. univerSitét Summer Term 2024
W innsbruck

L T ——
] E
et

Program Verification

Part 1 — Introduction

René Thiemann

Department of Computer Science

Organization

Lecture (VO 3)
LV-Number: 703083

® |ecturer: René Thiemann
consultation hours: Tuesday 10:15-11:15
ICT-building, 2nd floor, 3M09

® time: Wednesday, 8:15-10:45, with breaks in between
® place: HS 10
® course website: http://cl-informatik.uibk.ac.at/teaching/ss24/pv/

® slides are available online and contain links

® online registration required before June 30

® |ecture will be in German

RT (DCS @ UIBK) Part 1 — Introduction 3/24

Schedule

RT (DCS @ UIBK)

lecture 1
lecture 2
lecture 3
lecture 4
lecture 5
lecture 6
lecture 7

1st exam

Organization
March 6 lecture 8
March 13 lecture 9
March 20 lecture 10
April 10 lecture 11
April 17 lecture 12
April 24 lecture 13
May 8
June 26

Part 1 — Introduction

May
May
May
June
June
June

15
22
29

12
19

Organization

4/24

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
https://lfuonline.uibk.ac.at/public/lfuonline_lv.details?sem_id_in=24S&lvnr_id_in=703083
http://cl-informatik.uibk.ac.at/~thiemann
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/material.php
https://lfuonline.uibk.ac.at/public/lfuonline_lv.anmeldung?termine_id_in=241387
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Organization

Proseminar (PS 2)

RT (DCS @ UIBK)

LV-Number: 703084

time and place: Wednesday, 12:00-13:30 in HS 11

online registration was required before February 21

late registration directly after this lecture by contacting me
exercises available online on Thursday evening at the latest

solved exercises must be marked in OLAT
(deadline: Tuesday 3pm)

solutions will be discussed in proseminar groups

first exercise sheet: today
proseminar starts on March 13
attendance is mandatory (2 absences tolerated without giving reasons)

exercise sheets will be in English, solutions can be in either English or German

Part 1 — Introduction 5/24

Organization

Grading

RT (DCS @ UIBK)

separate grades for lecture and proseminar
lecture
® written exam (closed book)

® 1st exam on June 26, 2024
® online registration required
® opening 5 weeks before exam
® closing 1 week before exam
® deregister until two days before exam

® 2nd and 3rd exam in September and February (on demand)
proseminar

® 80 %: scores from weekly exercises
® 20 %: presentation of solutions

Part 1 — Introduction 7/24

RT (DCS @ UIBK)

Organization

Weekly Schedule
Wednesday 8:15-10:45: lecture n on topic n

Wednesday 12:00-13:30: proseminar on exercise sheet n — 1

Thursday evening: exercise sheet n is available

Tuesday 3pm: deadline for marking solved exercises of sheet n in OLAT
Wednesday 8:15-10:45: lecture n + 1 on topic n + 1

Wednesday 12:00-13:30: proseminar on exercise sheet n

RT (DCS @ UIBK) Part 1 — Introduction 6/24

Organization
Literature

[slides

® no other topics will appear in exam ...
® .. but topics need to be understood thoroughly

® read and write specifications and proofs
® apply presented techniques on new examples
® not only knowledge reproduction

@ Nipkow and Klein: Concrete Semantics with Isabelle/HOL. Springer.

B Huth and Ryan: Logic in Computer Science, Modelling and Reasoning about Systems.
Second Edition. Cambridge.

B Robinson and Voronkov: Handbook of Automated Reasoning, Volume |. MIT Press.

Part 1 — Introduction 8/24

https://orawww.uibk.ac.at/public_prod/owa/lfuonline_lv.details?sem_id_in=24S&lvnr_id_in=703084
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/exercises.php
https://lms.uibk.ac.at/url/RepositoryEntry/5592973481
https://lms.uibk.ac.at/url/RepositoryEntry/5592973481
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
https://lms.uibk.ac.at/url/RepositoryEntry/5592973481
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Motivation

Motivation

Verification vs Validation

® verification: prove that a program meets its specification
® requires a formal model of the program
® requires a formal model of the specification
® validation: check whether the (formal) specification is what we want

® turning an informal (textual) specification into a formal one is complex
® already writing the formal specification can reveal mistakes, e.g., inconsistencies in an
informal textual specification

RT (DCS @ UIBK) Part 1 — Introduction 11/24

What is

Program Verification?

® program verification

method to prove that a program meets its specification

does not execute a program

incomplete proof: might reveal bug, or just wrong proof structure
verification often uses simplified model of the actual program
requires human interaction

® testing
® executes program to detect bugs, i.e., violation of specification
® cannot prove that a program meets its specification

® similar to checking 1000000 possible assignments of propositional formula with 100

2100

variables, to be convinced that formula is valid (for all assignments)

® program analysis

automatic method to detect simple propositions about programs
does not execute a program

°
® examples: type correctness, detection of dead-code, uninitialized variables
°

often used for warnings in IDEs and for optimizing compilers

® program verification, testing and program analysis are complementary

RT (DCS @ UIBK)

Part 1 — Introduction

Example: Sorting Algorithm

® objective: formulate that a function is a sorting algorithm on arrays

® speci

® speci
[]

RT (DCS @ UIBK)

fication via predicate logic:

sorting_alg(f) «— Vs ys : [int].
f(zs) =ys —
Vi.0 < i — i <length(ys) — ys[i — 1] < ys]i]

fication is not precise enough, think of the following algorithms
algorithm which always returns the empty array

consequence: add length(zs) = length(ys) to specification

the algorithm which overwrites each array element with value 0
consequence: need to specify that s and ys contain same elements

Part 1 — Introduction

Motivation

10/24

Motivation

12/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Motivation
Necessity of Verification — Software
® buggy programs can be costly:
crash of Ariane 5 rocket (~ 370000000 $)
® parts of 32-bit control system was reused from successful Ariane 4
® Ariane 5 is more powerful, so has higher acceleration and velocity
® overflow in 32-bit integer arithmetic
® control system out of control when handling negative velocity
® buggy programs can be fatal:
® faulty software in radiation therapy device led to 100x overdosis and at least 3 deaths
® system error caused Chinook helicopter crash and killed all 29 passengers
® further problems caused by software bugs
https://raygun.com/blog/costly-software-errors-history/
RT (DCS @ UIBK) Part 1 — Introduction 13/24
Motivation

Successes in Program Verification

® mathematics:
® 4-color-theorem
® Kepler conjecture
both the constructed set of configurations as well as the properties of these sets have
been guaranteed by executing verified programs
® software:
® CompCert: verified optimizing C-compiler
® sel4: verified microkernel,
free of implementation bugs such as
® deadlocks
buffer overflows
arithmetic exceptions
use of uninitialized variables

RT (DCS @ UIBK) Part 1 — Introduction 15/24

Motivation

Necessity of Verification — Mathematics

® programs are used to prove mathematical theorems:
® 4-color-theorem: every planar graph is 4-colorable -2

® proof is based on set of 1834 configurations
® the set of configurations is unavoidable

(every minimal counterexample belongs to one configuration in the set)

the set of configurations is reducible (none of the configurations is minimal)

original proof contained the set on 400 pages of microfilm

reducibility of the set was checked by program in over 1000 hours

no chance for inspection solely by humans, instead verify program

® Kepler conjecture

statement: optimal density of stacking spheres is 7/1/18

proof by Hales works as follows

identify 5000 configurations

if these 5000 configurations cannot be packed with a higher density than 7/+/18,

then Kepler conjecture holds

prove that this is the case by solving ~ 100000 linear programming problems

® submitted proof: 250 pages + 3 GB of computer programs and data

® referees: 99 % certain of correctness

i prospuccelo o ela cops
il]

&
44

eeefirateconcurrentecinra

Be
5 D
FHE

RT (DCS @ UIBK) Part 1 — Introduction 14/24

Motivation
Program Verification Tools

® doing large proofs (correctness of large programs) requires tool support
® proof assistants help to perform these proofs

® proof assistants are designed so that only small part has to be trusted
® examples
® academic: Isabelle/HOL, ACL2, Coq, HOL Light, Why3, Key,. ..
® industrial: Lean (Microsoft), Dafny (Microsoft), PVS (SRI International, NASA), ...
® generic tools: Isabelle/HOL (seL4, Kepler), Coq (CompCert, 4-Color-Theorem), ...
® specific tools: Key (verification of Java programs), Dafny, ...
® master courses on Interactive theorem proving:
include more challenging examples and tool usage
® this course: focus on program verification on paper
® learn underlying concepts
® freedom of mathematical reasoning ...
® .. without challenge of doing proofs exactly in format of particular tool

RT (DCS @ UIBK) Part 1 — Introduction 16/24

https://raygun.com/blog/costly-software-errors-history/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Motivation

Example Proof

® program (defined over lists via constructors Nil and Cons)

append(Nil, ys) = ys (D)

append(Cons(z, zs), ys) = Cons(z, append(zs, ys)) (2)

® property: associativity of append:
append(append(zs, ys), zs) = append(zs, append(ys, 25))

® proof via equational reasoning by structural induction on xs
® base case: xs = Nil

append(append(Nil, ys), zs) (1)
= append(ys, 25) (1)
= append(Nil, append(ys, zs))

RT (DCS @ UIBK) Part 1 — Introduction 17/24

Motivation

Questions
® what is equational reasoning?
® what is structural induction?
® why was that a valid proof?
® how to find such a proof?

® these questions will be answered in this course, but they are not trivial

RT (DCS @ UIBK) Part 1 — Introduction 19/24

Motivation

Example Proof Continued
® program

append(Nil, ys) = ys (1)
append(Cons(z, zs), ys) = Cons(z, append(zs, ys)) (2)

® property: append(append(zs, ys), zs) = append(xs, append(ys, zs))
® proof by structural induction on xs
® step case: xs = Cons(u, us)

induction hypothesis: append(append(us, ys), zs) = append(us, append(ys, 2s)) (IH)
append(append(Cons(u, us), ys), zs) (2)
= append(Cons(u, append(us, ys)), 23) (2)
= Cons(u, append(append(us, ys), z5)) (IH)
= Cons(u, append(us, append(ys, zs))) (2)
= append(Cons(u, us), append(ys, zs))
RT (DCS @ UIBK) Part 1 — Introduction 18/24

Motivation

Equational Reasoning

® idea: extract equations from functional program and use them to derive new equalities
® problems can arise:

® program
f(z) =1+ f(x) (1)
® property: 0 =1
® proof:
0 (arith)
= f(z) — f(x) (1)
=(1+f(x)) —f(z) (arith)
=1

® observation: blindly converting functional programs into equations is unsound!

® solution requires precise semantics of functional programs

RT (DCS @ UIBK) Part 1 — Introduction 20/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Motivation

Another Example Proof
® property: algorithm computes the factorial function

® proof using Hoare logic and loop-invariants

(n>0)
f :=1;
x := 0;

(f=2!Ax <n) while (x < n) {

X :=x + 1;
f =1 % x;
}

(f=nl)

® questions

® what statement is actually proven?
® do you trust this proof? what must be checked?

® tool support?
RT (DCS @ UIBK) PP Part 1 — Introduction 21/24

Motivation

Soundness = Partial Correctness + Termination
® in both problematic examples the problem was caused by non-terminating programs

® there are several proof-methods that only show partial correctness:
if the program terminates, then the specified property is satisfied

e for full correctness (soundness), we additionally require a termination proof

RT (DCS @ UIBK) Part 1 — Introduction 23/24

Hoare Style Proofs

® problematic proof:

(True) while (0 < 1) {

X :=x + 1

(False)

® questions

® did we prove that True implies False?
® no, since execution never leaves the while-loop

RT (DCS @ UIBK) Part 1 — Introduction

Content of Course
® |ogic for program specifications
® semantics of functional programs
® termination proofs for functional programs
® partial correctness of functional programs
® semantics of imperative programs
® termination proofs for imperative programs

® partial correctness of imperative programs

RT (DCS @ UIBK) Part 1 — Introduction

Motivation

22/24

Motivation

24/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Organization
	Motivation

