
SS 2024 lecture 12

Logic

Diana Gründlinger Aart Middeldorp Fabian Mitterwallner

Alexander Montag Johannes Niederhauser Daniel Rainer

http://cl-informatik.uibk.ac.at/teaching/ss24/lics
http://cl-informatik.uibk.ac.at/~ami

Outline

1. Summary of Previous Lecture

2. CTL∗

3. Intermezzo

4. SAT Solving

5. Sorting Networks

6. Further Reading

SS 2024 Logic lecture 12 2/36

Definitions

▶ path s1 → s2 → · · · is fair with respect to set C of CTL formulas if for all ψ ∈ C

s i ⊨ ψ for infinitely many i

▶ AC (EC) denotes A (E) restricted to paths that are fair with respect to C

Lemma

EC [φUψ] ≡ E[φU (ψ ∧ ECG⊤)] ECXφ ≡ EX(φ ∧ ECG⊤)

Theorem

set of temporal connectives is adequate for CTL ⇐⇒

it contains


at least one of {AX, EX}
at least one of {EG, AF, AU}
EU

SS 2024 Logic lecture 12 1. Summary of Previous Lecture 3/36

Theorem

▶ {X, U}, {X,W} and {X, R} are adequate sets of temporal connectives for LTL

▶ {U, R}, {U,W}, {U, G}, {F,W} and {F, R} are adequate sets of temporal connectives

for LTL fragment consisting of negation-normal forms without X

LTL Model Checking

M, s ⊨ φ ?

▶ construct labelled Büchi automaton A¬φ for ¬φ
▶ combine A¬φ and M into single automaton A¬φ ×M
▶ determine whether there exists accepting path π in A¬φ ×M starting from s

Theorem

M, s ⊭ φ ⇐⇒ exists accepting path in A¬φ ×M starting from state corresponding to s

SS 2024 Logic lecture 12 1. Summary of Previous Lecture 4/36

Part I: Propositional Logic

algebraic normal forms, binary decision diagrams, conjunctive normal forms, DPLL, Horn

formulas, natural deduction, Post’s adequacy theorem, resolution, SAT, semantics, sorting

networks, soundness and completeness, syntax, Tseitin’s transformation

Part II: Predicate Logic

natural deduction, quantifier equivalences, resolution, semantics, Skolemization, syntax,

undecidability, unification

Part III: Model Checking

adequacy, branching-time temporal logic, CTL∗, fairness, linear-time temporal logic, model

checking algorithms, symbolic model checking

SS 2024 Logic lecture 12 1. Summary of Previous Lecture Overview 5/36

Outline

1. Summary of Previous Lecture

2. CTL∗

3. Intermezzo

4. SAT Solving

5. Sorting Networks

6. Further Reading

SS 2024 Logic lecture 12 2. CTL∗ 6/36

Definition

CTL∗ formulas consist of

▶ state formulas, which are evaluated in states:

φ ::= ⊥ | ⊤ | p | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ) | A[α] | E[α]

▶ path formulas, which are evaluated along paths:

α ::= φ | (¬α) | (α ∧ α) | (α ∨ α) | (α→ α) | (Xα) | (Fα) | (Gα) | (αUα)

Examples

A[(pU r) ∨ (qU r)] A[Xp ∨ X Xp] E[G Fp]

A[(p ∨ q)U r] A[Xp] ∨ A[X A[Xp]] E[G E[Fp]]

SS 2024 Logic lecture 12 2. CTL∗ Syntax 7/36

Definition

satisfaction of CTL∗ state formula φ in state s ∈ S of model M = (S,→, L)

M, s ⊭ ⊥

M, s ⊨ ⊤

M, s ⊨ p ⇐⇒ p ∈ L(s)

M, s ⊨ ¬φ ⇐⇒ M, s ⊭ φ

M, s ⊨ φ ∧ ψ ⇐⇒ M, s ⊨ φ and M, s ⊨ ψ

M, s ⊨ φ ∨ ψ ⇐⇒ M, s ⊨ φ or M, s ⊨ ψ

M, s ⊨ φ→ ψ ⇐⇒ M, s ⊭ φ or M, s ⊨ ψ

M, s ⊨ A[α] ⇐⇒ ∀ paths π = s → s2 → · · · M, π ⊨ α

M, s ⊨ E[α] ⇐⇒ ∃ path π = s → s2 → · · · M, π ⊨ α

SS 2024 Logic lecture 12 2. CTL∗ Semantics 8/36

Definition

satisfaction of CTL∗ path formula α with respect to path π = s1 → s2 → · · · in M = (S,→, L)

M, π ⊨ φ ⇐⇒ M, s1 ⊨ φ

M, π ⊨ ¬α ⇐⇒ M, π ⊭ α

M, π ⊨ α ∧ β ⇐⇒ M, π ⊨ α and M, π ⊨ β

M, π ⊨ α ∨ β ⇐⇒ M, π ⊨ α or M, π ⊨ β

M, π ⊨ α→ β ⇐⇒ M, π ⊭ α or M, π ⊨ β

M, π ⊨ Xα ⇐⇒ M, π2 ⊨ α

M, π ⊨ Fα ⇐⇒ ∃ i ⩾ 1 M, π i ⊨ α

M, π ⊨ Gα ⇐⇒ ∀ i ⩾ 1 M, π i ⊨ α

M, π ⊨ αUβ ⇐⇒ ∃ i ⩾ 1 M, π i ⊨ β and ∀ j < i M, π j ⊨ α

SS 2024 Logic lecture 12 2. CTL∗ Semantics 9/36

Theorem

satisfaction of CTL∗ formulas in finite models is decidable

Definition

CTL∗ state (CTL, LTL) formulas φ and ψ are semantically equivalent if

M, s ⊨ φ ⇐⇒ M, s ⊨ ψ

for all models M = (S,→, L) and states s ∈ S

Remarks

▶ LTL formula α is equivalent to CTL∗ formula A[α]

▶ CTL is fragment of CTL∗ in which path formulas are "restricted" to

α ::= φ | (¬α) | (α ∧ α) | (α ∨ α) | (α→ α) | (Xφ) | (Fφ) | (Gφ) | (φUφ)

SS 2024 Logic lecture 12 2. CTL∗ Comparison 10/36

Lemma

AG EFp is not expressible in LTL

Proof

▶ suppose AG EFp ≡ A[φ] for LTL formula φ

▶ consider models

0 1

p

M1 0M2

▶ M1,0 ⊨ AG EFp

▶ M1,0 ⊨ A[φ]

▶ M2,0 ⊭ AG EFp

▶ M2,0 ⊨ A[φ] because every path from 0 in M2 is also path in M1 �

SS 2024 Logic lecture 12 2. CTL∗ Comparison 11/36

Lemma

▶ A[G Fp → Fq] is not expressible in CTL

▶ E[G Fp] is expressible neither in CTL nor LTL

Expressive Power

CTL∗

CTL

LTL

φ1 φ2 φ3
φ1 = E[G Fp]

φ2 = AG EFp

φ3 = A[G Fp → Fq]

SS 2024 Logic lecture 12 2. CTL∗ Comparison 12/36

Outline

1. Summary of Previous Lecture

2. CTL∗

3. Intermezzo

4. SAT Solving

5. Sorting Networks

6. Further Reading

SS 2024 Logic lecture 12 3. Intermezzo 13/36

with session ID 0992 9580

Question

Which of the following statements are true ?

A A set of LTL connectives which contains G cannot be adequate.

B The CTL formulas AG¬p → EFq and EF(p ∨ q) are equivalent.

C The CTL formula p ∧ AX AGp is equivalent to the LTL formula Gp.

D The CTL∗ formulas E[G E[Fp]] and E[G Fp] are equivalent.

SS 2024 Logic lecture 12 3. Intermezzo 14/36

https://ars.uibk.ac.at/p/09929580
https://ars.uibk.ac.at/p/09929580
https://ars.uibk.ac.at/p/09929580

Outline

1. Summary of Previous Lecture

2. CTL∗

3. Intermezzo

4. SAT Solving

DPLL Conflict Analysis

5. Sorting Networks

6. Further Reading

SS 2024 Logic lecture 12 4. SAT Solving 15/36

Remarks

▶ most state-of-the-art SAT solvers are based on variations of

Davis – Putnam – Logemann – Loveland (DPLL) procedure (1960, 1962)

▶ abstract version of DPLL described in JACM paper of Nieuwenhuis, Oliveras, Tinelli (2006)

Definition (Abstract DPLL)

▶ states M ∥ F consist of

▶ list M of (possibly annotated) non-complementary literals

▶ CNF F

▶ transition rules

M ∥ F =⇒ M′ ∥ F′ or fail-state (this lecture: F = F′)

SS 2024 Logic lecture 12 4. SAT Solving DPLL 16/36

https://doi.org/10.1145/1217856.1217859

Example

φ = (¬1 ∨ ¬2) ∧ (2 ∨ 3) ∧ (¬1 ∨ ¬3 ∨ 4) ∧ (2 ∨ ¬3 ∨ ¬4) ∧ (1 ∨ 4)

∥ ¬1 ∨ ¬2, 2 ∨ 3, ¬1 ∨ ¬3 ∨ 4, 2 ∨ ¬3 ∨ ¬4, 1 ∨ 4

=⇒
d
1 ∥ ¬1 ∨ ¬2, 2 ∨ 3, ¬1 ∨ ¬3 ∨ 4, 2 ∨ ¬3 ∨ ¬4, 1 ∨ 4 decide

=⇒
d
1 ¬2 ∥ ¬1 ∨ ¬2, 2 ∨ 3, ¬1 ∨ ¬3 ∨ 4, 2 ∨ ¬3 ∨ ¬4, 1 ∨ 4 unit propagate

=⇒
d
1 ¬2 3 ∥ ¬1 ∨ ¬2, 2 ∨ 3, ¬1 ∨ ¬3 ∨ 4, 2 ∨ ¬3 ∨ ¬4, 1 ∨ 4 unit propagate

=⇒
d
1 ¬2 3 4 ∥ ¬1 ∨ ¬2, 2 ∨ 3, ¬1 ∨ ¬3 ∨ 4, 2 ∨ ¬3 ∨ ¬4, 1 ∨ 4 unit propagate

=⇒ ¬1 ∥ ¬1 ∨ ¬2, 2 ∨ 3, ¬1 ∨ ¬3 ∨ 4, 2 ∨ ¬3 ∨ ¬4, 1 ∨ 4 backtrack

=⇒ ¬1 4 ∥ ¬1 ∨ ¬2, 2 ∨ 3, ¬1 ∨ ¬3 ∨ 4, 2 ∨ ¬3 ∨ ¬4, 1 ∨ 4 unit propagate

=⇒ ¬1 4 ¬
d
3 ∥ ¬1 ∨ ¬2, 2 ∨ 3, ¬1 ∨ ¬3 ∨ 4, 2 ∨ ¬3 ∨ ¬4, 1 ∨ 4 decide

=⇒ ¬1 4 ¬
d
3 2 ∥ ¬1 ∨ ¬2, 2 ∨ 3, ¬1 ∨ ¬3 ∨ 4, 2 ∨ ¬3 ∨ ¬4, 1 ∨ 4 unit propagate

SS 2024 Logic lecture 12 4. SAT Solving DPLL 17/36

Definition (Transition Rules)

▶ unit propagate M ∥ F, C ∨ ℓ =⇒ M ℓ ∥ F, C ∨ ℓ

if M ⊨ ¬C and ℓ is undefined in M unit clause

▶ pure literal M ∥ F =⇒ M ℓ ∥ F

if ℓ occurs in F and ℓc does not occur in F and ℓ is undefined in M

▶ decide M ∥ F =⇒ M
d
ℓ ∥ F

if ℓ or ℓc occurs in F and ℓ is undefined in M

▶ fail M ∥ F, C =⇒ fail-state

if M ⊨ ¬C and M contains no decision literals

▶ backtrack M
d
ℓ N ∥ F, C =⇒ M ℓc ∥ F, C

if M
d
ℓ N ⊨ ¬C and N contains no decision literals

SS 2024 Logic lecture 12 4. SAT Solving DPLL 18/36

Outline

1. Summary of Previous Lecture

2. CTL∗

3. Intermezzo

4. SAT Solving

DPLL Conflict Analysis

5. Sorting Networks

6. Further Reading

SS 2024 Logic lecture 12 4. SAT Solving Conflict Analysis 19/36

Example

φ = (¬1 ∨ 2) ∧ (¬3 ∨ 4) ∧ (¬5 ∨ ¬6) ∧ (6 ∨ ¬5 ∨ ¬2)

∥ ¬1 ∨ 2, ¬3 ∨ 4, ¬5 ∨ ¬6, 6 ∨ ¬5 ∨ ¬2

=⇒
d
1 ∥ ¬1 ∨ 2, ¬3 ∨ 4, ¬5 ∨ ¬6, 6 ∨ ¬5 ∨ ¬2 decide

=⇒
d
1 2 ∥ ¬1 ∨ 2, ¬3 ∨ 4, ¬5 ∨ ¬6, 6 ∨ ¬5 ∨ ¬2 unit propagate

=⇒
d
1 2

d
3 ∥ ¬1 ∨ 2, ¬3 ∨ 4, ¬5 ∨ ¬6, 6 ∨ ¬5 ∨ ¬2 decide

=⇒
d
1 2

d
3 4 ∥ ¬1 ∨ 2, ¬3 ∨ 4, ¬5 ∨ ¬6, 6 ∨ ¬5 ∨ ¬2 unit propagate

=⇒
d
1 2

d
3 4

d
5 ∥ ¬1 ∨ 2, ¬3 ∨ 4, ¬5 ∨ ¬6, 6 ∨ ¬5 ∨ ¬2 decide

=⇒
d
1 2

d
3 4

d
5 ¬6 ∥ ¬1 ∨ 2, ¬3 ∨ 4, ¬5 ∨ ¬6, 6 ∨ ¬5 ∨ ¬2 unit propagate

=⇒
d
1 2 ¬5 ∥ ¬1 ∨ 2, ¬3 ∨ 4, ¬5 ∨ ¬6, 6 ∨ ¬5 ∨ ¬2 backjump

conflict is due to
d
1 2 and

d
5 ¬6 hence ¬1 ∨ ¬5 can be inferred

SS 2024 Logic lecture 12 4. SAT Solving Conflict Analysis 20/36

Definitions

▶ backtrack M
d
ℓ N ∥ F, C =⇒ M ℓc ∥ F, C

if M
d
ℓ N ⊨ ¬C and N contains no decision literals

▶ backjump M
d
ℓ N ∥ F, C =⇒ M ℓ′ ∥ F, C

if M
d
ℓ N ⊨ ¬C and there exists clause C′ ∨ ℓ′ such that

▶ F, C ⊨ C′ ∨ ℓ′ backjump clause

▶ M ⊨ ¬C′

▶ ℓ′ is undefined in M

▶ ℓ′ or ℓ′c occurs in F or in M
d
ℓ N

Example (cont’d)

¬1 ∨ ¬5 and ¬2 ∨ ¬5 are backjump clauses with respect to
d
1 2

d
3 4

d
5 ¬6 ∥ φ

SS 2024 Logic lecture 12 4. SAT Solving Conflict Analysis 21/36

Definition

basic DPLL B consists of transition rules

▶ unit propagate M ∥ F, C ∨ ℓ =⇒ M ℓ ∥ F, C ∨ ℓ

if M ⊨ ¬C and ℓ is undefined in M

▶ decide M ∥ F =⇒ M
d
ℓ ∥ F

if ℓ or ℓc occurs in F and ℓ is undefined in M

▶ fail M ∥ F, C =⇒ fail-state

if M ⊨ ¬C and M contains no decision literals

▶ backjump M
d
ℓ N ∥ F, C =⇒ M ℓ′ ∥ F, C

if M
d
ℓ N ⊨ ¬C and there exists clause C′ ∨ ℓ′ such that

▶ F, C ⊨ C′ ∨ ℓ′ and M ⊨ ¬C′

▶ ℓ′ is undefined in M and ℓ′ or ℓ′c occurs in F or in M
d
ℓ N

SS 2024 Logic lecture 12 4. SAT Solving Conflict Analysis 22/36

Theorem

there are no infinite derivations ∥ F =⇒B S1 =⇒B S2 =⇒B · · ·

Proof

▶ for list of distinct literals M, |M| is length of M

▶ measure state M0

d
ℓ1 M1

d
ℓ2 M2 . . .

d
ℓk Mk ∥ F where M0, . . . ,Mk contain no decision literals

by tuple (|M0|, |M1|, . . . , |Mk|)

▶ compare tuples lexicographically using standard order on N

▶ every transition step strictly increases measure

▶ measure is bounded by (n+ 1) - tuple (n, . . . , n) where n is total number of atoms

SS 2024 Logic lecture 12 4. SAT Solving Conflict Analysis 23/36

Example

∥ φ = (¬1 ∨ 2) ∧ (¬3 ∨ 4) ∧ (¬5 ∨ ¬6) ∧ (6 ∨ ¬5 ∨ ¬2) (0)

=⇒
d
1 ∥ φ decide (0,0)

=⇒
d
1 2 ∥ φ unit propagate (0,1)

=⇒
d
1 2

d
3 ∥ φ decide (0,1,0)

=⇒
d
1 2

d
3 4 ∥ φ unit propagate (0,1,1)

=⇒
d
1 2

d
3 4

d
5 ∥ φ decide (0,1,1,0)

=⇒
d
1 2

d
3 4

d
5 ¬6 ∥ φ unit propagate (0,1,1,1)

=⇒
d
1 2 ¬5 ∥ φ backjump (0,2)

▶ decide (m0, . . . ,m i) <lex (m0, . . . ,m i,0)

▶ unit propagate (m0, . . . ,m i) <lex (m0, . . . ,m i + 1)

▶ backjump (m0, . . . ,m i) <lex (m0, . . . ,m j + 1) with j < i

SS 2024 Logic lecture 12 4. SAT Solving Conflict Analysis 24/36

Lemma

1 if ∥ F =⇒∗
B M ∥ F′ then

▶ F = F′

▶ M does not contain complementary literals

▶ M consists of distinct literals

2 if ∥ F =⇒∗
B M0

d
ℓ1 M1

d
ℓ2 M2 · · ·

d
ℓk Mk ∥ F with no decision literals in M0, . . . ,Mk

then F, ℓ1, . . . , ℓ i ⊨ M i for all 0 ⩽ i ⩽ k

SS 2024 Logic lecture 12 4. SAT Solving Conflict Analysis 25/36

Theorem

if ∥ F =⇒B S1 =⇒B · · · =⇒B Sn ≠⇒B then

1 Sn = fail-state if and only if F is unsatisfiable

2 Sn = M ∥ F′ only if F is satisfiable and M ⊨ F

Proof

1 (only if) ∥ F =⇒∗
B M ∥ F =⇒ fail fail-state

▶ M contains no decision literals and M ⊨ ¬C for some C in F

▶ F ⊨ C and F ⊨ M and thus F ⊨ ¬C and thus F is unsatisfiable

2 ∥ F =⇒∗
B M ∥ F′ ≠⇒B

▶ F = F′ and all literals in F are defined in M, otherwise decide is applicable

▶ F contains no clause such that M ⊨ ¬C, otherwise backjump or fail is applicable

▶ M ⊨ F and thus F is satisfiable

SS 2024 Logic lecture 12 4. SAT Solving Conflict Analysis 26/36

Lemma

backjump can simulate backtrack

Proof

▶ suppose ∥ F =⇒∗
B M

d
ℓ N ∥ F =⇒backtrack M ℓc ∥ F

▶ M
d
ℓ N ⊨ ¬C for some C in F and N contains no decision literals

▶ write M = M0

d
ℓ1 M1

d
ℓ2 M2 · · ·

d
ℓk Mk with all decision literals displayed

▶ ℓc1 ∨ · · · ∨ ℓck ∨ ℓc is backjump clause:

▶ F, ℓ1, . . . , ℓk, ℓ ⊨ ¬C =⇒ F, ℓ1, . . . , ℓk, ℓ is unsatisfiable =⇒ F ⊨ ℓc1 ∨ · · · ∨ ℓck ∨ ℓc

▶ M ⊨ ℓ1 ∧ · · · ∧ ℓk and ℓc is undefined in M

▶ M
d
ℓ N ∥ F =⇒backjump M ℓc ∥ F

SS 2024 Logic lecture 12 4. SAT Solving Conflict Analysis 27/36

Terminology

non-chronological backtracking or conflict-driven backtracking

Question

how to find good backjump clauses ?

Answer

use conflict graph (lecture 13)

SS 2024 Logic lecture 12 4. SAT Solving Conflict Analysis 28/36

Outline

1. Summary of Previous Lecture

2. CTL∗

3. Intermezzo

4. SAT Solving

5. Sorting Networks

6. Further Reading

SS 2024 Logic lecture 12 5. Sorting Networks 29/36

Sorting Network

input

4

2

5

4

2

5

5

2

4

output

5

4

2

4 > 2 4 ̸> 5 2 ̸> 4

Example

▶ size (= number of comparators): 15

▶ depth: 9

SS 2024 Logic lecture 12 5. Sorting Networks 30/36

a1

a2
...
an

b1

b2
...
bn

Definition

sorting network is comparator network that transforms any input sequence a = (a1, . . . , an)

of natural numbers into sorted output sequence b = (b1, . . . , bn):

b is permutation of a and b1 ⩽ · · · ⩽ bn

SS 2024 Logic lecture 12 5. Sorting Networks 31/36

Sorting Network ?

SS 2024 Logic lecture 12 5. Sorting Networks 32/36

Questions

1 how to check that comparator network is sorting network ?

2 how to find optimal (with respect to size or depth) sorting networks ?

Answers

1 testing all n! permutations of 1, . . . , n for network with n wires suffices

2 very difficult problem . . .

SS 2024 Logic lecture 12 5. Sorting Networks 33/36

Outline

1. Summary of Previous Lecture

2. CTL∗

3. Intermezzo

4. SAT Solving

5. Sorting Networks

6. Further Reading

SS 2024 Logic lecture 12 6. Further Reading 34/36

Huth and Ryan

▶ Section 3.5

DPLL

▶ Section 2 of Solving SAT and SAT Modulo Theories: From an Abstract

Davis – Putnam – Logemann – Loveland Procedure to DPLL(T)

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli

Journal of the ACM 53(6), pp. 937 – 977, 2006

doi: 10.1145/1217856.1217859

Sorting Networks

▶ Wikipedia [accessed December 14, 2022]

▶ Section 5.3.4 of The Art of Computer Programming

Donald Knuth

SS 2024 Logic lecture 12 6. Further Reading 35/36

https://www.cambridge.org/core/services/aop-cambridge-core/content/view/362A23C81428830F20C49894E9ED8949/9780511810275c3_p172-255_CBO.pdf/verification_by_model_checking.pdf#page=46
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1145/1217856.1217859
https://en.wikipedia.org/wiki/Sorting_network
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming

Important Concepts

▶ abstract DPLL

▶ basic DPLL

▶ backjump

▶ backtrack

▶ comparator network

▶ CTL∗

▶ decide

▶ depth

▶ fail-state

▶ path formula

▶ pure literal

▶ size

▶ sorting network

▶ state formula

▶ unit propagation

homework for June 13

evaluation SS 2024

SS 2024 Logic lecture 12 6. Further Reading 36/36

http://cl-informatik.uibk.ac.at/teaching/ss24/lics/exercises/12.pdf
http://cl-informatik.uibk.ac.at/teaching/ss24/lics/material/24S-703026.pdf

	lecture 12
	Summary of Previous Lecture
	Overview

	CTL*
	Syntax
	Semantics
	Comparison

	Intermezzo
	SAT Solving
	DPLL
	Conflict Analysis

	Sorting Networks
	Further Reading

