
Program Verification SS 2024 LVA 703083+703084

Sheet 5 Deadline: April 23, 2024, 3pm

• Prepare your solutions on paper.

• Mark the exercises in OLAT before the deadline.

• Upload your Haskell files in OLAT.

• Marking an exercise means that a significant part of that exercise has been treated.

Exercise 1 Correctness of Implementation of Unification 6 p.

Study the proof given on slides 4/36–37.

1. Perform the proof of case 3, i.e., where the arguments are (f(ts), x) : u and v. (2 points)

2. In case 4 with arguments (x, t) : u and v the algorithm deviates from the abstract algorithm in the following
sense: the abstract algorithm only applies (eliminate) if x occurs in U , but such a condition is not tested
in the implementation.

Prove that this difference does not cause a problem, i.e., prove P ((x, t) : u, v, U) where x ̸= t, x /∈ Vars(t)
and x does not occur in set u ∪ set v, where of course you may assume an IH for the recursive invocation
of unifyMain. (4 points)

Exercise 2 Pattern Completeness 14 p.

Consider the algorithm for pattern completeness on slide 4/44.

1. The output of the algorithm is just a Boolean, i.e., the result is either ⊥ (not pattern complete) or ∅
(pattern complete).

Note that the fully expanded semantics of completeness of a set of pattern problems P is as follows:

P is complete iff ∀pp ∈ P. ∀σ : V → T (C). ∃mp ∈ pp. ∃γ. ∀(t, ℓ) ∈ mp. tσ = ℓγ︸ ︷︷ ︸
=:φ(pp,σ)

Hence, if P is not pattern complete there must be some witness pattern problem pp ∈ P and witness
substitution σ : V → T (C) such that φ(pp, σ) is not satisfied.

• Modify the algorithm for pattern completeness in a way that witnesses can be obtained instead of
just returning ⊥ for incomplete P .

• Illustrate the modified algorithm on the example input on slide 4/46.

• You do NOT have to prove correctness of the modified algorithm.

Hint: only ⇀⇀⇀ needs to be modified, ⇀⇀ does not need to be altered.

(7 points)

2. Design an implementation of the pattern completeness algorithm in Haskell, and, optionally, try to define
a refinement relation and a partial correctness statement.

Hint: it might be useful to design several sub-algorithms, working on matching problems, pattern problems
and lists of pattern problems. Note that for the optional task, each sub-algorithm can have its own
refinement relation and partial correctness statement. (7 points)

http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/04x1.pdf#page=36
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/04x1.pdf#page=44
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/04x1.pdf#page=46

