
Program Verification SS 2024 LVA 703083+703084

Sheet 3 Deadline: April 9, 2024, 3pm

• Prepare your solutions on paper.

• Mark the exercises in OLAT before the deadline. Upload your Haskell code in OLAT.

• Marking an exercise means that a significant part of that exercise has been treated.

Exercise 1 Data Type Definitions 7 p.

Consider slides 3/4 and 3/6.

1. Consider the following sequence of datatypes that define rose trees, i.e., trees where each node may have
arbitrarily many children. (3 points)

data Nat = Zero : Nat | Succ : Nat → Nat

data Tree = Node : Nat× Tree List → Tree

data Tree List = Nil : Tree List | Cons : Tree× Tree List → Tree List

• Describe the universes of trees and tree-lists as inductive sets.

• Are all universes non-empty? For each non-empty universe provide an element that is in the universe.

• Why is the definition not allowed wrt. slide 3/4?

2. Adjust the handling of datatype definitions on slides 4 and 6, such that the above definition of rose trees is
permitted. This might involve several modifications. Also formulate an alternative property that ensures
non-empty universes. This property can be formulated via a mathematical description or via an algorithm.
(You do not have to prove that the formulated property or algorithm is correct.) (4 points)

Exercise 2 Functional Programming 7 p.

Consider slides 3/14 – 3/20.

1. Specify an algorithm for subtraction of two natural numbers within the functional programming language
defined in the slides and evaluate “3−2” and “2−3” step-by-step on paper. (You do not have to explicitly
compute or mention matching substitutions!) (2 points)

2. Specify an algorithm for the division of two natural numbers within the functional programming language
defined in the slides. Evaluate “2/2” step-by-step on paper. How does your algorithm handle division-by-
zero? How does your algorithm handle non-exact division, e.g., dividing 1 by 2. (2 points)

3. Function definitions on slide 3/15 are quite restricted, e.g., no mutual recursion, no if-then-else, no built-in
integers, etc. (3 points)

• Try to modify the definition of function definitions on slide 3/15 in a way that allows mutual recursion.

• Ensure that the even-odd definitions on slide 3/17 are accepted.

• Are there any adjustments of the operational semantics on slide slide 3/22 required? If so, which
ones?

http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/03x1.pdf#page=4
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/03x1.pdf#page=6
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/03x1.pdf#page=4
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/03x1.pdf#page=14
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/03x1.pdf#page=20
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/03x1.pdf#page=15
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/03x1.pdf#page=15
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/03x1.pdf#page=17
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/03x1.pdf#page=22


Exercise 3 Matching Algorithm 6 p.

The matching algorithm has been proven correct in the lecture. However, the algorithm itself is only given
abstractly.

1. Implement the matching algorithm in Haskell. A template-file is given. (3 points)

2. Implement an algorithm in Haskell which evaluates a term t one step, i.e., either some term s such that
t ↪→ s should be returned, or it should be indicated that there is no such term. A template-file is given.
(3 points)


