
- ② locally consistent with respect to U: for all $\varphi_1 \cup \varphi_2 \in C(\varphi)$
 - $\blacktriangleright \varphi_2 \in B \qquad \qquad \Longrightarrow \quad \varphi_1 \cup \varphi_2 \in B$

- ① consistent with respect to propositional logic : for all $\varphi_1 \land \varphi_2 \in \mathcal{C}(\varphi)$ and $\psi \in \mathcal{C}(\varphi)$
 - $\blacktriangleright \ \varphi_1 \land \varphi_2 \in B \quad \iff \quad \varphi_1 \in B \text{ and } \varphi_2 \in B$
 - $\bullet \ \psi \in \mathbf{B} \qquad \qquad \Longrightarrow \quad \neg \psi \notin \mathbf{B}$
 - $\blacktriangleright \ \top \in \mathcal{C}(\varphi) \qquad \implies \ \top \in \mathcal{B}$
- ② locally consistent with respect to U: for all $\varphi_1 \cup \varphi_2 \in \mathcal{C}(\varphi)$
 - $\blacktriangleright \varphi_2 \in B \qquad \qquad \Longrightarrow \quad \varphi_1 \cup \varphi_2 \in B$
 - $\blacktriangleright \ \varphi_1 \cup \varphi_2 \in B \text{ and } \varphi_2 \notin B \implies \varphi_1 \in B$

set $B \subseteq \mathcal{C}(\varphi)$ is elementary if it is

- ① consistent with respect to propositional logic : for all $\varphi_1 \land \varphi_2 \in \mathcal{C}(\varphi)$ and $\psi \in \mathcal{C}(\varphi)$
 - $\blacktriangleright \ \varphi_1 \land \varphi_2 \in B \quad \iff \quad \varphi_1 \in B \text{ and } \varphi_2 \in B$
 - $\bullet \ \psi \in \mathbf{B} \qquad \implies \neg \psi \notin \mathbf{B}$
 - $\blacktriangleright \ \top \in \mathcal{C}(\varphi) \qquad \implies \ \top \in \mathcal{B}$
- ② locally consistent with respect to U: for all $\varphi_1 \cup \varphi_2 \in \mathcal{C}(\varphi)$
 - $\blacktriangleright \varphi_2 \in B \qquad \qquad \Longrightarrow \quad \varphi_1 \cup \varphi_2 \in B$
 - $\blacktriangleright \ \varphi_1 \cup \varphi_2 \in B \text{ and } \varphi_2 \notin B \implies \varphi_1 \in B$

③ maximal

- ① consistent with respect to propositional logic : for all $\varphi_1 \land \varphi_2 \in \mathcal{C}(\varphi)$ and $\psi \in \mathcal{C}(\varphi)$
 - $\blacktriangleright \ \varphi_1 \land \varphi_2 \in B \quad \iff \quad \varphi_1 \in B \text{ and } \varphi_2 \in B$
 - $\bullet \ \psi \in \mathbf{B} \qquad \implies \neg \psi \notin \mathbf{B}$
 - $\blacktriangleright \ \top \in \mathcal{C}(\varphi) \qquad \implies \ \top \in \mathcal{B}$
- ② locally consistent with respect to U: for all $\varphi_1 \cup \varphi_2 \in \mathcal{C}(\varphi)$
 - $\blacktriangleright \varphi_2 \in B \qquad \qquad \Longrightarrow \quad \varphi_1 \cup \varphi_2 \in B$
 - $\blacktriangleright \ \varphi_1 \cup \varphi_2 \in B \text{ and } \varphi_2 \notin B \implies \varphi_1 \in B$
- (3) maximal: for all $\psi \in \mathcal{C}(\varphi)$
 - $\blacktriangleright \ \psi \notin B \implies \neg \psi \in B$

closure $\mathcal{C}(\varphi)$ of φ consists of all subformulas of φ and their negations, identifying $\neg\neg\psi$ and ψ

Example

- $\mathcal{C}(a \cup (\neg a \land b)) = \{a, \neg a, b, \neg b, \neg a \land b, \neg (\neg a \land b), a \cup (\neg a \land b), \neg (a \cup (\neg a \land b))\}$
- ► { a, b, ¬a ∧ b, a U (¬a ∧ b) }

closure $\mathcal{C}(\varphi)$ of φ consists of all subformulas of φ and their negations, identifying $\neg\neg\psi$ and ψ

Example

- $\mathcal{C}(a \cup (\neg a \land b)) = \{a, \neg a, b, \neg b, \neg a \land b, \neg (\neg a \land b), a \cup (\neg a \land b), \neg (a \cup (\neg a \land b))\}$
- ► $\{a, b, \neg a \land b, a \cup (\neg a \land b)\}$ not elementary

closure $\mathcal{C}(\varphi)$ of φ consists of all subformulas of φ and their negations, identifying $\neg\neg\psi$ and ψ

Example

 $\mathcal{C}(a \cup (\neg a \land b)) = \{a, \neg a, b, \neg b, \neg a \land b, \neg (\neg a \land b), a \cup (\neg a \land b), \neg (a \cup (\neg a \land b))\}$

► {a, b, ¬a ∧ b, a U (¬a ∧ b)}

not elementary

▶ {*a*, *b*, *a* ∪ (¬*a* ∧ *b*)}

closure $\mathcal{C}(\varphi)$ of φ consists of all subformulas of φ and their negations, identifying $\neg\neg\psi$ and ψ

Example

 $\mathcal{C}(a \cup (\neg a \land b)) = \{a, \neg a, b, \neg b, \neg a \land b, \neg (\neg a \land b), a \cup (\neg a \land b), \neg (a \cup (\neg a \land b))\}$

► {a, b, ¬a ∧ b, a U (¬a ∧ b)}

 \blacktriangleright {a, b, a U ($\neg a \land b$) }

not elementary not elementary

universität SS 2024 Logic lecture 11 6. LTL Model Checking Algorithm

closure $\mathcal{C}(\varphi)$ of φ consists of all subformulas of φ and their negations, identifying $\neg\neg\psi$ and ψ

Example

$$\mathcal{C}(a \cup (\neg a \land b)) = \{a, \neg a, b, \neg b, \neg a \land b, \neg (\neg a \land b), a \cup (\neg a \land b), \neg (a \cup (\neg a \land b))\}$$

► {*a*, *b*, ¬*a* ∧ *b*, *a* ∪ (¬*a* ∧ *b*)}

not elementary

► {a, b, a U (¬a ∧ b)}

- not elementary
- $\models \{a, b, \neg (\neg a \land b), a \cup (\neg a \land b)\}$

closure $\mathcal{C}(\varphi)$ of φ consists of all subformulas of φ and their negations, identifying $\neg\neg\psi$ and ψ

Example

$$\mathcal{C}(a \cup (\neg a \land b)) = \{a, \neg a, b, \neg b, \neg a \land b, \neg (\neg a \land b), a \cup (\neg a \land b), \neg (a \cup (\neg a \land b))\}$$

- ► { a, b, ¬a ∧ b, a ∪ (¬a ∧ b) }
- ► { a, b, a U (¬a ∧ b) }
- ► $\{a, b, \neg (\neg a \land b), a \cup (\neg a \land b)\}$
- not elementary not elementary elementary

closure $\mathcal{C}(\varphi)$ of φ consists of all subformulas of φ and their negations, identifying $\neg\neg\psi$ and ψ

Example

$$\mathcal{C}(a \cup (\neg a \land b)) = \{a, \neg a, b, \neg b, \neg a \land b, \neg (\neg a \land b), a \cup (\neg a \land b), \neg (a \cup (\neg a \land b))\}$$

- ► { a, b, ¬a ∧ b, a U (¬a ∧ b) }
- ► { a, b, a U (¬a ∧ b) }
- ▶ $\{a, b, \neg (\neg a \land b), a \cup (\neg a \land b)\}$
- not elementary not elementary elementary
- $\models \{\neg a, \neg b, \neg (\neg a \land b), a \cup (\neg a \land b)\}$

closure $\mathcal{C}(\varphi)$ of φ consists of all subformulas of φ and their negations, identifying $\neg\neg\psi$ and ψ

Example

$$\mathcal{C}(a \cup (\neg a \land b)) = \{a, \neg a, b, \neg b, \neg a \land b, \neg (\neg a \land b), a \cup (\neg a \land b), \neg (a \cup (\neg a \land b))\}$$

- ► { a, b, ¬a ∧ b, a ∪ (¬a ∧ b) }
- ► { a, b, a U (¬a ∧ b) }
- $\blacktriangleright \{a, b, \neg (\neg a \land b), a \cup (\neg a \land b)\}$
- ► {¬a, ¬b, ¬(¬a ∧ b), a ∪ (¬a ∧ b)}

not elementary not elementary elementary not elementary

closure $\mathcal{C}(\varphi)$ of φ consists of all subformulas of φ and their negations, identifying $\neg\neg\psi$ and ψ

Example

 $\mathcal{C}(a \cup (\neg a \land b)) = \{a, \neg a, b, \neg b, \neg a \land b, \neg (\neg a \land b), a \cup (\neg a \land b), \neg (a \cup (\neg a \land b))\}$

- ► {a, b, ¬a ∧ b, a ∪ (¬a ∧ b)}
- ► { a, b, a U (¬a ∧ b) }
- ▶ $\{a, b, \neg (\neg a \land b), a \cup (\neg a \land b)\}$
- $\models \{\neg a, \neg b, \neg (\neg a \land b), a \cup (\neg a \land b)\}$
- not elementary elementary not elementary

not elementary

▶ $\{a, b, \neg (\neg a \land b), \neg (a \cup (\neg a \land b))\}$

closure $\mathcal{C}(\varphi)$ of φ consists of all subformulas of φ and their negations, identifying $\neg\neg\psi$ and ψ

Example

 $\mathcal{C}(a \cup (\neg a \land b)) = \{a, \neg a, b, \neg b, \neg a \land b, \neg (\neg a \land b), a \cup (\neg a \land b), \neg (a \cup (\neg a \land b))\}$

- ► { a, b, ¬a ∧ b, a ∪ (¬a ∧ b) }
- ► { a, b, a U (¬a ∧ b) }
- $\blacktriangleright \{a, b, \neg (\neg a \land b), a \cup (\neg a \land b)\}$
- $\blacktriangleright \{\neg a, \neg b, \neg (\neg a \land b), a \cup (\neg a \land b)\}$
- $\blacktriangleright \{a, b, \neg (\neg a \land b), \neg (a \cup (\neg a \land b))\}$

not elementary not elementary elementary not elementary elementary
closure $\mathcal{C}(\varphi)$ of φ consists of all subformulas of φ and their negations, identifying $\neg\neg\psi$ and ψ

Example

$$\mathcal{C}(a \cup (\neg a \land b)) = \{a, \neg a, b, \neg b, \neg a \land b, \neg (\neg a \land b), a \cup (\neg a \land b), \neg (a \cup (\neg a \land b))\}$$

- ► { a, b, ¬a ∧ b, a U (¬a ∧ b) }
- ▶ {*a*, *b*, *a* U (¬*a* ∧ *b*)}
- ► $\{a, b, \neg (\neg a \land b), a \cup (\neg a \land b)\}$
- ► $\{\neg a, \neg b, \neg (\neg a \land b), a \cup (\neg a \land b)\}$ n
- ▶ $\{a, b, \neg (\neg a \land b), \neg (a \cup (\neg a \land b))\}$
- $\blacktriangleright \{a, \neg b, \neg (\neg a \land b), \neg (a \cup (\neg a \land b))\}$

not elementary elementary not elementary elementary

not elementary

closure $\mathcal{C}(\varphi)$ of φ consists of all subformulas of φ and their negations, identifying $\neg\neg\psi$ and ψ

Example

$$\mathcal{C}(a \cup (\neg a \land b)) = \{a, \neg a, b, \neg b, \neg a \land b, \neg (\neg a \land b), a \cup (\neg a \land b), \neg (a \cup (\neg a \land b))\}$$

- ► { a, b, ¬a ∧ b, a U (¬a ∧ b) }
- ▶ $\{a, b, a \cup (\neg a \land b)\}$
- ► $\{a, b, \neg (\neg a \land b), a \cup (\neg a \land b)\}$
- ► $\{\neg a, \neg b, \neg (\neg a \land b), a \cup (\neg a \land b)\}$ not ele
- ▶ $\{a, b, \neg (\neg a \land b), \neg (a \cup (\neg a \land b))\}$
- ▶ $\{a, \neg b, \neg (\neg a \land b), \neg (a \cup (\neg a \land b))\}$

not elementary not elementary elementary not elementary elementary

elementary

• states of automaton A_{φ} are elementary subsets of $C(\varphi)$

- ▶ states of automaton A_{φ} are elementary subsets of $C(\varphi)$
- \blacktriangleright initial states are those states containing φ

- ▶ states of automaton A_{φ} are elementary subsets of $C(\varphi)$
- \blacktriangleright initial states are those states containing φ
- ▶ transition relation Δ of A_{φ} : $(A,B) \in \Delta$ if and only if

① for all X $\psi \in \mathcal{C}(\varphi)$ X $\psi \in A$ \iff $\psi \in B$

- ▶ states of automaton A_{φ} are elementary subsets of $C(\varphi)$
- \blacktriangleright initial states are those states containing φ
- ▶ transition relation Δ of A_{φ} : $(A,B) \in \Delta$ if and only if
 - (1) for all $X \psi \in \mathcal{C}(\varphi)$ $X \psi \in A \iff \psi \in B$
 - (2) for all $\varphi_1 \cup \varphi_2 \in \mathcal{C}(\varphi)$ $\varphi_1 \cup \varphi_2 \in A$ \iff $\varphi_2 \in A$ or both $\varphi_1 \in A$ and $\varphi_1 \cup \varphi_2 \in B$

 $\varphi = X a$

 $\varphi = {\rm X}\, {\rm a}$

 $\blacktriangleright C(\varphi) = \{a, \neg a, Xa, \neg Xa\}$

universität SS 2024 Logic lecture 11 6. LTL Model Checking Algorithm innsbruck

 $\varphi = {\rm X}\, {\rm a}$

$$\blacktriangleright \ \mathcal{C}(\varphi) = \{a, \neg a, Xa, \neg Xa\}$$

► states **1** {a, Xa} **2** {a, ¬Xa} **3** {¬a, Xa} **4** {¬a, ¬Xa}

 $\varphi = {\sf X} \, {\it a}$

- $\blacktriangleright \ \mathcal{C}(\varphi) = \{a, \neg a, Xa, \neg Xa\}$
- ► states **1** {a, Xa} **2** {a, ¬Xa} **3** {¬a, Xa} **4** {¬a, ¬Xa}
- initial states (1) (3)

 $\varphi = {\sf X} \, {\it a}$

- $\blacktriangleright \ \mathcal{C}(\varphi) = \{a, \neg a, X a, \neg X a\}$
- ► states **1** {a, Xa} **2** {a, ¬Xa} **3** {¬a, Xa} **4** {¬a, ¬Xa}
- initial states 1 3
- transitions
 1
 2
 3
 4

 $\varphi = {\sf X} \, {\it a}$

- $\blacktriangleright \ \mathcal{C}(\varphi) = \{a, \neg a, Xa, \neg Xa\}$
- ► states **1** {a, Xa} **2** {a, ¬Xa} **3** {¬a, Xa} **4** {¬a, ¬Xa}
- initial states 1 6
- transitions $(1 \ 2 \ 3 \ 4)$

 $\varphi = {\sf X} \, {\it a}$

- $\blacktriangleright \ \mathcal{C}(\varphi) = \{a, \neg a, Xa, \neg Xa\}$
- ► states **1** {a, Xa} **2** {a, ¬Xa} **3** {¬a, Xa} **4** {¬a, ¬Xa}

 \checkmark

- initial states 1 (0)
- transitions
 1 2 3 4
 1 √ √

2

 $\varphi = {\sf X} \, {\it a}$

- $\blacktriangleright \ \mathcal{C}(\varphi) = \{a, \neg a, Xa, \neg Xa\}$
- ► states **1** {a, Xa} **2** {a, ¬Xa} **3** {¬a, Xa} **4** {¬a, ¬Xa}

4

 \checkmark

- initial states 1 (0)
- transitions 0 2 0

2

4

3 √

 \checkmark

 $\varphi = {\sf X} \, {\it a}$

- $\blacktriangleright \ \mathcal{C}(\varphi) = \{a, \neg a, Xa, \neg Xa\}$
- ► states **1** {a, Xa} **2** {a, ¬Xa} **3** {¬a, Xa} **4** {¬a, ¬Xa}
- initial states 1 (0)
- transitions

 $\varphi = {\sf X} \, {\it a}$

- $\blacktriangleright \ \mathcal{C}(\varphi) = \{a, \neg a, Xa, \neg Xa\}$
- ► states **1** {a, Xa} **2** {a, ¬Xa} **3** {¬a, Xa} **4** {¬a, ¬Xa}
- initial states 1 (0)
- transitions

- ▶ states of automaton A_{φ} are elementary subsets of $C(\varphi)$
- \blacktriangleright initial states are those states containing φ
- ▶ transition relation Δ of A_{φ} : $(A,B) \in \Delta$ if and only if
 - (1) for all $X \psi \in \mathcal{C}(\varphi)$ $X \psi \in A \iff \psi \in B$

(2) for all $\varphi_1 \cup \varphi_2 \in \mathcal{C}(\varphi)$ $\varphi_1 \cup \varphi_2 \in A$ \iff $\varphi_2 \in A$ or both $\varphi_1 \in A$ and $\varphi_1 \cup \varphi_2 \in B$

trace is infinite sequence of valuations of propositional atoms

 $\varphi = {\sf X} \, {\it a}$

- $\blacktriangleright \ \mathcal{C}(\varphi) = \{a, \neg a, Xa, \neg Xa\}$
- ► states **1** {a, Xa} **2** {a, ¬Xa} **3** {¬a, Xa} **4** {¬a, ¬Xa}
- 🕨 initial states 🛛 🌖 🔞
- transitions

 $\varphi = {\sf X} \, {\it a}$

- $\blacktriangleright \ \mathcal{C}(\varphi) = \{a, \neg a, Xa, \neg Xa\}$
- ▶ states **1** $\{a, Xa\}$ **2** $\{a, \neg Xa\}$ **3** $\{\neg a, Xa\}$ **4** $\{\neg a, \neg Xa\}$
- 🕨 initial states 🛛 🌖 🔞
- transitions

- ▶ trace $t_1 = \{a\}\{a\}\{a\}\{a\}\emptyset^{\omega}$
- trace $t_2 = \emptyset \{a\} \emptyset \{a\}^{\omega}$
- trace $t_3 = \{a\} \varnothing \varnothing \{a\}^{\omega}$

- ▶ states of automaton A_{φ} are elementary subsets of $C(\varphi)$
- \blacktriangleright initial states are those states containing φ
- ▶ transition relation Δ of A_{φ} : $(A,B) \in \Delta$ if and only if
 - (1) for all $X \psi \in \mathcal{C}(\varphi)$ $X \psi \in A \iff \psi \in B$

(2) for all $\varphi_1 \cup \varphi_2 \in \mathcal{C}(\varphi)$ $\varphi_1 \cup \varphi_2 \in A$ \iff $\varphi_2 \in A$ or both $\varphi_1 \in A$ and $\varphi_1 \cup \varphi_2 \in B$

- trace is infinite sequence of valuations of propositional atoms
- trace t is accepted if there exists path π in A_{φ} such that

① π starts in initial state of A_{arphi}

- ▶ states of automaton A_{φ} are elementary subsets of $C(\varphi)$
- \blacktriangleright initial states are those states containing φ
- ▶ transition relation Δ of A_{φ} : $(A,B) \in \Delta$ if and only if
 - (1) for all $X \psi \in \mathcal{C}(\varphi)$ $X \psi \in A \iff \psi \in B$

(2) for all $\varphi_1 \cup \varphi_2 \in \mathcal{C}(\varphi)$ $\varphi_1 \cup \varphi_2 \in A$ \iff $\varphi_2 \in A$ or both $\varphi_1 \in A$ and $\varphi_1 \cup \varphi_2 \in B$

- trace is infinite sequence of valuations of propositional atoms
- trace t is accepted if there exists path π in A_{φ} such that
 - ① π starts in initial state of A_{arphi}
 - ② π corresponds to trace t: $t_i = \{p \in \pi_i \mid p \text{ is atom}\}$ for all i

- ▶ states of automaton A_{φ} are elementary subsets of $C(\varphi)$
- \blacktriangleright initial states are those states containing φ
- ▶ transition relation Δ of A_{φ} : $(A,B) \in \Delta$ if and only if
 - (1) for all $X \psi \in \mathcal{C}(\varphi)$ $X \psi \in A \iff \psi \in B$
 - (2) for all $\varphi_1 \cup \varphi_2 \in \mathcal{C}(\varphi)$ $\varphi_1 \cup \varphi_2 \in A$ \iff $\varphi_2 \in A$ or both $\varphi_1 \in A$ and $\varphi_1 \cup \varphi_2 \in B$
- trace is infinite sequence of valuations of propositional atoms
- trace t is accepted if there exists path π in A_{φ} such that
 - ① π starts in initial state of A_{arphi}
 - ② π corresponds to trace t: $t_i = \{p \in \pi_i \mid p \text{ is atom}\}$ for all i
 - 3 π visits infinitely many states satisfying $\neg(\psi_1 \cup \psi_2) \lor \psi_2$, for every $\psi_1 \cup \psi_2 \in \mathcal{C}(\varphi)$

 $\varphi = {\rm X}\, {\rm a}$

- $\triangleright \ \mathcal{C}(\varphi) = \{a, \neg a, Xa, \neg Xa\}$
- ▶ states **1** $\{a, Xa\}$ **2** $\{a, \neg Xa\}$ **3** $\{\neg a, Xa\}$ **4** $\{\neg a, \neg Xa\}$
- 🕨 initial states 🛛 🌖 🔞
- transitions

- ▶ trace $t_1 = \{a\}\{a\}\{a\}\{a\} \varnothing^{\omega}$ is accepted: path **1124**
- trace $t_2 = \varnothing \{a\} \varnothing \{a\}^{\omega}$
- trace $t_3 = \{a\} \varnothing \varnothing \{a\}^{\omega}$

 $\varphi = {\rm X}\, {\rm a}$

- $\triangleright \ \mathcal{C}(\varphi) = \{a, \neg a, Xa, \neg Xa\}$
- ▶ states **1** $\{a, Xa\}$ **2** $\{a, \neg Xa\}$ **3** $\{\neg a, Xa\}$ **4** $\{\neg a, \neg Xa\}$
- 🕨 initial states 🛛 🌖 🔞
- transitions

▶ trace $t_1 = \{a\}\{a\}\{a\}\emptyset^{\omega}$ is accepted: path **1124**

► trace $t_2 = \emptyset \{a\} \emptyset \{a\}^{\omega}$ is accepted: path $0 0 0 0 0^{\omega}$

• trace $t_3 = \{a\} \otimes \emptyset \{a\}^{\omega}$

 $\varphi = {\rm X}\, {\rm a}$

- $\triangleright \ \mathcal{C}(\varphi) = \{a, \neg a, Xa, \neg Xa\}$
- ► states **1** $\{a, Xa\}$ **2** $\{a, \neg Xa\}$ **3** $\{\neg a, Xa\}$ **4** $\{\neg a, \neg Xa\}$
- 🕨 initial states 🛛 🌖 🔞
- transitions

- ▶ trace $t_1 = \{a\}\{a\}\{a\} \emptyset^{\omega}$ is accepted: path **1124**^{ω}
- ▶ trace $t_2 = \emptyset \{a\} \emptyset \{a\}^{\omega}$ is accepted: path $\textcircled{0} \textcircled{0} \textcircled{0} \textcircled{0}^{\omega}$
- trace $t_3 = \{a\} \varnothing \varnothing \{a\}^\omega$ is not accepted

a }

{**a**}

 $\varphi = \mathbf{a} \, \mathbf{U} \, \mathbf{b}$

 $\triangleright \ \mathcal{C}(\varphi) = \{a, \neg a, b, \neg b, a \cup b, \neg (a \cup b)\}$

universität SS 2024 Logic lecture 11 6. LTL Model Checking Algorithm innsbruck

- $\triangleright \ \mathcal{C}(\varphi) = \{a, \neg a, b, \neg b, a \cup b, \neg (a \cup b)\}$
- $\blacktriangleright \text{ states } \qquad \qquad \mathbf{0} \{a, b, \varphi\} \quad \mathbf{2} \{\neg a, b, \varphi\} \quad \mathbf{0} \{a, \neg b, \varphi\} \quad \mathbf{0} \{a, \neg b, \neg \varphi\} \quad \mathbf{0} \{\neg a, \neg b, \neg \varphi\}$

- $\triangleright \ \mathcal{C}(\varphi) = \{a, \neg a, b, \neg b, a \cup b, \neg (a \cup b)\}$
- $\blacktriangleright \text{ states } \qquad \qquad \mathbf{0} \{a, b, \varphi\} \quad \mathbf{2} \{\neg a, b, \varphi\} \quad \mathbf{0} \{a, \neg b, \varphi\} \quad \mathbf{0} \{a, \neg b, \neg \varphi\} \quad \mathbf{0} \{\neg a, \neg b, \neg \varphi\}$
- initial states 1 2 3

- $\triangleright \ \mathcal{C}(\varphi) = \{a, \neg a, b, \neg b, a \cup b, \neg (a \cup b)\}$
- $\blacktriangleright \text{ states } \qquad \qquad \mathbf{0} \{a, b, \varphi\} \quad \mathbf{2} \{\neg a, b, \varphi\} \quad \mathbf{3} \{a, \neg b, \varphi\} \quad \mathbf{4} \{a, \neg b, \neg \varphi\} \quad \mathbf{5} \{\neg a, \neg b, \neg \varphi\}$
- initial states 1 2 3

- $\triangleright \ \mathcal{C}(\varphi) = \{a, \neg a, b, \neg b, a \cup b, \neg (a \cup b)\}$
- $\blacktriangleright \text{ states } \qquad \qquad \mathbf{0} \{a, b, \varphi\} \quad \mathbf{2} \{\neg a, b, \varphi\} \quad \mathbf{3} \{a, \neg b, \varphi\} \quad \mathbf{4} \{a, \neg b, \neg \varphi\} \quad \mathbf{5} \{\neg a, \neg b, \neg \varphi\}$
- initial states 1 2 8
- transitions

$\varphi = \mathbf{a} \, \mathbf{U} \, \mathbf{b}$

- $\triangleright \ \mathcal{C}(\varphi) = \{a, \neg a, b, \neg b, a \cup b, \neg (a \cup b)\}$
- $\blacktriangleright \text{ states } \qquad \qquad \mathbf{0} \{a, b, \varphi\} \quad \mathbf{2} \{\neg a, b, \varphi\} \quad \mathbf{3} \{a, \neg b, \varphi\} \quad \mathbf{4} \{a, \neg b, \neg \varphi\} \quad \mathbf{5} \{\neg a, \neg b, \neg \varphi\}$
- initial states 1 2 8
- transitions

- $\triangleright \ \mathcal{C}(\varphi) = \{a, \neg a, b, \neg b, a \cup b, \neg (a \cup b)\}$
- $\blacktriangleright \text{ states } \qquad \qquad \mathbf{0} \{a, b, \varphi\} \quad \mathbf{2} \{\neg a, b, \varphi\} \quad \mathbf{3} \{a, \neg b, \varphi\} \quad \mathbf{4} \{a, \neg b, \neg \varphi\} \quad \mathbf{5} \{\neg a, \neg b, \neg \varphi\}$
- initial states 1 2 3
- transitions

- $\triangleright \ \mathcal{C}(\varphi) = \{a, \neg a, b, \neg b, a \cup b, \neg (a \cup b)\}$
- $\blacktriangleright \text{ states } \qquad \qquad \mathbf{0} \{a, b, \varphi\} \quad \mathbf{2} \{\neg a, b, \varphi\} \quad \mathbf{3} \{a, \neg b, \varphi\} \quad \mathbf{4} \{a, \neg b, \neg \varphi\} \quad \mathbf{5} \{\neg a, \neg b, \neg \varphi\}$
- initial states 1 2 3
- transitions

	0	2	3	4	5	
1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	{ a , b
2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	{ b }
3	\checkmark	\checkmark	\checkmark			{ a }
4				\checkmark	\checkmark	{ a }
6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Ø

 $\varphi = \mathbf{a} \, \mathbf{U} \, \mathbf{b}$

- $\blacktriangleright \ \mathcal{C}(\varphi) = \{a, \neg a, b, \neg b, a \cup b, \neg (a \cup b)\}$
- $\blacktriangleright \text{ states } \qquad \qquad \mathbf{0} \{a, b, \varphi\} \quad \mathbf{2} \{\neg a, b, \varphi\} \quad \mathbf{3} \{a, \neg b, \varphi\} \quad \mathbf{4} \{a, \neg b, \neg \varphi\} \quad \mathbf{5} \{\neg a, \neg b, \neg \varphi\}$
- initial states 1 2 8
- transitions

▶ acceptance condition: paths cycling in state ③ are not accepting

 $\varphi = \mathbf{a} \, \mathbf{U} \, \mathbf{b}$

- $\blacktriangleright \ \mathcal{C}(\varphi) = \{a, \neg a, b, \neg b, a \cup b, \neg (a \cup b)\}$
- ► states **1** $\{a, b, \varphi\}$ **2** $\{\neg a, b, \varphi\}$ **3** $\{a, \neg b, \varphi\}$ **4** $\{a, \neg b, \neg \varphi\}$ **5** $\{\neg a, \neg b, \neg \varphi\}$
- initial states 1 2 8
- transitions

		•	•	•	•	
1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\{{m a},{m b}\}$
2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\{b\}$
3	\checkmark	\checkmark	\checkmark			{ a }
4				\checkmark	\checkmark	{ a }
6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Ø

A B

- acceptance condition: paths cycling in state 6 are not accepting
- $\{a\}^{\omega}$ is rejected
$\varphi = \mathbf{a} \, \mathbf{U} \, \mathbf{b}$

- $\blacktriangleright \ \mathcal{C}(\varphi) = \{a, \neg a, b, \neg b, a \cup b, \neg (a \cup b)\}$
- $\blacktriangleright \text{ states } \qquad \qquad \mathbf{0} \{a, b, \varphi\} \quad \mathbf{2} \{\neg a, b, \varphi\} \quad \mathbf{3} \{a, \neg b, \varphi\} \quad \mathbf{4} \{a, \neg b, \neg \varphi\} \quad \mathbf{5} \{\neg a, \neg b, \neg \varphi\}$
- initial states 1 2 8
- transitions

- ▶ acceptance condition: paths cycling in state ⁶ are not accepting
- ▶ $\{a\}^{\omega}$ is rejected and $\{b\} \varnothing \{a\}^{\omega}$ is accepted

Basic Strategy

$\mathcal{M}, \mathbf{s} \models \varphi$?

- ▶ construct labelled Büchi automaton $A_{\neg \varphi}$ for $\neg \varphi$
- combine $A_{\neg \varphi}$ and \mathcal{M} into single automaton $A_{\neg \varphi} \times \mathcal{M}$
- ▶ determine whether there exists accepting path in $A_{\neg \varphi} imes \mathcal{M}$

labelled Büchi automaton $A_{\neg \varphi}$ for $\varphi = a \cup b$

acceptance condition: paths cycling in state (3) are not accepting

labelled Büchi automa	ton .	model ${\cal M}$				
	1	2	3	4	6	\varnothing {b}
$\{ {m a}, {m b}, arphi \}$ ()	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$2 \longrightarrow 3$
$\{ eg m{a},m{b},arphi\}$ (2)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$\{m{a}, eg m{b},arphi\}$ (3)	\checkmark	\checkmark	\checkmark			
$\rightarrow \{a, \neg b, \neg \varphi\}$				\checkmark	\checkmark	
$\rightarrow \{\neg a, \neg b, \neg \varphi\}$ 6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\{a\}$ $\{a,b\}$

acceptance condition: paths cycling in state 8 are not accepting

labelled Büchi automa	model ${\cal M}$					
	1	2	3	4	6	Ø
$\{a,b,arphi\}$ (1)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2
$\{ eg m{a}, m{b}, arphi\}$ (2)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$\{m{a}, eg m{b},arphi\}$ $m{8}$	\checkmark	\checkmark	\checkmark			
$\rightarrow \{a, \neg b, \neg \varphi\}$				\checkmark	\checkmark	$\longrightarrow 0^{4}$
$\rightarrow \{\neg a, \neg b, \neg \varphi\}$ 5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	{ <i>a</i> }

acceptance condition: paths cycling in state (3) are not accepting

product automaton $A_{\neg \varphi} \times \mathcal{M}$

 $\rightarrow 40$ $\rightarrow 50$

labelled Büchi automa	aUb	model ${\cal M}$				
	1	2	3	4	5	Ø
$\{a,b,arphi\}$ ()	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2
$\{ eg m{a}, m{b}, arphi\}$ (2)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$\{ oldsymbol{a}, eg oldsymbol{b}, arphi \}$ 3	\checkmark	\checkmark	\checkmark			
$\rightarrow \{a, \neg b, \neg \varphi\}$				\checkmark	\checkmark	
$\rightarrow \{\neg a, \neg b, \neg \varphi\}$ 5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	{ a }

acceptance condition: paths cycling in state 6 are not accepting

• product automaton $A_{\neg \varphi} imes \mathcal{M}$

$$\rightarrow 40 \quad \{41, 42, 43, 51, 52, 53\}$$

$$\rightarrow 50 \quad$$

{**b**}

{*a*,*b*}

labelled Büchi automa	model ${\cal M}$					
	1	2	3	4	6	Ø
$\{m{a},m{b},arphi\}$ ()	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2
$\{ eg oldsymbol{a}, oldsymbol{b}, arphi\}$ (2)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\int
$\{m{a}, eg m{b},arphi\}$ $m{3}$	\checkmark	\checkmark	\checkmark			
$\rightarrow \{a, \neg b, \neg \varphi\}$				\checkmark	\checkmark	
$\rightarrow \{\neg a, \neg b, \neg \varphi\}$ 5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	{ a }

acceptance condition: paths cycling in state (3) are not accepting

• product automaton $A_{\neg \varphi} imes \mathcal{M}$

$$\begin{array}{c|c} \rightarrow 4 \ 0 \\ \rightarrow 5 \ 0 \\ \end{array} \left| \begin{array}{c} \left\{ \begin{array}{c} 4 \ 1, \ 2, \ 2 \ 3, \ 5 \ 1, \ 5 \ 2, \ 5 \ 3 \end{array} \right\} \\ \end{array} \right. \right.$$

{**b**}

{*a*,*b*}

labe	elled Büchi automa	model ${\mathcal M}$					
		1	2	3	4	6	Ø
	$\{a, b, \varphi\}$ ()	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2
	$\{ eg m{a}, m{b}, arphi\}$ (2)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\int
	$\{ {m a}, eg {m b}, arphi \}$ ${f 8}$	\checkmark	\checkmark	\checkmark			
_	$\rightarrow \{a, \neg b, \neg \varphi\} \triangleleft$				\checkmark	\checkmark	
_	$+ \{\neg a, \neg b, \neg \varphi\}$ (5)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	{ a }

{*a*,*b*}

{**b**}

acceptance condition: paths cycling in state (3) are not accepting

product automaton $A_{\neg \varphi} imes \mathcal{M}$

$$\rightarrow \bigcirc 0 | \{ (2, \bigcirc 3, \bigcirc 1, \bigcirc 2, \bigcirc 3 \}$$

$$\rightarrow \bigcirc 0 | \emptyset$$

la	abelled Bü	ichi automa	model ${\cal M}$					
			1	2	3	4	6	Ø
		$\{a, b, \varphi\}$ ()	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2
	{ -	¬ a , b , φ} ❷	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	<u> </u>
	{ a	$\left\{ ,\neg b,\varphi ight\}$ $\left\{ 3\right\}$	\checkmark	\checkmark	\checkmark			
	$\rightarrow \{a, \cdot\}$	$\neg \boldsymbol{b}, \neg \varphi \} 0$				\checkmark	\checkmark	
	$\rightarrow \{\neg a, \cdot\}$	$\neg b, \neg \varphi \}$ 5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	{ a }

acceptance condition: paths cycling in state 8 are not accepting

• product automaton $A_{\neg \varphi} imes \mathcal{M}$

$$\rightarrow 40 | \{ 43, 51, 52, 53 \}$$

$$\rightarrow 50 | \emptyset$$

{**b**}

{*a*,*b*}

labelled Büchi automa	iton $A_{\neg arphi}$ for $arphi$	∞ = a U b	model \mathcal{M}		
	1 2 3	4 5	\varnothing { b }		
$\{a,b,arphi\}$ ()	\checkmark \checkmark \checkmark	$\sqrt{}$	$2 \longrightarrow 3_{\kappa}$		
$\{ eg m{a}, m{b}, arphi\}$ (2)	\checkmark \checkmark \checkmark	\checkmark \checkmark			
$\{m{a}, eg m{b},arphi\}$ $m{3}$	\checkmark \checkmark \checkmark				
$\rightarrow \{a, \neg b, \neg \varphi\}$ 4		\checkmark \checkmark	$\longrightarrow 0$		
$\rightarrow \{\neg a, \neg b, \neg \varphi\}$ 5	\checkmark \checkmark \checkmark	\checkmark \checkmark	$\{a\}$ $\{a,b\}$		

acceptance condition: paths cycling in state (3) are not accepting

product automaton $A_{\neg \varphi} imes \mathcal{M}$

$$\rightarrow \textcircled{0} \{ \textcircled{0} \\ \rightarrow \textcircled{0} \\ \cancel{0} \\ \cancel{$$

labelled Büchi automa	model ${\cal M}$					
	1	2	3	4	6	Ø
$\{a, b, \varphi\}$ ()	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2
$\{\neg \textit{a},\textit{b},arphi\}$ (2)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\int
$\{ oldsymbol{a}, eg oldsymbol{b}, arphi \}$ 3	\checkmark	\checkmark	\checkmark			
$\rightarrow \{a, \neg b, \neg \varphi\} $				\checkmark	\checkmark	$\longrightarrow 0^{4}$
$\rightarrow \{\neg a, \neg b, \neg \varphi\}$ 5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	{ a }

acceptance condition: paths cycling in state 8 are not accepting

• product automaton $A_{\neg \varphi} imes \mathcal{M}$

$$\begin{array}{c|c} \rightarrow & \textcircled{0} & \textcircled{0} & \textcircled{0} \\ \rightarrow & \textcircled{0} & \swarrow & \swarrow \\ \end{array}$$

{**b**}

{*a*,*b*}

labelled Büchi automa	ton ,	$A_{\neg \varphi}$	for	$\varphi =$	aUb	model ${\cal M}$
	1	2	3	4	6	Ø
$\{ {m a}, {m b}, arphi \}$ ()	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2—
$\{\neg \textit{a},\textit{b},arphi\}$ 2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$\{ {m a}, eg {m b}, arphi \}$ (3)	\checkmark	\checkmark	\checkmark			
$\rightarrow \{a, \neg b, \neg \varphi\}$				\checkmark	\checkmark	$\longrightarrow 0$
$\rightarrow \{\neg a, \neg b, \neg \varphi\}$ (5)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	{ a }

acceptance condition: paths cycling in state (3) are not accepting

product automaton $A_{\neg \varphi} \times \mathcal{M}$

$$\begin{array}{c|c} \rightarrow \textcircled{0} 0 & \{ & \fbox{0} 2 & \} \\ \rightarrow \Huge{0} 0 & \varnothing \end{array}$$

labelled Büchi automa	model \mathcal{M}					
	1	2	3	4	6	Ø
$\{a, b, \varphi\}$ ()	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2
$\{\neg \textit{a},\textit{b},arphi\}$ (2)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Î
$\{m{a}, eg m{b},arphi\}$ (3)	\checkmark	\checkmark	\checkmark			
$\rightarrow \{a, \neg b, \neg \varphi\}$				\checkmark	\checkmark	
$\rightarrow \{\neg a, \neg b, \neg \varphi\}$ (5)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	{ a }

acceptance condition: paths cycling in state 6 are not accepting

• product automaton $A_{\neg \varphi} imes \mathcal{M}$

$$\rightarrow \bigcirc 0 | \{ \bigcirc 2 \} \bigcirc 2 | \{ \bigcirc 3, \oslash 3, \oslash 3, \oslash 3, \odot 3 \}$$

$$\rightarrow \bigcirc 0 | \varnothing$$

{**b**}

{*a*,*b*}

la	belled Büchi automa	model ${\cal M}$					
		1	2	3	4	6	Ø
	$\{a, b, \varphi\}$ (1)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2
	$\{ eg oldsymbol{a}, oldsymbol{b}, arphi\}$ (2)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Î /
	$\{m{a}, eg m{b},arphi\}$ (3)	\checkmark	\checkmark	\checkmark			
	$\rightarrow \{a, \neg b, \neg \varphi\} $				\checkmark	\checkmark	$\longrightarrow 0^{4}$
	$\rightarrow \{\neg a, \neg b, \neg \varphi\}$ (5)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	{ a }

acceptance condition: paths cycling in state (3) are not accepting

• product automaton $A_{\neg \varphi} imes \mathcal{M}$

$$\begin{array}{c|c} \rightarrow \textcircled{0} 0 \\ \rightarrow \textcircled{0} 0 \end{array} \begin{vmatrix} \hline & & & & & \\ \hline & & & \\ \hline & \rightarrow \textcircled{0} 0 \end{vmatrix} \varnothing$$

{**b**}

{*a*,*b*}

labelled Büchi automa	ton ,	model ${\cal M}$				
	1	2	3	4	6	Ø
$\{m{a},m{b},arphi\}$ ()	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2
$\{ eg oldsymbol{a}, oldsymbol{b}, arphi\}$ (2)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$\{ oldsymbol{a}, eg oldsymbol{b}, arphi \}$ ${f S}$	\checkmark	\checkmark	\checkmark			
$\rightarrow \{a, \neg b, \neg \varphi\}$				\checkmark	\checkmark	
$\rightarrow \{\neg a, \neg b, \neg \varphi\}$ 5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	{ a }

acceptance condition: paths cycling in state (3) are not accepting

• product automaton $A_{\neg \varphi} imes \mathcal{M}$

{**b**}

 $\{a, b\}$

labelled Büchi automa	ibelled Büchi automaton $A_{\neg arphi}$ for $arphi = a U b$					
	1	2	3	4	6	Ø
$\{ {m a}, {m b}, arphi \}$ ()	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2)
$\{\neg \textit{a},\textit{b},arphi\}$ (2)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Î
$\{ oldsymbol{a}, eg oldsymbol{b}, arphi \}$ 3	\checkmark	\checkmark	\checkmark			
$\rightarrow \{a, \neg b, \neg \varphi\}$ 4				\checkmark	\checkmark	$\longrightarrow 0$
$\rightarrow \{\neg a, \neg b, \neg \varphi\}$ (5)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	{ <i>a</i> }

acceptance condition: paths cycling in state (3) are not accepting

product automaton $A_{\neg \varphi} imes \mathcal{M}$

Basic Strategy

$\mathcal{M}, \mathbf{s} \models \varphi$?

- ▶ construct labelled Büchi automaton $A_{\neg \varphi}$ for $\neg \varphi$
- ▶ combine $A_{\neg \varphi}$ and M into single automaton $A_{\neg \varphi} \times M$
- ▶ determine whether there exists accepting path in $A_{\neg \varphi} \times \mathcal{M}$

Theorem

 $\mathcal{M}, s \vDash \varphi \quad \Longleftrightarrow \quad A_{\neg \varphi} \times \mathcal{M}$ has no accepting paths

labelled Büchi automa	aton $A_{\neg arphi}$ for $arphi = a U b$					model ${\cal M}$
	1	2	3	4	6	Ø
$\{ {m a}, {m b}, arphi \}$ ()	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2
$\{ eg m{a}, m{b}, arphi\}$ (2)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Î /
$\{ oldsymbol{a}, eg oldsymbol{b}, arphi \}$ 3	\checkmark	\checkmark	\checkmark			
$\rightarrow \{a, \neg b, \neg \varphi\}$ 4				\checkmark	\checkmark	$\longrightarrow 0^{4}$
$\rightarrow \{\neg a, \neg b, \neg \varphi\}$ 5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	{ <i>a</i> }

acceptance condition: paths cycling in state 6 are not accepting

• product automaton $A_{\neg \varphi} \times \mathcal{M}$

{**b**}

 $\{a, b\}$

labelled Büchi automa	model ${\cal M}$					
	0	2	3	4	6	Ø { b }
$\{a,b,arphi\}$ ()	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$\{ eg m{a}, m{b}, arphi\}$ (2)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$\{m{a}, eg m{b},arphi\}$ (3)	\checkmark	\checkmark	\checkmark			
$\rightarrow \{a, \neg b, \neg \varphi\}$				\checkmark	\checkmark	
$\rightarrow \{\neg a, \neg b, \neg \varphi\}$ 5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\{a\}$ $\{a,b\}$

acceptance condition: paths cycling in state 3 are not accepting

product automaton $A_{\neg \varphi} \times \mathcal{M}$

(32 } **(3**2 { **(2**3 **2**3 { **2**3 accepting path $(40 \xrightarrow{\{a\}} (52 \xrightarrow{\emptyset} (23 \xrightarrow{\{b\}} (23 \xrightarrow{\{b} (23 \xrightarrow{\{a} (23 \xrightarrow{\{b} (23 \xrightarrow{\{b} (23 \xrightarrow{\{b} (23 \xrightarrow{\{a} (23 \xrightarrow{\{a} (23 \xrightarrow{\{b} (23 \xrightarrow{\{b} (23 \xrightarrow{\{b} (23 \xrightarrow{\{a} (23 \xrightarrow$

Outline

- **1. Summary of Previous Lecture**
- 2. Adequacy
- 3. Evaluation
- 4. Fairness
- 5. Intermezzo
- 6. LTL Model Checking Algorithm

7. Further Reading

8. Exam

Huth and Ryan

- Section 3.2.5
- Section 3.4.5
- Section 3.6.2
- Section 3.6.3

Huth and Ryan

- Section 3.2.5
- Section 3.4.5
- Section 3.6.2
- Section 3.6.3

Baier and Katoen

► Section 5.2 of Principles of Model Checking (MIT Press 2008)

Important Concepts

- ► A_C
- ► **A**_{\varphi}
- adequacy
- closure

- ► E_C
- elementary set
- fair path

- fairness constraints
- Iabelled Büchi automaton
- trace

Important Concepts

- ► A_C
- ► A_{\\varphi}
- adequacy
- closure

- ► E_C
- elementary set
- 🕨 fair path

- fairness constraints
- Iabelled Büchi automaton
- trace

homework for June 6

Outline

- **1. Summary of Previous Lecture**
- 2. Adequacy
- 3. Evaluation
- 4. Fairness
- 5. Intermezzo
- 6. LTL Model Checking Algorithm
- 7. Further Reading

8. Exam

registration in LFU:online is required before 23:59 on June 10

- registration in LFU:online is required before 23:59 on June 10
- strict deadline: late email requests will be ignored

- ▶ registration in LFU:online is required before 23:59 on June 10
- strict deadline: late email requests will be ignored
- deregistration is possible until 23:59 on June 20

- ▶ registration in LFU:online is required before 23:59 on June 10
- strict deadline: late email requests will be ignored
- deregistration is possible until 23:59 on June 20
- closed book

- registration in LFU:online is required before 23:59 on June 10
- strict deadline: late email requests will be ignored
- deregistration is possible until 23:59 on June 20
- closed book
- second exam on September 20, third exam on February 26, 2025

- registration in LFU:online is required before 23:59 on June 10
- strict deadline: late email requests will be ignored
- deregistration is possible until 23:59 on June 20
- closed book
- second exam on September 20, third exam on February 26, 2025

Preparation

study previous exams

- registration in LFU:online is required before 23:59 on June 10
- strict deadline: late email requests will be ignored
- deregistration is possible until 23:59 on June 20
- closed book
- second exam on September 20, third exam on February 26, 2025

Preparation

- study previous exams
- review homework exercises and solutions

- registration in LFU:online is required before 23:59 on June 10
- strict deadline: late email requests will be ignored
- deregistration is possible until 23:59 on June 20
- closed book
- second exam on September 20, third exam on February 26, 2025

Preparation

- study previous exams
- review homework exercises and solutions
- study slides

- registration in LFU:online is required before 23:59 on June 10
- strict deadline: late email requests will be ignored
- deregistration is possible until 23:59 on June 20
- closed book
- second exam on September 20, third exam on February 26, 2025

Preparation

- study previous exams
- review homework exercises and solutions
- study slides
- visit Tutorium

Wednesday, 16:15 - 17:00, SR 13

- registration in LFU:online is required before 23:59 on June 10
- strict deadline: late email requests will be ignored
- deregistration is possible until 23:59 on June 20
- closed book
- second exam on September 20, third exam on February 26, 2025

Preparation

- study previous exams
- review homework exercises and solutions
- study slides
- visit Tutorium Wednesday, 16:15 – 17:00, SR 13
- visit consultation hours AM

Wednesday, 11:30 - 13:00, 3M07