

SS 2024 lecture 12

Logic

Diana Gründlinger	Aart Middeldorp	Fabian Mitterwallner
Alexander Montag	Johannes Niederhauser	Daniel Rainer

Outline

- **1. Summary of Previous Lecture**
- 2. CTL*
- 3. Intermezzo
- 4. SAT Solving
- 5. Sorting Networks
- 6. Further Reading

universität SS 2024 Logic lecture 12

Definitions

- ▶ path $s_1 \rightarrow s_2 \rightarrow \cdots$ is fair with respect to set *C* of CTL formulas if for all $\psi \in C$ $s_i \models \psi$ for infinitely many *i*
- A_C (E_c) denotes A (E) restricted to paths that are fair with respect to C

Lemma

 $\mathsf{E}_{\mathsf{C}}[\varphi \,\mathsf{U}\,\psi] \equiv \mathsf{E}[\varphi \,\mathsf{U}\,(\psi \wedge \mathsf{E}_{\mathsf{C}}\mathsf{G}\,\top)]$

 $\mathsf{E}_{\mathsf{C}}\mathsf{X}\,\varphi \equiv \mathsf{E}\mathsf{X}(\varphi \wedge \mathsf{E}_{\mathsf{C}}\mathsf{G}\,\top)$

Theorem

universitat SS 2024 Logic lecture 12 1. Summary of Previous Lecture

Theorem

- \blacktriangleright {X, U}, {X, W} and {X, R} are adequate sets of temporal connectives for LTL
- ► {U, R}, {U, W}, {U, G}, {F, W} and {F, R} are adequate sets of temporal connectives for LTL fragment consisting of negation-normal forms without X

LTL Model Checking

$\mathcal{M}, \boldsymbol{s} \vDash \varphi$?

- construct labelled Büchi automaton $A_{\neg \varphi}$ for $\neg \varphi$
- ▶ combine $A_{\neg \varphi}$ and M into single automaton $A_{\neg \varphi} \times M$
- determine whether there exists accepting path π in ${\sf A}_{\neg\varphi}\times {\cal M}$ starting from s

Theorem

AМ

3/36

 $\mathcal{M}, s \nvDash \varphi \iff$ exists accepting path in $A_{\neg \varphi} \times \mathcal{M}$ starting from state corresponding to s

universität SS 2024 Logic lecture 12 1. Summary of Previous Lecture

Part I: Propositional Logic

algebraic normal forms, binary decision diagrams, conjunctive normal forms, DPLL, Horn formulas, natural deduction, Post's adequacy theorem, resolution, SAT, semantics, sorting networks, soundness and completeness, syntax, Tseitin's transformation

Part II: Predicate Logic

natural deduction, quantifier equivalences, resolution, semantics, Skolemization, syntax, undecidability, unification

Part III: Model Checking

Definition

adequacy, branching-time temporal logic, **CTL***, fairness, linear-time temporal logic, model checking algorithms, symbolic model checking

universität innsbruck	SS 2024	Logic	lecture 12	1. Summary of Previous Lecture	Overview

Outline

1. Summary of Previous Lecture

2. CTL*

A.M

- 3. Intermezzo
- 4. SAT Solving
- 5. Sorting Networks
- 6. Further Reading

universität SS 2024 Logic lecture 12 2. CTL*

_A_M_

CTL* formulas consist of • state formulas, which are evaluated in states: $\varphi ::= \bot | \top | p | (\neg \varphi) | (\varphi \land \varphi) | (\varphi \lor \varphi) | (\varphi \rightarrow \varphi) | A[\alpha] | E[\alpha]$ • path formulas, which are evaluated along paths:

 $\alpha ::= \varphi \mid (\neg \alpha) \mid (\alpha \land \alpha) \mid (\alpha \lor \alpha) \mid (\alpha \to \alpha) \mid (\mathsf{X} \alpha) \mid (\mathsf{F} \alpha) \mid (\mathsf{G} \alpha) \mid (\alpha \sqcup \alpha)$

Example	S			
	$A[(p \cup r) \lor (q \cup r)]$ $A[(p \lor q) \cup r]$	$A[Xp \lor XXp]$ $A[Xp] \lor A[XA[Xp]]$	E[G F <i>p</i>] E[G E[F <i>p</i>]]	
universitāt	SS 2024 Logic lecture 12 2. CTL*	Syntax		_A_M 7/36

Definition

satisfaction of CTL* state formula φ in state $s \in S$ of model $\mathcal{M} = (S, \rightarrow, L)$

$\mathcal{M}, \textit{s} eq \perp$		
$\mathcal{M}, \pmb{s} \vDash op$		
$\mathcal{M}, s \vDash p$	\iff	$p\in L(s)$
$\mathcal{M}, \boldsymbol{s} \vDash \neg \varphi$	\iff	$\mathcal{M}, s \nvDash arphi$
$\mathcal{M}, \pmb{s} \vDash \varphi \land \psi$	\iff	$\mathcal{M}, \pmb{s} \vDash \varphi$ and $\mathcal{M}, \pmb{s} \vDash \psi$
$\mathcal{M}, \pmb{s} \vDash \varphi \lor \psi$	\iff	$\mathcal{M}, \mathbf{s} \vDash \varphi$ or $\mathcal{M}, \mathbf{s} \vDash \psi$
$\mathcal{M}, \mathbf{s} \vDash \varphi ightarrow \psi$	\iff	$\mathcal{M}, \mathbf{s} \nvDash \varphi$ or $\mathcal{M}, \mathbf{s} \vDash \psi$
$\mathcal{M}, \boldsymbol{s} \vDash A[\alpha]$	\iff	$\forall \text{ paths } \pi = s \rightarrow s_2 \rightarrow \cdots \mathcal{M}, \pi \vDash \alpha$
$\mathcal{M}, \boldsymbol{s} \models E[\alpha]$	\iff	\exists path $\pi = s \rightarrow s_2 \rightarrow \cdots \mathcal{M}, \pi \models \alpha$

Definition

satisfaction of CTL* path formula α with respect to path $\pi = s_1 \rightarrow s_2 \rightarrow \cdots$ in $\mathcal{M} = (S, \rightarrow, L)$

$\mathcal{M},\pi \vDash \varphi$	\iff	$\mathcal{M}, \mathbf{s_1} \vDash \varphi$
$\mathcal{M},\pi \vDash \neg \alpha$	\iff	$\mathcal{M}, \pi \nvDash \alpha$
$\mathcal{M},\pi \vDash \alpha \land \beta$	\iff	$\mathcal{M},\pi \vDash \alpha \text{ and } \mathcal{M},\pi \vDash \beta$
$\mathcal{M},\pi \vDash \alpha \lor \beta$	\iff	$\mathcal{M},\pi \vDash \alpha \ \text{or} \ \mathcal{M},\pi \vDash \beta$
$\mathcal{M},\pi\vDash\alpha\to\beta$	\iff	$\mathcal{M}, \pi \nvDash \alpha \text{or} \mathcal{M}, \pi \vDash \beta$
$\mathcal{M},\pi\vDash\mathbf{X}\alpha$	\iff	$\mathcal{M}, \pi^2 \vDash \alpha$
$\mathcal{M},\pi \vDash \mathbf{F} \alpha$	\iff	$\exists i \ge 1 \ \mathcal{M}, \pi^i \vDash \alpha$
$\mathcal{M},\pi \vDash G\alpha$	\iff	$\forall i \ge 1 \ \mathcal{M}, \pi^i \vDash \alpha$
$\mathcal{M},\pi \vDash \alpha \mathrm{U} \beta$	\iff	$\exists i \ge 1 \ \mathcal{M}, \pi^{i} \vDash \beta \text{ and } \forall j < i \ \mathcal{M}, \pi^{j} \vDash \alpha$

Theorem

satisfaction of CTL* formulas in finite models is decidable

Definition

CTL* state (CTL, LTL) formulas φ and ψ are semantically equivalent if

$$\mathcal{M}, \boldsymbol{s} \vDash \varphi \quad \Longleftrightarrow \quad \mathcal{M}, \boldsymbol{s} \vDash \psi$$

for all models $\mathcal{M} = (S,
ightarrow, L)$ and states $s \in S$

Remarks

- LTL formula α is equivalent to CTL* formula A[α]
- ▶ CTL is fragment of CTL* in which path formulas are "restricted" to

$\alpha ::= \varphi \mid (\neg \alpha) \mid (\alpha \land \alpha) \mid (\alpha \lor \alpha) \mid (\alpha \to \alpha) \mid (\mathsf{X} \varphi) \mid (\mathsf{F} \varphi) \mid (\mathsf{G} \varphi) \mid (\varphi \mathsf{U} \varphi)$

universität SS 2024 Logic lecture 12 2. CTL* Comparison innsbruck

universität SS 2024 Logic lecture 12 2. CTL* Semantics innsbruck

```
____A.M___
9/36
```

Lemma

AG EF p is not expressible in LTL

Proof

- suppose AG EF $p \equiv A[\varphi]$ for LTL formula φ
- consider models

 \mathcal{M}_2 (0)

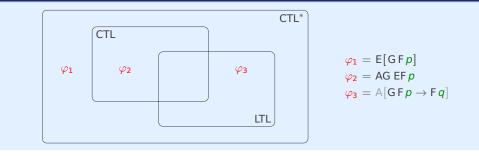
- ▶ $\mathcal{M}_1, 0 \vDash \mathsf{AG} \mathsf{EF} p$
- $\mathcal{M}_1, \mathbf{0} \models \mathbf{A}[\varphi]$
- ► $\mathcal{M}_2, 0 \nvDash AG EF p$
- $\mathcal{M}_2, 0 \models A[\varphi]$ because every path from 0 in \mathcal{M}_2 is also path in \mathcal{M}_1 4

A.M 11/36

Lemma

- A[G F $p \rightarrow$ F q] is not expressible in CTL
- E[GFp] is expressible neither in CTL nor LTL

Expressive Power



universitat SS 2024 Logic lecture 12 2. CTL* Comparison

A.M_ 12/36

_M_A

10/36

Outline

- **1. Summary of Previous Lecture**
- 2. CTL*

3. Intermezzo

- 4. SAT Solving
- 5. Sorting Networks
- 6. Further Reading

Question

Which of the following statements are true ?

- A set of LTL connectives which contains G cannot be adequate.
- **B** The CTL formulas $AG \neg p \rightarrow EFq$ and $EF(p \lor q)$ are equivalent.
- **C** The CTL formula $p \land AX AG p$ is equivalent to the LTL formula G p.
- **D** The CTL* formulas E[GE[Fp]] and E[GFp] are equivalent.

universität SS 2024 Logic lecture 12 3. Intermezzo

A.M_ 13/36

universität SS 2024 Logic lecture 12 3. Intermezzo

__A_M__ 14/36

Outline

- **1. Summary of Previous Lecture**
- $\textbf{2. CTL}^*$
- 3. Intermezzo

4. SAT Solving

DPLL Conflict Analysis

- 5. Sorting Networks
- 6. Further Reading

Remarks

- most state-of-the-art SAT solvers are based on variations of Davis-Putnam-Logemann-Loveland (DPLL) procedure (1960, 1962)
- abstract version of DPLL described in JACM paper of Nieuwenhuis, Oliveras, Tinelli (2006)

Definition (Abstract DPLL)

- states $M \parallel F$ consist of
 - ▶ list *M* of (possibly annotated) non-complementary literals
 - ► CNF F
- transition rules

 $M \parallel F \implies M' \parallel F'$ or fail-state (this lecture: F = F')

	Example			
c	$\varphi = (\neg 1 \lor$	/ ¬2) ∧ (2 ∨ 3	$3) \land (\neg 1 \lor \neg 3 \lor 4) \land (2 \lor \neg 3 \lor \neg 4) \land (1 \lor 4)$	
			$\ \neg 1 \lor \neg 2, \ 2 \lor 3, \ \neg 1 \lor \neg 3 \lor 4, \ 2 \lor \neg 3 \lor \neg 4, \ 1 \lor 4$	
	\implies		$\ \neg 1 \lor \neg 2, \ 2 \lor 3, \ \neg 1 \lor \neg 3 \lor 4, \ 2 \lor \neg 3 \lor \neg 4, \ 1 \lor 4$	decide
	\implies		$\ \neg 1 \lor \neg 2, \ 2 \lor 3, \ \neg 1 \lor \neg 3 \lor 4, \ 2 \lor \neg 3 \lor \neg 4, \ 1 \lor 4$	unit propagate
	\implies		$\ \neg 1 \lor \neg 2, \ 2 \lor 3, \ \neg 1 \lor \neg 3 \lor 4, \ 2 \lor \neg 3 \lor \neg 4, \ 1 \lor 4$	unit propagate
	\implies	^d ¬2 3 4	$\ \neg 1 \lor \neg 2, 2 \lor 3, \neg 1 \lor \neg 3 \lor 4, 2 \lor \neg 3 \lor \neg 4, 1 \lor 4$	unit propagate
	\implies	-1	$\ \neg 1 \lor \neg 2, \ 2 \lor 3, \ \neg 1 \lor \neg 3 \lor 4, \ 2 \lor \neg 3 \lor \neg 4, \ 1 \lor 4$	backtrack
	\implies		$\ \neg 1 \lor \neg 2, \ 2 \lor 3, \ \neg 1 \lor \neg 3 \lor 4, \ 2 \lor \neg 3 \lor \neg 4, \ 1 \lor 4$	unit propagate
	\implies		$\ \neg 1 \lor \neg 2, \ 2 \lor 3, \ \neg 1 \lor \neg 3 \lor 4, \ 2 \lor \neg 3 \lor \neg 4, \ 1 \lor 4$	decide
	\implies	$\neg 1 4 \neg 3 2$	$\ \neg 1 \lor \neg 2, 2 \lor 3, \neg 1 \lor \neg 3 \lor 4, 2 \lor \neg 3 \lor \neg 4, 1 \lor 4$	unit propagate

Definition (Transition Rules)

 unit propagate 	$M \parallel F, \mathbf{C} \lor \boldsymbol{\ell}$	\implies	$M \ell \parallel F, C \lor \ell$
if $M \models \neg C$ and ℓ is undefined in	M unit clau	ise	
► pure literal	M ∥ F	\implies	<i>M</i> ℓ <i>F</i>
if ℓ occurs in F and ℓ^c does not	occur in F and ℓ i	is und	efined in M
► decide	M ∥ F	\implies	$M \stackrel{d}{\ell} \parallel F$
if ℓ or ℓ^c occurs in F and ℓ is u	ndefined in M		
► fail	M ∥ F, C	\implies	fail-state
if $M \models \neg C$ and M contains no defined on the second se	ecision literals		
► backtrack	$M \stackrel{d}{\ell} N \parallel F, C$	\implies	<i>M</i> ℓ ^c <i>F</i> , <i>C</i>
if $M \stackrel{d}{\ell} N \vDash \neg C$ and N contains n	o decision literals		
 universität SS 2024 Logic lecture 12 4. SA innsbruck 	r Solving DPLL		

universität SS 2024 Logic lecture 12 4. SAT Solving DPLL Innsbruck

Outline

- **1. Summary of Previous Lecture**
- **2.** CTL*
- 3. Intermezzo

4. SAT Solving

DPLL Conflict Analysis

- 5. Sorting Networks
- 6. Further Reading

Example $\varphi = (\neg 1 \lor 2) \land (\neg 3 \lor 4) \land (\neg 5 \lor \neg 6) \land (6 \lor \neg 5 \lor \neg 2)$

	$\ \neg 1 \lor 2, \ \neg 3 \lor 4, \ \neg 5 \lor \neg 6, \ 6 \lor \neg 5 \lor \neg 2$	
\implies	$\stackrel{d}{1} \parallel \neg 1 \lor 2, \ \neg 3 \lor 4, \ \neg 5 \lor \neg 6, \ 6 \lor \neg 5 \lor \neg 2$	decide
\implies	$\stackrel{d}{1}2 \parallel \neg 1 \lor 2, \ \neg 3 \lor 4, \ \neg 5 \lor \neg 6, \ 6 \lor \neg 5 \lor \neg 2$	unit propagate
\implies	$\overset{d}{1} \overset{d}{2} \overset{d}{3} \parallel \neg 1 \lor 2, \ \neg 3 \lor 4, \ \neg 5 \lor \neg 6, \ 6 \lor \neg 5 \lor \neg 2$	decide
\implies	$ \stackrel{d}{1} 2 \stackrel{d}{3} 4 \parallel \neg 1 \lor 2, \ \neg 3 \lor 4, \ \neg 5 \lor \neg 6, \ 6 \lor \neg 5 \lor \neg 2 $	unit propagate
\implies	$ \stackrel{d}{1} 2 \stackrel{d}{3} 4 \stackrel{d}{5} \parallel \neg 1 \lor 2, \ \neg 3 \lor 4, \ \neg 5 \lor \neg 6, \ 6 \lor \neg 5 \lor \neg 2 $	decide
\implies	$ \stackrel{d}{1} 2 \stackrel{d}{3} 4 \stackrel{d}{5} \neg 6 \parallel \neg 1 \lor 2, \ \neg 3 \lor 4, \ \neg 5 \lor \neg 6, \ 6 \lor \neg 5 \lor \neg 2 $	unit propagate
\implies	$\stackrel{d}{1} 2 \neg 5 \parallel \neg 1 \lor 2, \ \neg 3 \lor 4, \ \neg 5 \lor \neg 6, \ 6 \lor \neg 5 \lor \neg 2$	backjump

conflict is due to $\stackrel{d}{1}2$ and $\stackrel{d}{5}\neg 6$ hence $\neg 1 \lor \neg 5$ can be inferred

M

17/36

AM_

18/36

Definitions

- ► backtrack $M \stackrel{a}{\ell} N \parallel F, C \implies M \ell^c \parallel F, C$ if $M \stackrel{a}{\ell} N \models \neg C$ and N contains no decision literals
- backjump

 $M \stackrel{d}{\ell} N \parallel F, C \implies M \ell' \parallel F, C$

backjump clause

- if $M \ \tilde{\ell} N \vDash \neg C$ and there exists clause $C' \lor \ell'$ such that
- ► $F, C \models C' \lor \ell'$
- $M \models \neg C'$
- ℓ' is undefined in *M*
- ► ℓ' or ℓ'^c occurs in *F* or in $M \, \ell \, N$

Example (cont'd)

 \neg 1 \lor \neg 5 and \neg 2 \lor \neg 5 are backjump clauses with respect to 12345 \neg 6 \parallel φ

universität SS 2024 Logic lecture 12 4. SAT Solving Conflict Analysis

Definition

A.M_

A.M_

23/36

21/36

basic DPLL \mathcal{B} consists of transition rules

- unit propagate M || F, C ∨ ℓ ⇒ M ℓ || F, C ∨ ℓ
 if M ⊨ ¬C and ℓ is undefined in M
 decide M || F ⇒ M ℓ || F
 if ℓ or ℓ^c occurs in F and ℓ is undefined in M
 fail M || F, C ⇒ fail-state
 if M ⊨ ¬C and M contains no decision literals
 backjump M ℓ N || F, C ⇒ M ℓ || F, C
 if M ℓ N ⊨ ¬C and there exists clause C' ∨ ℓ' such that
 F, C ⊨ C' ∨ ℓ' and M ⊨ ¬C'
 - ▶ ℓ' is undefined in *M* and ℓ' or ℓ'^c occurs in *F* or in $M \, \tilde{\ell} \, N$

universität SS 2024 Logic lecture 12 4. SAT Solving Conflict Analysis

A_M_ 22/36

Theorem

there are no infinite derivations $\parallel F \implies_{\mathcal{B}} S_1 \implies_{\mathcal{B}} S_2 \implies_{\mathcal{B}} \cdots$

Proof

- for list of distinct literals M, |M| is length of M
- measure state $M_0 \ell_1^d M_1 \ell_2^d M_2 \dots \ell_k^d M_k \parallel F$ where M_0, \dots, M_k contain no decision literals by tuple $(|M_0|, |M_1|, \dots, |M_k|)$
- \blacktriangleright compare tuples lexicographically using standard order on $\mathbb N$
- every transition step strictly increases measure
- measure is **bounded** by (n + 1)-tuple (n, ..., n) where n is total number of atoms

Example

$\vee \neg 5 \vee \neg 2)$ (0)	
arphi unit propagate (0,1)	
φ decide $(0,1,0)$	
arphi backjump (0,2)	
	φ decide $(0,0)$ φ unit propagate $(0,1)$ φ decide $(0,1,0)$ φ unit propagate $(0,1,1)$ φ decide $(0,1,1,0)$ φ unit propagate $(0,1,1,1)$

- decide $(m_0, ..., m_i) <_{\text{lex}} (m_0, ..., m_i, 0)$
- unit propagate $(m_0, \ldots, m_i) <_{\mathsf{lex}} (m_0, \ldots, m_i + 1)$
- ▶ backjump $(m_0, ..., m_i) <_{\mathsf{lex}} (m_0, ..., m_j + 1)$ with j < i

Lemma

- if $|| F \implies^*_{\mathcal{B}} M || F'$ then
 - ► *F* = *F*′
 - ▶ *M* does not contain complementary literals
 - M consists of distinct literals
- **2** if $|| F \implies_{\mathcal{B}}^* M_0 \ell_1^d M_1 \ell_2^d M_2 \cdots \ell_k^d M_k || F$ with no decision literals in M_0, \ldots, M_k then $F, \ell_1, \ldots, \ell_i \models M_i$ for all $0 \le i \le k$

Theorem

if $|| F \Longrightarrow_{\mathcal{B}} S_1 \Longrightarrow_{\mathcal{B}} \cdots \Longrightarrow_{\mathcal{B}} S_n \not\Longrightarrow_{\mathcal{B}}$ then **0** $S_n = \text{fail-state}$ if and only if F is unsatisfiable **2** $S_n = M || F'$ only if F is satisfiable and $M \models F$

Proof

- () (only if) $\| F \implies^*_{\mathcal{B}} M \| F \implies_{fail} fail-state$
 - ► M contains no decision literals and $M \models \neg C$ for some C in F
 - F \models C and F \models M and thus F $\models \neg$ C and thus F is unsatisfiable

 $(2 || F \Longrightarrow_{\mathcal{B}}^{*} M || F' \not\Longrightarrow_{\mathcal{B}}$

- F = F' and all literals in F are defined in M, otherwise decide is applicable
- ► F contains no clause such that $M \models \neg C$, otherwise backjump or fail is applicable
- $M \models F$ and thus F is satisfiable

universität SS 2024 Logic lecture 12 4. SAT Solving Conflict Analysis

universität SS 2024 Logic lecture 12 4. SAT Solving Conflict Analysis

Lemma

backjump can simulate backtrack

Proof

- ► suppose $|| F \implies^*_{\mathcal{B}} M \overset{d}{\ell} N || F \implies_{\text{backtrack}} M \ell^c || F$
- ► $M \stackrel{d}{\ell} N \models \neg C$ for some C in F and N contains no decision literals
- write $M = M_0 \ell_1^d M_1 \ell_2^d M_2 \cdots \ell_k^d M_k$ with all decision literals displayed
- $\ell_1^c \lor \cdots \lor \ell_k^c \lor \ell^c$ is backjump clause:
- $\bullet \ F, \ell_1, \dots, \ell_k, \ell \vDash \neg C \implies F, \ell_1, \dots, \ell_k, \ell \text{ is unsatisfiable } \implies F \vDash \ell_1^c \lor \dots \lor \ell_k^c \lor \ell^c$
- $M \models \ell_1 \land \cdots \land \ell_k$ and ℓ^c is undefined in M
- $\blacktriangleright M \stackrel{d}{\ell} N \parallel F \Longrightarrow_{\mathsf{backjump}} M \ell^c \parallel F$

AM_

Terminology

non-chronological backtracking or conflict-driven backtracking

Question

how to find good backjump clauses ?

Α	l	1	5	M	7	е	r	

use conflict graph (lecture 13)

A.M.

Outline

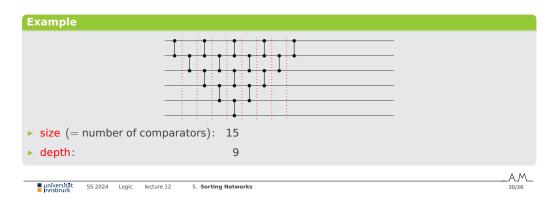
- **1. Summary of Previous Lecture**
- 2. CTL*
- 3. Intermezzo
- 4. SAT Solving

5. Sorting Networks

6. Further Reading

Sorting Network

Sorting Network ?



universität	SS 2024	Logic	lecture 12	5. Sorting Networks
Innsbruck		5		

Definition

sorting network is comparator network that transforms any input sequence $a = (a_1, ..., a_n)$ of natural numbers into sorted output sequence $b = (b_1, ..., b_n)$:

b is permutation of a and $b_1 \leqslant \cdots \leqslant b_n$

universität SS 2024 Logic lecture 12 5. Sorting Networks

_A_M_ 29/36

Questions

Answers

universität

- 1 how to check that comparator network is sorting network ?
- (2) how to find optimal (with respect to size or depth) sorting networks ?

① testing all n! permutations of $1, \ldots, n$ for network with n wires suffices

5. Sorting Networks

Outline

- **1. Summary of Previous Lecture**
- 2. CTL*
- 3. Intermezzo
- 4. SAT Solving
- 5. Sorting Networks
- 6. Further Reading

SS 2024 Logic lecture 12

② very difficult problem ...

____A.M__ 33/36

A.M_

35/36

universität SS 2024 Logic lecture 12 6. Further Reading

_A_M__

Huth and Ryan

Section 3.5

DPLL

 Section 2 of Solving SAT and SAT Modulo Theories: From an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T) Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli Journal of the ACM 53(6), pp. 937–977, 2006 doi: 10.1145/1217856.1217859

Sorting Networks

Wikipedia

- [accessed December 14, 2022]
- Section 5.3.4 of The Art of Computer Programming Donald Knuth

Important Concepts		
abstract DPLL	► CTL*	pure literal
basic DPLL	► decide	► size
backjump	depth	sorting network
backtrack	► fail-state	 state formula
 comparator network 	 path formula 	 unit propagation

homework for June 13

evaluation SS 2024