Lastname: \qquad
Firstname: \qquad
Matriculation Number:

Exercise	Points	Score
Single Choice	12	
Well-Definedness of Functional Programs	34	
Verification of Functional Programs	30	
Verification of Imperative Programs	24	
\sum	100	

- You have 100 minutes to solve this exam, so 1 point $=1$ minute.
- The available points per exercise are written in the margin.
- Write on the printed exam and use extra blank sheets if more space is required.
- Your answers can be written in English or German.

Exercise 1: Single Choice

For each statement indicate whether it is true $(\boldsymbol{\checkmark})$ or false (\boldsymbol{x}). Giving the correct answer is worth 3 points, giving no answer counts 1 point, and giving the wrong answer counts 0 points (for that statement).

1. Well-definedness of functional programs is undecidable.
2. \qquad A calculus \vdash is complete w.r.t. some semantic property \models if and only if it is satisfied, that for all formulas φ, whenever $\vdash \varphi$ then $\models \varphi$.
3. \qquad Consider a functional program and let P be a set of dependency pairs, all having the shape $f^{\sharp}(\ldots) \rightarrow f^{\sharp}(\ldots)$. Whenever the set of usable equations of P is non-empty, then the subterm-criterion cannot be applied on P, i.e., it will not be possible to delete any pair of P.
4. \qquad The algorithm for pattern disjointness invokes the unification algorithm.

Exercise 2: Well-Definedness of Functional Programs
Consider the following functional program that implements quick-sort.

$$
\begin{align*}
& \text { data Nat = Zero: Nat } \\
& \text { | Succ: Nat } \rightarrow \text { Nat } \\
& \text { data List }=\text { Nil : List } \\
& \text { | Cons: Nat } \times \text { List } \rightarrow \text { List } \\
& \operatorname{append}(\text { Nil }, x s)=x s \\
& \operatorname{append}(\operatorname{Cons}(x, x s), y s)=\operatorname{Cons}(x, \operatorname{append}(x s, y s)) \\
& \text { le }(\text { Zero, } y)=\text { True } \\
& \text { le }(\operatorname{Succ}(x), \text { Zero })=\text { False } \\
& \operatorname{le}(\operatorname{Succ}(x), \operatorname{Succ}(y))=\operatorname{le}(x, y) \\
& \text { first }(\operatorname{Pair}(x s, y s))=x s \\
& \operatorname{second}(\operatorname{Pair}(x s, y s))=y s \\
& \text { add_pair }(y, \operatorname{True}, \operatorname{Pair}(l s, h s))=\operatorname{Pair}(\operatorname{Cons}(y, l s), h s) \\
& \operatorname{add} \text { _pair }(y, \text { False, } \operatorname{Pair}(l s, h s))=\operatorname{Pair}(l s, \operatorname{Cons}(y, h s)) \\
& \operatorname{partition}(x, \text { Nil })=\operatorname{Pair}(\text { Nil, Nil }) \\
& \operatorname{partition}(x, \operatorname{Cons}(y, y s))=\operatorname{add} \operatorname{pair}(y, \operatorname{le}(y, x), \operatorname{partition}(x, y s)) \\
& \text { q_sort(Nil) }=\text { Nil } \\
& \text { q_sort } \left.(\operatorname{Cons}(x, x s))=\operatorname{append}\left(\text { q_sort }^{\operatorname{sirst}}(\operatorname{partition}(x, x s))\right), \operatorname{Cons}(x, \text { q_sort }(\operatorname{second}(\operatorname{partition}(x, x s))))\right) \tag{17}
\end{align*}
$$

(a) Complete missing type informations in the program:

- Add missing data type definitions via data.
- Provide a suitable type for each of the functions first, add_pair, partition, and q_sort.

The result should be a well-defined functional program - assuming suitable types for the other functions le, append, second in the program.
(b) Compute all dependency pairs of add_pair, partition and q_sort. Indicate which of these pairs can be removed by the subterm-criterion.
(c) Compute the set of usable equations w.r.t. the dependency pairs of q_sort ${ }^{\sharp}$. It suffices to mention the indices of the equations.
(d) Prove termination of q_sort by completing the following polynomial interpretation p.

$$
\begin{aligned}
p_{\mathrm{q} _ \text {sort }}(x s) & =x s \\
p_{\text {Cons }}(x, x s) & =1+x s \\
p_{\text {Nil }} & =0
\end{aligned}
$$

Hints:

- You only need numbers 0 and 1 in the polynomial interpretation.
- Use intuition and don't try to compute the constraints symbolically.
- It makes sense to start filling in suitable interpretations by looking at the constraints of the dependency pairs for q_sort ${ }^{\sharp}$ first, and then look at the constraints of the usable equations from the previous part.

Exercise 3: Verification of Functional Programs
Consider the following functional program on natural numbers and Booleans.

$$
\begin{aligned}
\operatorname{plus}(\text { Zero }, y) & =y \\
\operatorname{plus}(\operatorname{Succ}(x), y) & =\operatorname{plus}(x, \operatorname{Succ}(y)) \\
\operatorname{even}(Z e r o) & =\text { True } \\
\operatorname{even}(\operatorname{Succ}(\operatorname{Zero})) & =\text { False } \\
\operatorname{even}(\operatorname{Succ}(\operatorname{Succ}(x))) & =\operatorname{even}(x)
\end{aligned}
$$

Prove that the formula

$$
\forall x . \text { even }(\operatorname{plus}(x, x))=\text { Bool } \text { True }
$$

is a theorem in the standard model by using induction and equational reasoning via \rightsquigarrow.

- Briefly state on which variable(s) you perform induction, and which induction scheme you are using.
- Write down each case explicitly and also write down the IH that you get, including quantifiers.
- Write down each single \rightsquigarrow-step in your proof.
- You will need at least one further auxiliary property. Write down this property and prove it in the same way in that you have to prove the main property.
- You may write just b instead of $b=$ Bool True within your proofs. For example, the property you have to prove can be written just as $\forall x$. even(plus $(x, x))$.

Exercise 4: Verification of Imperative Programs
Consider the following program P where at the end x will store the logarithm of z w.r.t. basis b.

```
x := 0;
y := 1;
while (y < z) {
    x := x + 1;
    y := y * b;
}
```

(a) Construct a proof tableau for proving partial correctness. Here, we only consider that an upper-bound of the logarithm is computed: $b^{x} \geq z$.
($|\mathrm{b}>0|$)
$\mathrm{x}=0$;
$y=1 ;$
\qquad
while ($\mathrm{y}<\mathrm{z}$) \{
\qquad
\qquad
$\mathrm{x}:=\mathrm{x}+1$;
\qquad
$\mathrm{y}:=\mathrm{y} * \mathrm{~b}$;
\qquad
\}
\qquad
$\left(\left|b^{\wedge} x>=z\right|\right)$
(b) The program terminates whenever $b>1$ and a suitable variant e to prove termination is $\max (z-y, 0)$. Complete the proof tableau below to prove termination formally. Hint: In order to prove that the variant decreases in every loop iteration, you will have to find an invariant on b and y such that $y<y \cdot b$.
(| b > 1 |)
$\mathrm{x}=0$;
\qquad
$\mathrm{y}=1$;
\qquad
while (y < z) \{
\qquad
\qquad
$\mathrm{x}:=\mathrm{x}+1$;
y : = y * b;
\qquad
\}

