

Logic

Diana Gründlinger Aart Middeldorp Fabian Mitterwallner

Alexander Montag Johannes Niederhauser Daniel Rainer

- 1. Summary of Previous Lecture
- 2. Adequacy
- 3. Evaluation
- 4. Fairness
- 5. Intermezzo
- 6. LTL Model Checking Algorithm
- 7. Further Reading
- 8. Exam

Definitions

model $\mathcal{M} = (S, \rightarrow, L)$ and $X \subseteq S$

- $\blacktriangleright \ \llbracket \varphi \rrbracket = \{ s \in S \mid \mathcal{M}, s \vDash \varphi \}$
- ▶ $\operatorname{pre}_{\forall}(X) = \{s \in S \mid t \in X \text{ for all } t \text{ with } s \to t\}$
- ▶ $\operatorname{pre}_{\exists}(X) = \{s \in S \mid s \to t \text{ for some } t \in X\}$

Lemma

Lemma

- ▶ $[AF \varphi]$ is least fixed point of monotone function $F_{AF}(X) = [\varphi] \cup \operatorname{pre}_{\forall}(X)$
- ▶ $\llbracket \mathsf{EG} \varphi \rrbracket$ is greatest fixed point of monotone function $F_{\mathsf{EG}}(X) = \llbracket \varphi \rrbracket \cap \mathsf{pre}_{\exists}(X)$
- ▶ $\llbracket E[\psi \cup \varphi] \rrbracket$ is least fixed point of monotone function $F_{EU}(X) = \llbracket \psi \rrbracket \cup (\llbracket \varphi \rrbracket \cap \operatorname{pre}_{\exists}(X))$

Theorem (Knaster-Tarski)

every monotone function $F: \mathcal{P}(S) \to \mathcal{P}(S)$ with |S| = n admits

- least fixed point $\mu F = F^n(\emptyset)$
- greatest fixed point $\nu F = F^n(S)$

symbolic model checking = (CTL) model checking with BDDs

Definitions

- ► LTL (linear-time temporal logic) formulas are built from
 - atoms

$$p, q, r, p_1, p_2, \ldots$$

▶ logical connectives \bot , \top , \neg , \land , \lor , \rightarrow

$$\perp$$
, \top , \neg , \wedge , \vee , $-$

▶ temporal connectives X, F, G, U, W, R

according to following BNF grammar:

$$\varphi ::= \bot \mid \top \mid p \mid (\neg \varphi) \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi) \mid (\varphi \to \varphi) \mid$$

$$(X \varphi) \mid (F \varphi) \mid (G \varphi) \mid (\varphi U \varphi) \mid (\varphi W \varphi) \mid (\varphi R \varphi)$$

- ▶ path in model $\mathcal{M} = (S, \rightarrow, L)$ is infinite sequence $s_1 \rightarrow s_2 \rightarrow \cdots$
- ▶ satisfaction $\pi \models \varphi$ of LTL formula φ with respect to path $\pi = s_1 \to s_2 \to \cdots$ in model \mathcal{M} is defined by induction on φ
- ▶ satisfaction $\mathcal{M}, s \models \varphi$ of LTL formula φ with respect to state $s \in S$ in model \mathcal{M} is defined as "for all paths $\pi = s \rightarrow \cdots \quad \pi \models \varphi$ "

Definition

LTL formulas φ and ψ are semantically equivalent $(\varphi \equiv \psi)$ if

$$\pi \vDash \varphi \iff \pi \vDash \psi$$

for all models $\mathcal{M} = (S, \rightarrow, L)$ and paths π in \mathcal{M}

Remark

$$\pi \nvDash \varphi \iff \pi \vDash \neg \varphi \qquad \mathcal{M}, s \vDash \varphi \implies \mathcal{M}, s \nvDash \neg \varphi \qquad \mathcal{M}, s \nvDash \varphi \implies \mathcal{M}, s \vDash \neg \varphi$$

Theorem

universität innsbruck

Part I: Propositional Logic

algebraic normal forms, binary decision diagrams, conjunctive normal forms, DPLL, Horn formulas, natural deduction, Post's adequacy theorem, resolution, SAT, semantics, sorting networks, soundness and completeness, syntax, Tseitin's transformation

Part II: Predicate Logic

natural deduction, quantifier equivalences, resolution, semantics, Skolemization, syntax, undecidability, unification

Part III: Model Checking

adequacy, branching-time temporal logic, CTL*, fairness, linear-time temporal logic, model checking algorithms, symbolic model checking

1. Summary of Previous Lecture

2. Adequacy

ITI CTI

- 3. Evaluation
- 4. Fairness
- 5. Intermezzo
- 6. LTL Model Checking Algorithm
- 7. Further Reading
- 8. Exam

Theorem

{X, U}, {X, W} and {X, R} are adequate sets of temporal connectives for LTL

Proof

$$F \varphi \equiv \top U \varphi \qquad \qquad \varphi R \psi \equiv \psi W (\varphi \wedge \psi) \qquad \qquad \varphi U \psi \equiv \neg (\neg \varphi R \neg \psi)$$

$$G \varphi \equiv \neg F \neg \varphi \qquad \qquad \varphi U \psi \equiv \neg (\neg \varphi R \neg \psi) \qquad \qquad F \varphi \equiv \top U \varphi$$

$$\varphi R \psi \equiv \neg (\neg \varphi U \neg \psi) \qquad \qquad F \varphi \equiv \top U \varphi \qquad \qquad G \varphi \equiv \neg F \neg \varphi$$

$$\varphi W \psi \equiv \varphi U \psi \vee G \varphi \qquad \qquad G \varphi \equiv \neg F \neg \varphi$$

$$\varphi W \psi \equiv \varphi U \psi \vee G \varphi$$

Theorem

{U,R}, {U,W}, {U,G}, {F,W} and {F,R} are adequate sets of temporal connectives for LTL fragment consisting of negation-normal forms without X

Logic

2. Adequacy

1. Summary of Previous Lecture

2. Adequacy

LTL CTL

- 3. Evaluation
- 4. Fairness
- 5. Intermezzo
- 6. LTL Model Checking Algorithm
- 7. Further Reading
- 8. Exam

Theorem

set of temporal connectives is adequate for CTL \iff

it contains { at least one of {AX, EX} at least one of {EG, AF, AU} EU

Proof (\Leftarrow)

- ightharpoonup AX $\varphi \equiv \neg$ EX $\neg \varphi$ and EX $\varphi \equiv \neg$ AX $\neg \varphi$
- ightharpoonup EF $\varphi \equiv E[\top \cup \varphi]$
- ightharpoonup AG $\varphi \equiv \neg EF \neg \varphi$
- $ightharpoonup AF \varphi \equiv A[\top U \varphi]$
- ightharpoonup EG $\varphi \equiv \neg AF \neg \varphi$

Theorem

set of temporal connectives is adequate for CTL \iff

it contains at least one of {AX, EX} at least one of {EG, AF, AU} EU

Proof (\Longrightarrow)

consider model M

- ▶ \mathcal{M} ,0 \nvDash EXp and \mathcal{M} ,1 \models EXp
- \blacktriangleright for every CTL formula φ not containing EX and AX:

$$\mathcal{M}, 0 \vDash \varphi \iff \mathcal{M}, 1 \vDash \varphi$$

ullet Proof (\Longrightarrow , cont'd)

induction on $\, \varphi \,$

- lacktriangledown if φ is atom or $\varphi = \bot$ then $\mathcal{M}, 0 \nvDash \varphi$ and $\mathcal{M}, 1 \nvDash \varphi$
- ightharpoonup if $\varphi = \top$ then $\mathcal{M}, 0 \vDash \varphi$ and $\mathcal{M}, 1 \vDash \varphi$
- $\blacktriangleright \text{ if } \varphi = \neg \psi \text{ then } \mathcal{M}, 0 \vDash \varphi \iff \mathcal{M}, 0 \nvDash \psi \iff \mathcal{M}, 1 \nvDash \psi \iff \mathcal{M}, 1 \vDash \varphi$
- if $\varphi = \psi_1 \wedge \psi_2$ then

$$\mathcal{M}, 0 \vDash \varphi \iff \mathcal{M}, 0 \vDash \psi_1 \text{ and } \mathcal{M}, 0 \vDash \psi_2 \iff \mathcal{M}, 1 \vDash \psi_1 \text{ and } \mathcal{M}, 1 \vDash \psi_2 \iff \mathcal{M}, 1 \vDash \varphi$$

__A_M_

universitätinnsbruck

SS 2024 Logic

lecture 11

2

2. Adequacy

Proof $(\Longrightarrow$, cont'd)

induction on φ

• if $\varphi = \mathsf{AF}\,\psi$ or $\varphi = \mathsf{EF}\,\psi$ then

$$\mathcal{M}, 0 \vDash \varphi \iff \mathcal{M}, i \vDash \psi \text{ for some } i \in \{0, 1, 2\}$$

$$\iff \mathcal{M}, i \vDash \psi \text{ for some } i \in \{1, 2\} \iff \mathcal{M}, 1 \vDash \varphi$$

• if $\varphi = AG \psi$ or $\varphi = EG \psi$ then

SS 2024

Logic

lecture 11

2. Adequacy

$$\mathcal{M}, 0 \vDash \varphi \iff \mathcal{M}, i \vDash \psi \text{ for all } i \in \{0, 1, 2\}$$
 $\iff \mathcal{M}, i \vDash \psi \text{ for all } i \in \{1, 2\} \iff \mathcal{M}, 1 \vDash \varphi$

16/41

ullet Proof (\Longrightarrow , cont'd)

induction on φ

• if $\varphi = A[\psi_1 \cup \psi_2]$ or $\varphi = E[\psi_1 \cup \psi_2]$ then

$$\iff \mathcal{M}, 1 \vDash \psi_2 \text{ or}$$

$$\mathcal{M}, 2 \vDash \psi_2 \text{ and } \mathcal{M}, 1 \vDash \psi_1$$

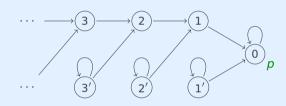
$$\iff \mathcal{M}, 1 \vDash \varphi$$

Theorem

... at least one of {EG, AF, AU}

Proof (\Longrightarrow)

► consider model M



- $ightharpoonup \mathcal{M}, i \models \mathsf{AF}\, p \text{ for all } i \geqslant 0 \text{ and } \mathcal{M}, i' \nvDash \mathsf{AF}\, p \text{ for all } i > 0$
- for every CTL formula φ not containing EG, AF and AU there exists $n_{\varphi} > 0$ such that

$$\mathcal{M}, n_{\varphi} \vDash \varphi \iff \mathcal{M}, n_{\varphi}' \vDash \varphi$$

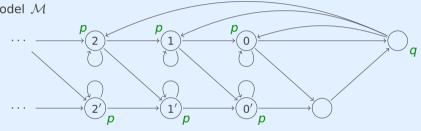
Logic

Theorem

... EU

Proof (\Longrightarrow)

► consider model M



- ▶ $\mathcal{M}, i \models E[p \cup q]$ and $\mathcal{M}, i' \nvDash E[p \cup q]$ for all $i \geqslant 0$
- ▶ for every CTL formula φ not containing EU there exists $n_{\varphi} \geqslant 0$ such that

$$\mathcal{M}, n_{\varphi} \vDash \varphi \iff \mathcal{M}, n_{\varphi}' \vDash \varphi$$

- 1. Summary of Previous Lecture
- 2. Adequacy
- 3. Evaluation
- 4. Fairness
- 5. Intermezzo
- **6. LTL Model Checking Algorithm**
- 7. Further Reading
- 8. Exam

Online Evaluation in Presence

https://lv-analyse.uibk.ac.at/evasys/public/online/index

- 1. Summary of Previous Lecture
- 2. Adequacy
- 3. Evaluation
- 4. Fairness
- 5. Intermezzo
- **6. LTL Model Checking Algorithm**
- 7. Further Reading
- 8. Exam

Motivation

- ▶ model may contain behaviour which is unrealistic or guaranteed not to happen
- such behaviour is (typically) not expressible in CTL
- ▶ eliminate such behaviour by imposing fairness constraints

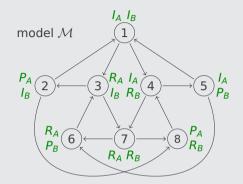
Definitions

▶ path $s_1 \rightarrow s_2 \rightarrow \cdots$ is fair with respect to set C of CTL formulas if for all $\psi \in C$

$$s_i \vDash \psi$$
 for infinitely many i (GF ψ in LTL)

- ► formulas in *C* are called fairness constraints
- \blacktriangleright A_C (E_C) denotes A (E) restricted to paths that are fair with respect to C

Example



- path $1(376)^{\omega}$ is fair with respect to $\{I_B, P_B\}$ but not with respect to $\{I_A\}$
- $ightharpoonup \mathcal{M}, 1 \nvDash A_{\{R_B\}} F P_B$ because path $1(478)^{\omega}$ is fair with respect to R_B but $\mathcal{M}, i \nvDash P_B$ for $i \in \{1, 4, 7, 8\}$

universität

SS 2024

Logic

lecture 11

4. Fairness

$$\mathsf{E}_{\mathbf{C}}[\varphi \,\mathsf{U}\,\psi] \equiv \mathsf{E}[\varphi \,\mathsf{U}\,(\psi \,\land\, \mathsf{E}_{\mathbf{C}}\mathsf{G}\,\top)]$$

$$\mathsf{E}_{\mathbf{C}}\mathsf{X}\,\varphi \equiv \mathsf{E}\mathsf{X}(\varphi \wedge \mathsf{E}_{\mathbf{C}}\mathsf{G}\,\top)$$

New Algorithm (CTL Model Checking with Fairness Constraints)

required only for $E_{\mathcal{C}}G\varphi$:

- $\ \textcircled{1}$ restrict graph to states satisfying φ
- ② compute non-trivial strongly connected components (SCCs)
- ③ remove SCC S if there exists constraint $\psi \in C$ such that $s \nvDash \psi$ for all states $s \in S$
- 4 label all states in resulting SCCs
- ⑤ compute and label all states that can reach labelled state in restricted graph computed in step ①

- 1. Summary of Previous Lecture
- 2. Adequacy
- 3. Evaluation
- 4. Fairness
- 5. Intermezzo
- 6. LTL Model Checking Algorithm
- 7. Further Reading
- 8. Exam

Question

Which of the following statements hold for all models $\mathcal{M}=(S,\to,L)$ and states $s\in S$?

- $A \quad \mathcal{M}, s \models \mathsf{E}_{\{p \land q\}}\mathsf{F}(q)$
- \mathbb{B} $\mathcal{M}, s \nvDash \mathsf{E}_{\{p\}}\mathsf{G}(\mathsf{EF}\,p)$
- $\mathcal{M}, s \models A_{\{\neg q\}}F(AX \neg q)$
- D $\mathcal{M}, s \models E_{\{p\}}[\neg p \cup p]$

- 1. Summary of Previous Lecture
- 2. Adequacy
- 3. Evaluation
- 4. Fairness
- 5. Intermezzo
- 6. LTL Model Checking Algorithm
- 7. Further Reading
- 8. Exam

Theorem

satisfaction of LTL formulas in finite models is decidable

Two Approaches

- 1 translate into CTL model checking with fairness constraints
- 2 use automata techniques

Basic Strategy

$$\mathcal{M}, s \vDash \varphi$$
?

- ightharpoonup construct labelled Büchi automaton $A_{\neg \varphi}$ for $\neg \varphi$
- lacktriangle combine $A_{\neg arphi}$ and ${\mathcal M}$ into single automaton $A_{\neg arphi} imes {\mathcal M}$
- lacktriangle determine whether there exists accepting path in $A_{\neg \varphi} \times \mathcal{M}$

formula φ in LTL fragment with U and X as only temporal operators

Definition

closure $\mathcal{C}(\varphi)$ of φ consists of all subformulas of φ and their negations, identifying $\neg\neg\psi$ and ψ

Example

$$\mathcal{C}(a \cup (\neg a \wedge b)) = \{a, \neg a, b, \neg b, \neg a \wedge b, \neg (\neg a \wedge b), a \cup (\neg a \wedge b), \neg (a \cup (\neg a \wedge b))\}$$

- $ightharpoonup \{a, b, \neg a \land b, a \cup (\neg a \land b)\}$ not elementary
- ► $\{a, b, \neg(\neg a \land b), a \cup (\neg a \land b)\}$ elementary
- $ightharpoonup \{ \neg a, \neg b, \neg (\neg a \land b), a \cup (\neg a \land b) \}$ not elementary

Definition

set $B \subseteq \mathcal{C}(\varphi)$ is elementary if it is

- ① consistent with respect to propositional logic: for all $\varphi_1 \wedge \varphi_2 \in \mathcal{C}(\varphi)$ and $\psi \in \mathcal{C}(\varphi)$
 - $\blacktriangleright \varphi_1 \land \varphi_2 \in B \iff \varphi_1 \in B \text{ and } \varphi_2 \in B$
 - $\bullet \psi \in B \implies \neg \psi \notin B$
 - $ightharpoonup \top \in \mathcal{C}(\varphi) \implies \top \in \mathcal{B}$
- 2 locally consistent with respect to U: for all $\varphi_1 \cup \varphi_2 \in \mathcal{C}(\varphi)$
 - $\implies \varphi_1 \cup \varphi_2 \in B$ $\triangleright \varphi_2 \in B$
 - $ightharpoonup \varphi_1 \cup \varphi_2 \in B \text{ and } \varphi_2 \notin B \implies \varphi_1 \in B$
- **3** maximal: for all $\psi \in \mathcal{C}(\varphi)$
 - $\bullet \ \psi \notin B \implies \neg \psi \in B$

Definitions

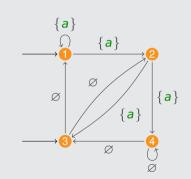
- states of automaton A_{φ} are elementary subsets of $\mathcal{C}(\varphi)$
- lacktriangle initial states are those states containing φ
- ▶ transition relation Δ of A_{φ} : $(A,B) \in \Delta$ if and only if
 - ① for all $X \psi \in \mathcal{C}(\varphi)$ $X \psi \in A \iff \psi \in B$
 - ② for all $\varphi_1 \cup \varphi_2 \in \mathcal{C}(\varphi)$ $\varphi_1 \cup \varphi_2 \in A$ \iff $\varphi_2 \in A$ or both $\varphi_1 \in A$ and $\varphi_1 \cup \varphi_2 \in B$
- trace is infinite sequence of valuations of propositional atoms
- trace t is accepted if there exists path π in A_{φ} such that
 - ① π starts in initial state of A_{arphi}
 - ② π corresponds to trace t: $t_i = \{p \in \pi_i \mid p \text{ is atom}\}$ for all i
 - ③ π visits infinitely many states satisfying $\neg(\psi_1 \cup \psi_2) \lor \psi_2$, for every $\psi_1 \cup \psi_2 \in \mathcal{C}(\varphi)$

Example 0

$$\varphi = X a$$

- $\mathcal{C}(\varphi) = \{a, \neg a, Xa, \neg Xa\}$
- ▶ states $\mathbf{0} \{a, Xa\}$ $\mathbf{2} \{a, \neg Xa\}$ $\mathbf{3} \{\neg a, Xa\}$ $\mathbf{4} \{\neg a, \neg Xa\}$
- initial states
- transitions

- trace $t_1 = \{a\}\{a\}\{a\}\varnothing^\omega$ is accepted: path 0020^{ω}
- trace $t_2 = \emptyset \{a\} \emptyset \{a\}^{\omega}$ is accepted: path 3231 $^{\omega}$
- ▶ trace $t_3 = \{a\} \varnothing \varnothing \{a\}^\omega$ is not accepted



SS 2024

{ **a** }

Example 2

$$\varphi = a \cup b$$

- $\triangleright C(\varphi) = \{a, \neg a, b, \neg b, a \cup b, \neg (a \cup b)\}$
- ▶ states $\mathbf{0} \{a, b, \varphi\}$ $\mathbf{2} \{\neg a, b, \varphi\}$ $\mathbf{3} \{a, \neg b, \varphi\}$ $\mathbf{4} \{a, \neg b, \neg \varphi\}$ $\mathbf{5} \{\neg a, \neg b, \neg \varphi\}$
 - initial states
- transitions

- acceptance condition: paths cycling in state 3 are not accepting
- \blacktriangleright $\{a\}^{\omega}$ is rejected and $\{b\} \varnothing \{a\}^{\omega}$ is accepted

Basic Strategy

$$\mathcal{M}, s \vDash \varphi$$
?

- ▶ construct labelled Büchi automaton $A_{\neg \varphi}$ for $\neg \varphi$
- combine $A_{\neg \varphi}$ and \mathcal{M} into single automaton $A_{\neg \varphi} \times \mathcal{M}$
- determine whether there exists accepting path in $A_{\neg \varphi} \times \mathcal{M}$

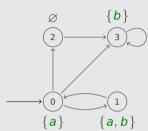
Theorem

 $\mathcal{M}, s \vDash \varphi \iff A_{\neg \varphi} \times \mathcal{M}$ has no accepting paths

Example

labelled Büchi automaton $A_{\neg \varphi}$ for $\varphi = a \cup b$

 $\mathsf{model}\ \mathcal{M}$



36/41

acceptance condition: paths cycling in state 3 are not accepting

lacksquare product automaton $A_{
egarphi} imes\mathcal{M}$

 \rightarrow 60 0

- - universität SS 2024 Logic lecture 11 6. LTL Model Checking Algorithm

- 1. Summary of Previous Lecture
- 2. Adequacy
- 3. Evaluation
- 4. Fairness
- 5. Intermezzo
- 6. LTL Model Checking Algorithm
- 7. Further Reading
- 8. Exam

Huth and Ryan

- ▶ Section 3.2.5
- ► Section 3.4.5
- ▶ Section 3.6.2
- ► Section 3.6.3

Baier and Katoen

► Section 5.2 of Principles of Model Checking (MIT Press 2008)

Important Concepts

- \triangleright A_C
- adequacy
- closure

- \triangleright E_C
- elementary set
- fair path

- fairness constraints
- labelled Büchi automaton
- trace

homework for June 6

- 1. Summary of Previous Lecture
- 2. Adequacy
- 3. Evaluation
- 4. Fairness
- 5. Intermezzo
- 6. LTL Model Checking Algorithm
- 7. Further Reading
- 8. Exam

First Exam on June 24

- ▶ registration in LFU:online is required before 23:59 on June 10
- strict deadline: late email requests will be ignored
- deregistration is possible until 23:59 on June 20
- closed book
- ▶ second exam on September 20, third exam on February 26, 2025

Preparation

- study previous exams
- review homework exercises and solutions
- study slides
- ► visit Tutorium Wednesday, 16:15 17:00, SR 13
- ▶ visit consultation hours AM Wednesday, 11:30 13:00, 3M07