M universitat
iInnsbruck

Program Verification SS 2024 LVA 7030834703084

Sheet 4 Deadline: April 16, 2024, 3pm

Prepare your solutions on paper.
Mark the exercises in OLAT before the deadline.
Upload your Haskell solution in OLAT.

Marking an exercise means that a significant part of that exercise has been treated.

Exercise 1 Pattern Disjointness 11 p.

Consider the definition of pattern disjointness on slide 3/39. Testing whether a program is pattern disjoint is
not directly possible based on this definition, since it involves a quantification over infinitely many terms. In
this exercise, the aim is to develop an algorithm to decide whether a program is pattern disjoint, based on
unification.

Unification of two terms s and ¢ is the question whether there exists a substitution o such that so = to and
deliver such a substitution in case it exists. So in contrast to matching, here the substitution is applied on both
terms.

A concrete unification algorithm is due to Martelli and Montanari, cf. https://en.wikipedia.org/wiki/
Unification_(computer_science)#Unification_algorithms, and its structure is quite similar to the match-
ing algorithm.

1.

Task: have a look at this algorithm and apply it step-by-step on s := append(Cons(x, zs), ys) and ¢ :=
append(xs, Nil). (2 points)

. Consider the following algorithm to decide pattern disjointness of a program:

check for each pair of distinct equations ¢; = ry and ¢35 = ro that £; and £5 do not unify.

Argue that this algorithm is not correct with the help of the following functional program (datatype
definitions omitted). Here, you don’t have to perform the unification algorithm step-by-step.

append(Cons(z, zs), ys) = Cons(z, append(zs, ys)) (1)

append(Nil, Cons(y, ys)) = Cons(y, ys) (2)

append(zs, Nil) = zs (3)

(3 points)

Identify the problem and slightly adjust the previous algorithm so that it indeed decides pattern disjoint-
ness. (3 points)
Prove soundness of your algorithm. (3 points)

Prove completeness of your algorithm. This is a bonus exercise which is worth additional 4 points.


http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/03x1.pdf#page=39
https://en.wikipedia.org/wiki/Unification_(computer_science)#Unification_algorithms
https://en.wikipedia.org/wiki/Unification_(computer_science)#Unification_algorithms

Exercise 2 Processing Function Definitions 9 p.

Slide 4/21 contains a Haskell function to process data definitions. The task of this exercise is to implement a
similar function for checking and processing function definitions w.r.t. slide 3/15.

1. Implement a Haskell function linear :: Term -> Bool which decides whether a term is linear or not, cf.
slide 3/14. (2 points)
2. Implement a Haskell function
checkEquation ::
SiglList -> -- defined symbols, including f
SigList -> -- constructors
FSym -> - f
FSymInfo -> -— type of £
(Term, Term) -> -- equation (1,r)
Check ()

that checks whether a single equation satisfies the conditions that are mentioned on slide 3/15. Of course,
you should use the provided functions for type-checking, type-inference, etc., as much as possible. (4 points)

3. Implement the Haskell function processFunctionDefinition mentioned on Slide 4/23. (3 points)

Once you have completed your implementation, you can test it via test, which processes some example program,
which should be accepted.

By manually inserting errors into the example program, you can run test again, to see whether these errors are
detected by your implementation.


http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/04x1.pdf#page=21
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/03x1.pdf#page=15
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/03x1.pdf#page=14
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/03x1.pdf#page=15
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/04x1.pdf#page=23

