

Summer Term 2024

Program Verification

Part 1 – Introduction

René Thiemann

Department of Computer Science

Organization Lecture (VO 3) Schedule • LV-Number: 703083 lecture 1 March 6 lecture 8 May 15 lecturer: René Thiemann lecture 2 March 13 lecture 9 May 22 consultation hours: Tuesday 10:15-11:15 lecture 3 March 20 lecture 10 May 29 ICT-building, 2nd floor, 3M09 June 5 lecture 4 April 10 lecture 11 • time: Wednesday, 8:15–10:45, with breaks in between April lecture 5 17 lecture 12 June 12 • place: HS 10 lecture 6 24 lecture 13 June 19 April • course website: http://cl-informatik.uibk.ac.at/teaching/ss24/pv/ lecture 7 May 8 slides are available online and contain links 1st exam June 26 • online registration required before June 30

Organization

• lecture will be in German

Organization

Proseminar (PS 2)

- LV-Number: 703084
- time and place: Wednesday, 12:00-13:30 in HS 11
- online registration was required before February 21
- late registration directly after this lecture by contacting me
- exercises available online on Thursday evening at the latest
- solved exercises must be marked in OLAT (deadline: Tuesday 3pm)
- solutions will be discussed in proseminar groups
- first exercise sheet: today

RT (DCS @ UIBK)

- proseminar starts on March 13
- attendance is mandatory (2 absences tolerated without giving reasons)
- exercise sheets will be in English, solutions can be in either English or German

Part 1 – Introduction

Organization Literature Grading separate grades for lecture and proseminar slides lecture • no other topics will appear in exam ... written exam (closed book) • ... but topics need to be understood thoroughly • 1st exam on June 26. 2024 • read and write specifications and proofs online registration required • apply presented techniques on new examples opening 5 weeks before exam not only knowledge reproduction closing 1 week before exam deregister until two days before exam Nipkow and Klein: Concrete Semantics with Isabelle/HOL. Springer.

- 2nd and 3rd exam in September and February (on demand)
- proseminar
 - 80 %: scores from weekly exercises
 - 20 %: presentation of solutions

Weekly Schedule

- Wednesday 8:15–10:45: lecture n on topic n
- Wednesday 12:00–13:30: proseminar on exercise sheet n-1
- Thursday evening: exercise sheet *n* is available
- Tuesday 3pm: deadline for marking solved exercises of sheet n in OLAT

Part 1 – Introduction

- Wednesday 8:15–10:45: lecture n + 1 on topic n + 1
- Wednesday 12:00–13:30: proseminar on exercise sheet n

• . . .

RT (DCS @ UIBK)

Second Edition. Cambridge.

Huth and Ryan: Logic in Computer Science, Modelling and Reasoning about Systems.

Robinson and Voronkov: Handbook of Automated Reasoning, Volume I. MIT Press.

6/24

Organization

5/24

Organization

What is Program Verification?

- program verification
 - method to prove that a program meets its specification
 - does not execute a program
 - incomplete proof: might reveal bug, or just wrong proof structure
 - verification often uses simplified model of the actual program
 - requires human interaction
- testing
 - executes program to detect bugs, i.e., violation of specification
 - cannot prove that a program meets its specification
 - similar to checking 1 000 000 possible assignments of propositional formula with 100 variables, to be convinced that formula is valid (for all 2^{100} assignments)

• program analysis

- automatic method to detect simple propositions about programs
- does not execute a program
- examples: type correctness, detection of dead-code, uninitialized variables
- often used for warnings in IDEs and for optimizing compilers
- program verification, testing and program analysis are complementary

RT (DCS @ UIBK)

Part 1 – Introduction

Motivation

10/24

Example: Sorting Algorithm

- objective: formulate that a function is a sorting algorithm on arrays
- specification via predicate logic:

 $sorting_alq(f) \longleftrightarrow \forall xs \ ys : [int].$ $f(xs) = ys \longrightarrow$ $\forall i. 0 < i \longrightarrow i < length(ys) \longrightarrow ys[i-1] < ys[i]$

- specification is not precise enough, think of the following algorithms
 - algorithm which always returns the empty array consequence: add length(xs) = length(ys) to specification
 - the algorithm which overwrites each array element with value 0 consequence: need to specify that xs and ys contain same elements

Motivation

Verification vs Validation

- verification: prove that a program meets its specification
 - requires a formal model of the program
 - requires a formal model of the specification
- validation: check whether the (formal) specification is what we want
 - turning an informal (textual) specification into a formal one is complex
 - already writing the formal specification can reveal mistakes, e.g., inconsistencies in an informal textual specification

Motivation

Motivation **Necessity of Verification – Mathematics**

14/24

Motivation

 Necessity of Verification – Software buggy programs can be costly: crash of Ariane 5 rocket (~ 370 000 000 \$) parts of 32-bit control system was reused from successful Ariane 4 Ariane 5 is more powerful, so has higher acceleration and velocity overflow in 32-bit integer arithmetic control system out of control when handling negative velocity buggy programs can be fatal: faulty software in radiation therapy device led to 100x overdosis and at least 3 deaths system error caused Chinook helicopter crash and killed all 29 passengers further problems caused by software bugs https://raygun.com/blog/costly-software-errors-history/ 		 programs 4-co Kepl 	s are used to prove mathematical theorems: lor-theorem: every planar graph is 4-colorable proof is based on set of 1834 configurations the set of configurations is unavoidable (every minimal counterexample belongs to one configuration in the set) the set of configurations is reducible (none of the configurations is minimal) original proof contained the set on 400 pages of microfilm reducibility of the set was checked by program in over 1000 hours no chance for inspection solely by humans, instead verify program ler conjecture statement: optimal density of stacking spheres is $\pi/\sqrt{18}$ proof by Hales works as follows identify 5000 configurations if these 5000 configurations cannot be packed with a higher density than $\pi/\sqrt{18}$, then Kepler conjecture holds prove that this is the case by solving ~ 100 000 linear programming problems submitted proof: 250 pages + 3 GB of computer programs and data referees: 99 % certain of correctness	
(DCS @ UIBK) Part 1 - Introduction	13/24	RT (DCS @ UIBK)	Part 1 – Introduction	14,

Successes in Program Verification

• mathematics:

R

- 4-color-theorem
- Kepler conjecture

both the constructed set of configurations as well as the properties of these sets have been guaranteed by executing verified programs

- software:
 - CompCert: verified optimizing C-compiler
 - seL4: verified microkernel,

free of implementation bugs such as

- deadlocks
- buffer overflows
- arithmetic exceptions
- use of uninitialized variables

Motivation

Program Verification Tools

- doing large proofs (correctness of large programs) requires tool support
- proof assistants help to perform these proofs
- proof assistants are designed so that only small part has to be trusted
- examples
 - academic: Isabelle/HOL, ACL2, Cog, HOL Light, Why3, Key,...
 - industrial: Lean (Microsoft), Dafny (Microsoft), PVS (SRI International, NASA), ...
 - generic tools: Isabelle/HOL (seL4, Kepler), Cog (CompCert, 4-Color-Theorem),
 - specific tools: Key (verification of Java programs), Dafny,
- master courses on Interactive theorem proving:

include more challenging examples and tool usage

- this course: focus on program verification on paper
 - learn underlying concepts
 - freedom of mathematical reasoning
 - ... without challenge of doing proofs exactly in format of particular tool

Example Proof			Motivation	Example Proof Continued			Motivation
 program (defin 	ed over lists via constructors Nil and Cons)			 program 			
append(Nil, ys) = ys append(Cons(x, xs), ys) = Cons(x, append(xs, ys))		(1) (2)	append(Nil, ys) = ys append(Cons(x, xs), ys) = Cons(x, append(xs, ys))			(1) (2)	
 property: associativity of append: append(append(xs, ys), zs) = append(xs, append(ys, zs)) proof via equational reasoning by structural induction on xs base case: xs = Nil 				 property: append(append(xs, ys), zs) = append(xs, append(ys, zs)) proof by structural induction on xs 			
				• step case: $xs = Cons(u, us)$ induction hypothesis: append(append(us, ys), zs) = append(us , append(ys, zs))			
				append(append(Cons(u, us), ys), zs) (2) = append(Cons(u, append(us, us)), zs) (2)			
	$\begin{aligned} & append(append(Nil, ys), zs) \\ &= append(ys, zs) \\ &= append(Nil, append(ys, zs)) \end{aligned}$	(1) (1)			= Cons(u, append(us, ys), us) $= Cons(u, append(us, append(us, ys), zs))$ $= Cons(u, append(us, append(ys, zs)))$ $= append(Cons(u, us), append(ys, zs))$	(IH) (2)	
RT (DCS @ UIBK)	Part 1 – Introduction		17/24	RT (DCS @ UIBK)	Part 1 – Introduction		18/24
			Motivation	Equational Reaso	oning		Motivation
Questions				 idea: extract eq problems can al program 	quations from functional program and use rise:	them to derive new equ	alities
 what is equational reasoning? what is structural induction? why was that a valid proof? 			property: 0proof:	f(x) = 1 + f(x) $0 = 1$		(1)	
 how to find such a proof? these questions will be answered in this course, but they are not trivial 			0 = f(x) - f(x) = (1 + f(x)) - f(x) = 1	(arith) (1) (arith)			
				 observation: blindly converting functional programs into equations is un solution requires precise semantics of functional programs 			
RT (DCS @ UIBK)	Part 1 – Introduction		19/24	RT (DCS @ UIBK)	Part 1 – Introduction		20/24

Another Example Proof

- property: algorithm computes the factorial function
- proof using Hoare logic and loop-invariants

$$\langle n \ge 0 \rangle$$

f := 1;
x := 0;
 $\langle f = x! \land x \le n \rangle$ while (x < n) {
x := x + 1;
f := f * x;
}
 $\langle f = n! \rangle$

Part 1 – Introduction

Motivation

21/24

Motivation

questions

• what statement is actually proven?

• do you trust this proof? what must be checked?

• tool support?

22/24

Motivation

Soundness = Partial Correctness + Termination

• in both problematic examples the problem was caused by non-terminating programs

- there are several proof-methods that only show partial correctness: if the program terminates, then the specified property is satisfied
- for full correctness (soundness), we additionally require a termination proof

Content of Course

RT (DCS @ UIBK)

- logic for program specifications
- semantics of functional programs
- termination proofs for functional programs
- partial correctness of functional programs
- semantics of imperative programs
- termination proofs for imperative programs
- partial correctness of imperative programs

Part 1 – Introduction