

Summer Term 2024

Program Verification

Part 1 – Introduction

René Thiemann

Department of Computer Science

Organization

Lecture (VO 3)

- LV-Number: 703083
- lecturer: René Thiemann consultation hours: Tuesday 10:15–11:15 ICT-building, 2nd floor, 3M09
- time: Wednesday, 8:15-10:45, with breaks in between
- place: HS 10
- course website: http://cl-informatik.uibk.ac.at/teaching/ss24/pv/
- slides are available online and contain links
- online registration required before June 30
- lecture will be in German

15 22

29

5

12

19

Schedule

lecture 1	March	6	lecture 8	May
lecture 2	March	13	lecture 9	May
lecture 3	March	20	lecture 10	May
lecture 4	April	10	lecture 11	June
lecture 5	April	17	lecture 12	June
lecture 6	April	24	lecture 13	June
lecture 7	May	8		

1st exam June 26

Proseminar (PS 2)

- LV-Number: 703084
- time and place: Wednesday, 12:00-13:30 in HS 11
- online registration was required before February 21
- late registration directly after this lecture by contacting me
- exercises available online on Thursday evening at the latest
- solved exercises must be marked in OLAT (deadline: Tuesday 3pm)
- solutions will be discussed in proseminar groups
- first exercise sheet: today
- proseminar starts on March 13
- attendance is mandatory (2 absences tolerated without giving reasons)
- exercise sheets will be in English, solutions can be in either English or German

Weekly Schedule

- Wednesday 8:15–10:45: lecture n on topic n
- Wednesday 12:00–13:30: proseminar on exercise sheet n-1
- Thursday evening: exercise sheet n is available
- Tuesday 3pm: deadline for marking solved exercises of sheet n in OLAT
- Wednesday 8:15–10:45: lecture n + 1 on topic n + 1
- Wednesday 12:00–13:30: proseminar on exercise sheet n

•

Grading

- separate grades for lecture and proseminar
- lecture
 - written exam (closed book)
 - 1st exam on June 26, 2024
 - online registration required
 - opening 5 weeks before exam
 - closing 1 week before exam
 - deregister until two days before exam
 - 2nd and 3rd exam in September and February (on demand)
- proseminar
 - 80 %: scores from weekly exercises
 - 20 %: presentation of solutions

Literature

slides

- no other topics will appear in exam ...
- ... but topics need to be understood thoroughly
 - read and write specifications and proofs
 - apply presented techniques on new examples
 - not only knowledge reproduction
- Nipkow and Klein: Concrete Semantics with Isabelle/HOL. Springer.
- Huth and Ryan: Logic in Computer Science, Modelling and Reasoning about Systems. Second Edition. Cambridge.
- Robinson and Voronkov: Handbook of Automated Reasoning, Volume I. MIT Press.

Motivation

What is Program Verification?

- program verification
 - method to prove that a program meets its specification
 - does not execute a program
 - incomplete proof: might reveal bug, or just wrong proof structure
 - verification often uses simplified model of the actual program
 - requires human interaction
- testing
 - executes program to detect bugs, i.e., violation of specification
 - cannot prove that a program meets its specification
 - similar to checking 1 000 000 possible assignments of propositional formula with 100 variables, to be convinced that formula is valid (for all 2^{100} assignments)
- program analysis
 - automatic method to detect simple propositions about programs
 - does not execute a program
 - examples: type correctness, detection of dead-code, uninitialized variables
 - often used for warnings in IDEs and for optimizing compilers
- program verification, testing and program analysis are complementary

Verification vs Validation

- verification: prove that a program meets its specification
 - requires a formal model of the program
 - requires a formal model of the specification
- validation: check whether the (formal) specification is what we want
 - turning an informal (textual) specification into a formal one is complex
 - already writing the formal specification can reveal mistakes, e.g., inconsistencies in an informal textual specification

Example: Sorting Algorithm

- objective: formulate that a function is a sorting algorithm on arrays
- specification via predicate logic:

$$\begin{aligned} & sorting_alg(f) \longleftrightarrow \forall xs \ ys : [int]. \\ & f(xs) = ys \longrightarrow \\ & \forall i. \ 0 < i \longrightarrow i < length(ys) \longrightarrow ys[i-1] \leq ys[i]. \end{aligned}$$

- specification is not precise enough, think of the following algorithms
 - algorithm which always returns the empty array consequence: add length(xs) = length(ys) to specification
 - the algorithm which overwrites each array element with value 0 consequence: need to specify that *xs* and *ys* contain same elements

Necessity of Verification – Software

- buggy programs can be costly: crash of Ariane 5 rocket (\sim 370 000 000 \$)
 - parts of 32-bit control system was reused from successful Ariane 4
 - Ariane 5 is more powerful, so has higher acceleration and velocity
 - overflow in 32-bit integer arithmetic
 - control system out of control when handling negative velocity
- buggy programs can be fatal:
 - faulty software in radiation therapy device led to 100x overdosis and at least 3 deaths
 - system error caused Chinook helicopter crash and killed all 29 passengers
- further problems caused by software bugs

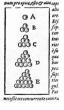
https://raygun.com/blog/costly-software-errors-history/

Necessity of Verification – Mathematics

- programs are used to prove mathematical theorems:
 - 4-color-theorem: every planar graph is 4-colorable
 - proof is based on set of 1834 configurations
 - the set of configurations is unavoidable

(every minimal counterexample belongs to one configuration in the set)

- the set of configurations is reducible (none of the configurations is minimal)
- original proof contained the set on 400 pages of microfilm
- reducibility of the set was checked by program in over 1000 hours
- no chance for inspection solely by humans, instead verify program
- Kepler conjecture
 - statement: optimal density of stacking spheres is $\pi/\sqrt{18}$
 - proof by Hales works as follows
 - identify 5000 configurations
 - if these 5000 configurations cannot be packed with a higher density than $\pi/\sqrt{18},$ then Kepler conjecture holds
 - prove that this is the case by solving $\sim 100\,000$ linear programming problems
 - submitted proof: 250 pages + 3 GB of computer programs and data
 - referees: 99 % certain of correctness



Successes in Program Verification

- mathematics:
 - 4-color-theorem
 - Kepler conjecture

both the constructed set of configurations as well as the properties of these sets have been guaranteed by executing verified programs

• software:

- CompCert: verified optimizing C-compiler
- seL4: verified microkernel, free of implementation bugs such as
 - deadlocks
 - buffer overflows
 - arithmetic exceptions
 - use of uninitialized variables

Program Verification Tools

- doing large proofs (correctness of large programs) requires tool support
- proof assistants help to perform these proofs
- proof assistants are designed so that only small part has to be trusted
- examples
 - academic: Isabelle/HOL, ACL2, Coq, HOL Light, Why3, Key,...
 - industrial: Lean (Microsoft), Dafny (Microsoft), PVS (SRI International, NASA), ...
 - generic tools: Isabelle/HOL (seL4, Kepler), Coq (CompCert, 4-Color-Theorem), ...
 - specific tools: Key (verification of Java programs), Dafny, ...
- master courses on Interactive theorem proving: include more challenging examples and tool usage
- this course: focus on program verification on paper
 - learn underlying concepts
 - freedom of mathematical reasoning ...
 - ... without challenge of doing proofs exactly in format of particular tool

(1)

(2)

Example Proof

• program (defined over lists via constructors Nil and Cons)

append(Nil, ys) = ysappend(Cons(x, xs), ys) = Cons(x, append(xs, ys))

• property: associativity of append:

append(append(xs, ys), zs) = append(xs, append(ys, zs))

- proof via equational reasoning by structural induction on xs
 - base case: xs = Nil

append(append(Nil, ys), zs)(1)

 $= \operatorname{append}(ys, zs) \tag{1}$

 $= \operatorname{append}(\operatorname{Nil}, \operatorname{append}(ys, zs))$

(IH)

Example Proof Continued

program

append(Nil,
$$ys$$
) = ys (1)append(Cons $(x, xs), ys$) = Cons $(x, append(xs, ys))$ (2)

- property: append(append(xs, ys), zs) = append(xs, append(ys, zs))
- proof by structural induction on xs
 - step case: xs = Cons(u, us) induction hypothesis: append(append(us, ys), zs) = append(us, append(ys, zs))

$$append(append(Cons(u, us), ys), zs)$$
 (2)

$$= \operatorname{append}(\operatorname{Cons}(u, \operatorname{append}(us, ys)), zs)$$
(2)

$$= \mathsf{Cons}(u, \mathsf{append}(\mathsf{append}(us, ys), zs)) \tag{IH}$$

$$= \mathsf{Cons}(u, \mathsf{append}(us, \mathsf{append}(ys, zs))) \tag{2}$$

$$= \operatorname{append}(\operatorname{Cons}(u, us), \operatorname{append}(ys, zs))$$

Questions

- what is equational reasoning?
- what is structural induction?
- why was that a valid proof?
- how to find such a proof?
- these questions will be answered in this course, but they are not trivial

Equational Reasoning

- idea: extract equations from functional program and use them to derive new equalities
- problems can arise:
 - program

$$\mathbf{f}(x) = 1 + \mathbf{f}(x) \tag{1}$$

- property: 0 = 1
- proof:

$$0 (arith)$$

= f(x) - f(x) (1)
= (1 + f(x)) - f(x) (arith)
= 1

- observation: blindly converting functional programs into equations is unsound!
- solution requires precise semantics of functional programs

Another Example Proof

- property: algorithm computes the factorial function
- proof using Hoare logic and loop-invariants

$$\langle n \ge 0
angle$$

f := 1;
x := 0;
 $\langle f = x! \land x \le n
angle$ while (x < n) {
x := x + 1;
f := f * x;
}
 $\langle f = n!
angle$

- questions
 - what statement is actually proven?
 - do you trust this proof? what must be checked?
- tool support?

Hoare Style Proofs

• problematic proof:

- questions
 - did we prove that True implies False?
 - no, since execution never leaves the while-loop

Soundness = Partial Correctness + Termination

- in both problematic examples the problem was caused by non-terminating programs
- there are several proof-methods that only show partial correctness: if the program terminates, then the specified property is satisfied
- for full correctness (soundness), we additionally require a termination proof

Content of Course

- logic for program specifications
- semantics of functional programs
- termination proofs for functional programs
- partial correctness of functional programs
- semantics of imperative programs
- termination proofs for imperative programs
- partial correctness of imperative programs