
Summer Term 2024

Program Verification
Part 1 – Introduction

René Thiemann

Department of Computer Science

Organization

Organization

Lecture (VO 3)

• LV-Number: 703083

• lecturer: René Thiemann
consultation hours: Tuesday 10:15–11:15

ICT-building, 2nd floor, 3M09

• time: Wednesday, 8:15–10:45, with breaks in between

• place: HS 10

• course website: http://cl-informatik.uibk.ac.at/teaching/ss24/pv/

• slides are available online and contain links

• online registration required before June 30

• lecture will be in German

RT (DCS @ UIBK) Part 1 – Introduction 3/24

Organization

Schedule

lecture 1 March 6 lecture 8 May 15
lecture 2 March 13 lecture 9 May 22
lecture 3 March 20 lecture 10 May 29
lecture 4 April 10 lecture 11 June 5
lecture 5 April 17 lecture 12 June 12
lecture 6 April 24 lecture 13 June 19
lecture 7 May 8

1st exam June 26

RT (DCS @ UIBK) Part 1 – Introduction 4/24

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
https://lfuonline.uibk.ac.at/public/lfuonline_lv.details?sem_id_in=24S&lvnr_id_in=703083
http://cl-informatik.uibk.ac.at/~thiemann
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/material.php
https://lfuonline.uibk.ac.at/public/lfuonline_lv.anmeldung?termine_id_in=241387
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Organization

Proseminar (PS 2)

• LV-Number: 703084

• time and place: Wednesday, 12:00–13:30 in HS 11

• online registration was required before February 21

• late registration directly after this lecture by contacting me

• exercises available online on Thursday evening at the latest

• solved exercises must be marked in OLAT
(deadline: Tuesday 3pm)

• solutions will be discussed in proseminar groups

• first exercise sheet: today

• proseminar starts on March 13

• attendance is mandatory (2 absences tolerated without giving reasons)

• exercise sheets will be in English, solutions can be in either English or German

RT (DCS @ UIBK) Part 1 – Introduction 5/24

Organization

Weekly Schedule

• Wednesday 8:15–10:45: lecture n on topic n

• Wednesday 12:00–13:30: proseminar on exercise sheet n− 1

• Thursday evening: exercise sheet n is available

• Tuesday 3pm: deadline for marking solved exercises of sheet n in OLAT

• Wednesday 8:15–10:45: lecture n+ 1 on topic n+ 1

• Wednesday 12:00–13:30: proseminar on exercise sheet n

• . . .

RT (DCS @ UIBK) Part 1 – Introduction 6/24

Organization

Grading

• separate grades for lecture and proseminar
• lecture

• written exam (closed book)
• 1st exam on June 26, 2024
• online registration required

• opening 5 weeks before exam
• closing 1 week before exam
• deregister until two days before exam

• 2nd and 3rd exam in September and February (on demand)

• proseminar
• 80 %: scores from weekly exercises
• 20 %: presentation of solutions

RT (DCS @ UIBK) Part 1 – Introduction 7/24

Organization

Literature

slides

• no other topics will appear in exam . . .
• . . . but topics need to be understood thoroughly

• read and write specifications and proofs
• apply presented techniques on new examples
• not only knowledge reproduction

Nipkow and Klein: Concrete Semantics with Isabelle/HOL. Springer.

Huth and Ryan: Logic in Computer Science, Modelling and Reasoning about Systems.
Second Edition. Cambridge.

Robinson and Voronkov: Handbook of Automated Reasoning, Volume I. MIT Press.

RT (DCS @ UIBK) Part 1 – Introduction 8/24

https://orawww.uibk.ac.at/public_prod/owa/lfuonline_lv.details?sem_id_in=24S&lvnr_id_in=703084
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/exercises.php
https://lms.uibk.ac.at/url/RepositoryEntry/5592973481
https://lms.uibk.ac.at/url/RepositoryEntry/5592973481
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
https://lms.uibk.ac.at/url/RepositoryEntry/5592973481
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Motivation

Motivation

What is Program Verification?
• program verification

• method to prove that a program meets its specification
• does not execute a program
• incomplete proof: might reveal bug, or just wrong proof structure
• verification often uses simplified model of the actual program
• requires human interaction

• testing
• executes program to detect bugs, i.e., violation of specification
• cannot prove that a program meets its specification
• similar to checking 1 000 000 possible assignments of propositional formula with 100

variables, to be convinced that formula is valid (for all 2100 assignments)

• program analysis
• automatic method to detect simple propositions about programs
• does not execute a program
• examples: type correctness, detection of dead-code, uninitialized variables
• often used for warnings in IDEs and for optimizing compilers

• program verification, testing and program analysis are complementary

RT (DCS @ UIBK) Part 1 – Introduction 10/24

Motivation

Verification vs Validation

• verification: prove that a program meets its specification
• requires a formal model of the program
• requires a formal model of the specification

• validation: check whether the (formal) specification is what we want
• turning an informal (textual) specification into a formal one is complex
• already writing the formal specification can reveal mistakes, e.g., inconsistencies in an

informal textual specification

RT (DCS @ UIBK) Part 1 – Introduction 11/24

Motivation

Example: Sorting Algorithm

• objective: formulate that a function is a sorting algorithm on arrays

• specification via predicate logic:

sorting alg(f)←→ ∀xs ys : [int].

f(xs) = ys −→
∀i. 0 < i −→ i < length(ys) −→ ys[i− 1] ≤ ys[i]

• specification is not precise enough, think of the following algorithms
• algorithm which always returns the empty array

consequence: add length(xs) = length(ys) to specification
• the algorithm which overwrites each array element with value 0

consequence: need to specify that xs and ys contain same elements

RT (DCS @ UIBK) Part 1 – Introduction 12/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Motivation

Necessity of Verification – Software

• buggy programs can be costly:
crash of Ariane 5 rocket (∼ 370 000 000 $)
• parts of 32-bit control system was reused from successful Ariane 4
• Ariane 5 is more powerful, so has higher acceleration and velocity
• overflow in 32-bit integer arithmetic
• control system out of control when handling negative velocity

• buggy programs can be fatal:
• faulty software in radiation therapy device led to 100x overdosis and at least 3 deaths
• system error caused Chinook helicopter crash and killed all 29 passengers

• further problems caused by software bugs

https://raygun.com/blog/costly-software-errors-history/

RT (DCS @ UIBK) Part 1 – Introduction 13/24

Motivation

Necessity of Verification – Mathematics

• programs are used to prove mathematical theorems:
• 4-color-theorem: every planar graph is 4-colorable

• proof is based on set of 1834 configurations
• the set of configurations is unavoidable

(every minimal counterexample belongs to one configuration in the set)
• the set of configurations is reducible (none of the configurations is minimal)
• original proof contained the set on 400 pages of microfilm
• reducibility of the set was checked by program in over 1000 hours
• no chance for inspection solely by humans, instead verify program

• Kepler conjecture
• statement: optimal density of stacking spheres is π/

√
18

• proof by Hales works as follows
• identify 5000 configurations
• if these 5000 configurations cannot be packed with a higher density than π/

√
18,

then Kepler conjecture holds
• prove that this is the case by solving ∼ 100 000 linear programming problems
• submitted proof: 250 pages + 3 GB of computer programs and data
• referees: 99 % certain of correctness

RT (DCS @ UIBK) Part 1 – Introduction 14/24

Motivation

Successes in Program Verification

• mathematics:
• 4-color-theorem
• Kepler conjecture

both the constructed set of configurations as well as the properties of these sets have
been guaranteed by executing verified programs
• software:

• CompCert: verified optimizing C-compiler
• seL4: verified microkernel,

free of implementation bugs such as
• deadlocks
• buffer overflows
• arithmetic exceptions
• use of uninitialized variables

RT (DCS @ UIBK) Part 1 – Introduction 15/24

Motivation

Program Verification Tools

• doing large proofs (correctness of large programs) requires tool support

• proof assistants help to perform these proofs

• proof assistants are designed so that only small part has to be trusted
• examples

• academic: Isabelle/HOL, ACL2, Coq, HOL Light, Why3, Key,. . .
• industrial: Lean (Microsoft), Dafny (Microsoft), PVS (SRI International, NASA), . . .
• generic tools: Isabelle/HOL (seL4, Kepler), Coq (CompCert, 4-Color-Theorem), . . .
• specific tools: Key (verification of Java programs), Dafny, . . .

• master courses on Interactive theorem proving:
include more challenging examples and tool usage
• this course: focus on program verification on paper

• learn underlying concepts
• freedom of mathematical reasoning . . .
• ... without challenge of doing proofs exactly in format of particular tool

RT (DCS @ UIBK) Part 1 – Introduction 16/24

https://raygun.com/blog/costly-software-errors-history/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Motivation

Example Proof

• program (defined over lists via constructors Nil and Cons)

append(Nil, ys) = ys (1)

append(Cons(x, xs), ys) = Cons(x, append(xs, ys)) (2)

• property: associativity of append:

append(append(xs, ys), zs) = append(xs, append(ys, zs))

• proof via equational reasoning by structural induction on xs
• base case: xs = Nil

append(append(Nil, ys), zs) (1)

= append(ys, zs) (1)

= append(Nil, append(ys, zs))

RT (DCS @ UIBK) Part 1 – Introduction 17/24

Motivation

Example Proof Continued
• program

append(Nil, ys) = ys (1)

append(Cons(x, xs), ys) = Cons(x, append(xs, ys)) (2)

• property: append(append(xs, ys), zs) = append(xs, append(ys, zs))
• proof by structural induction on xs

• step case: xs = Cons(u, us)
induction hypothesis: append(append(us, ys), zs) = append(us, append(ys, zs)) (IH)

append(append(Cons(u, us), ys), zs) (2)

= append(Cons(u, append(us, ys)), zs) (2)

= Cons(u, append(append(us, ys), zs)) (IH)

= Cons(u, append(us, append(ys, zs))) (2)

= append(Cons(u, us), append(ys, zs))

RT (DCS @ UIBK) Part 1 – Introduction 18/24

Motivation

Questions

• what is equational reasoning?

• what is structural induction?

• why was that a valid proof?

• how to find such a proof?

• these questions will be answered in this course, but they are not trivial

RT (DCS @ UIBK) Part 1 – Introduction 19/24

Motivation

Equational Reasoning

• idea: extract equations from functional program and use them to derive new equalities
• problems can arise:

• program

f(x) = 1 + f(x) (1)

• property: 0 = 1
• proof:

0 (arith)

= f(x)− f(x) (1)

= (1 + f(x))− f(x) (arith)

= 1

• observation: blindly converting functional programs into equations is unsound!

• solution requires precise semantics of functional programs

RT (DCS @ UIBK) Part 1 – Introduction 20/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Motivation

Another Example Proof
• property: algorithm computes the factorial function

• proof using Hoare logic and loop-invariants

⟨n ≥ 0⟩
f := 1;

x := 0;

⟨f = x! ∧ x ≤ n⟩ while (x < n) {

x := x + 1;

f := f * x;

}

⟨f = n!⟩

• questions
• what statement is actually proven?
• do you trust this proof? what must be checked?
• tool support?

RT (DCS @ UIBK) Part 1 – Introduction 21/24

Motivation

Hoare Style Proofs

• problematic proof:

⟨True⟩ while (0 < 1) {

x := x + 1;

}

⟨False⟩

• questions
• did we prove that True implies False?
• no, since execution never leaves the while-loop

RT (DCS @ UIBK) Part 1 – Introduction 22/24

Motivation

Soundness = Partial Correctness + Termination

• in both problematic examples the problem was caused by non-terminating programs

• there are several proof-methods that only show partial correctness:
if the program terminates, then the specified property is satisfied

• for full correctness (soundness), we additionally require a termination proof

RT (DCS @ UIBK) Part 1 – Introduction 23/24

Motivation

Content of Course

• logic for program specifications

• semantics of functional programs

• termination proofs for functional programs

• partial correctness of functional programs

• semantics of imperative programs

• termination proofs for imperative programs

• partial correctness of imperative programs

RT (DCS @ UIBK) Part 1 – Introduction 24/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Organization
	Motivation

