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Recapitulation: Predicate Logic



Recapitulation: Predicate Logic

Inductively Defined Sets

® one can define sets inductively via inference rules of form

premaise; ... premise,

conclusion

meaning: if all premises are satisfied, then one can conclude

® example: the set of even numbers

x € Even
0 € Even T+ 2 € Fven

® the inference rules describe what is contained in the set

® this can be modeled as formula
0 € Even A\ (Vx. x € Even — x + 2 € Even)

® nothing else is in the set (this is not modeled in the formula!)
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Inductively Defined Sets, Continued
® the set of even numbers
x € FEven

0 € Fven T+ 2 € Fven

® membership in the set can be proved via inference trees

® example: 4 € Fven, proved via inference tree

0 € Even
2 € Fven
4 € Fven

® proving that something is not in the set is more difficult:
show that no inference tree exists

e example: 3 ¢ Fven, —2 ¢ Even
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Recapitulation: Predicate Logic

Inductively Defined Sets and Grammars

e inference rules are similar to grammar rules
® example
® the context-free grammar

S —aSab|b|TaS T—TT |e€

® is modeled via the inference rules

weS weT uwes
awab € S be S wau € S
weTl uweT
wu €T ecT

® in the same way, inference trees are similar to derivation trees
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Recapitulation: Predicate Logic

Inductively Defined Sets: Monotonicity

¢ inference rules of inductively defined sets must be monotone,
it is not permitted to negatively refer to the currently defined set

® jll-formed example

0 € Bad
0 € Bad 0 ¢ Bad

® one of the problems: the corresponding formula can be contradictory
0 € Bad A (0 € Bad — 0 ¢ Bad)

¢ allowed example: we define Odd, and negatively refer to previously defined Fven

x ¢ Even
z € Odd
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Recapitulation: Predicate Logic

Inductively Defined Sets: Structural Induction

® example: the set of even numbers

xr € Fven
0 € Fven T+ 2 € Fven

® inductively defined sets give rise to a structural induction rule

® induction rule for example, written again as inference rule:

y € Even P(0) Vz.P(x) — P(z+2)
P(y)

where P is an arbitrary property; alternatively as formula

Vy.y € Even — P(0) — (Vz.P(z) — P(x +2)) — P(y)
——

~
base step
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Recapitulation: Predicate Logic

Inductively Defined Sets: Structural Induction Continued
® depending on the structure of the inference rules there might be several base- and
step-cases
e example: a definition of the set of even integers
z € BvenZ
0 € BvenZ 4+ 2 € EvenZ

x € FvenZ vy € FEvenZ
x—y € EvenZ

® structural induction rule in this case contains

® one base case (without induction hypothesis): P(0)
® one step case with one induction hypothesis: Va.P(x) — P(x + 2)
® one step case with two induction hypotheses: Vz,y. P(z) — P(y) — P(z — y)

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 8/45


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recapitulation: Predicate Logic

Example Proof by Structural Induction

® aim: show that every even number 4 can be written as 2 - n

® structural induction rule
y € Even P(0) Vz.P(x) — P(z+2)
P(y)

e property P(z): x can be written as 2-nwithn € N; P(z):=3n.ne NAz=2-n
® semi-formal proof: apply structural induction rule to show P(y)
® the subgoal y € Even is by assumption
® the base-case P(0) is trivial, since 0 =2-0and 0 € N
® the step-case demands a proof of V. P(z) — P(x + 2), so let = be arbitrary,
assume P(z) and show P(z + 2)
® because of P(z) there is some n € N such thatz =2-n
® hencen+leNandz+2=2-n+2=2-(n+1)
® thus P(z + 2) holds by choosing n + 1 as witness in existential quantifier

® hence, Vy.y € Fven — dn.n e NAy=2-n
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Recapitulation: Predicate Logic

The Other Direction

® aim: show that 2-n € Fven for every natural number n
® here the structural induction rule for Even is useless, since it has y € Even as a premise

e this proof is by induction on n and by using the inference rules from the inductively
defined set Fven (and not the induction rule)

x € Fven
0 € FEven T+ 2 € Even

® base case n =0: 2-0 =0 € FEven by the first inference rule of Fven
® step case fromn ton + 1:

® the induction hypothesis gives us 2 -n € Even
® hence, 2- (n+1) =2-n+2 € Even by the second inference rule of Even
(instantiate = by 2 - n)
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Recapitulation: Predicate Logic

Further Remark on Inductively Defined Sets

® so far: premises in inference rules speak about set under construction

® in general: there can be additional arbitrary side conditions

example definition of odd numbers, assuming that Fven is already defined:

x € Fven y € 0Odd
1€ 0dd x+y e O0dd

® structural induction adds these side conditions as additional premises

z€0dd P(l) Vz,y.x € Even — P(y) — P(x +y)
P(z)
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Recapitulation: Predicate Logic

Final Remark on Inductively Defined Sets

so far: we just considered sets of singleton elements
in general: sets may contain structured data, e.g. pairs or, more generally, tuples

example: Fibonacci numbers, (n,z) € Fib encodes that = is n-th Fibonacci number

(n,xz) € Fib (n+1,y) € Fib
(0,1) € Fib (1,1) € Fib (n+2,7+y) € Fib

since F'ib consists of pairs, property in induction formula becomes a binary predicate

(m,z) € Fib P(0,1) P(1,1) Vn,z,y.P(n,z) — P(n+1,y) — P(n+2,2+y)
P(m, z)
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Recapitulation: Predicate Logic

Predicate Logic: Terms
e 3. set of (function) symbols with arity

® ). set of variables, usually infinite

e example: ¥ = {plus/2,succ/1,zero/0}, V = {z,y,2,...}
® T(3,V): set of terms, inductively defined by two inference rules
=R, f/neX tLeT(EYV) ... t,eT(E,V)
reT(X,V) flt1, ... ty) € T(E,V)
e for symbols with arity 0 we omit the parenthesis in terms in formulas,
i.e., we write zero as term and not zero()
® examples
® plus(z, plus(plus(zero, x), succ(y))) v
° z 4
® plus b 4
® plus(z,y, 2) X

® remark: we do not use infix-symbols for formal terms
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Recapitulation: Predicate Logic

Predicate Logic: Formulas
® > set of function symbols, V: set of variables

e P: set of (predicate) symbols with arity
o F(X,P,V): formulas over X, P, and V, inductively defined via

eV peFXE,P,V)

true € F(X,P,V) Va. p € F(3,P,V)

p € F(E,P,V) p e F(E,P,V) YeF(EPYV)

~p € F(E,P,V) N e F(X,P,V)
p/neP t1eT(X,V) ... to,eT(EV)

p(tl,. . .,tn) S .7:(2,73,]})
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Recapitulation: Predicate Logic

Predicate Logic: Syntactic Sugar

® we use all Boolean connectives
false = —true
(e V) = (=(=p A )
(p — ) = (@ V)
(=) =((¢ —= V)N (¥ — 9))
® we permit existential quantification
* (Fz.¢) = ~(Vz. ~p)
® however, these are just abbreviations, so when defining properties of formulas, we only
need to consider the connectives from the previous slide

® we use binding precedence = > A > V > — +— > 4V
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o . . Recapitulation: Predicate Logic
Predicate Logic: Semantics

e defined via models, assignments and structural recursion
® a3 model M for formulas over X, P, and V consists of

® a non-empty set 4, the universe
e for each f/n € X there is a total function fM : A" — A
e for each p/n € P there is a relation p™ C A"
® an assignment is a mapping a: VYV — A
® the term evaluation [-]o : 7(X,V) — A is defined recursively as
° [[I]]a :O‘(x) and [[f(t17~-~7tn)]]a = fM([[tl]]aa"'7[[tn]]a)
® the satisfaction predicate M |=,, - is defined recursively as
* M =, true
* My p(ts, . tn) iff ([ti]as-- -, [ta]a) € PM
ME. p AN iff M =, ¢ and M =4
M ):a - iff M %a‘p
M=o Vo, ¢ iff M =y p—q @ foralla e A

where oz := a] is defined as afz := a](y) = {

a, ify==x
a(y), otherwise

® if © contains no free variables, we omit a and write M |= ¢
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Recapitulation: Predicate Logic

Examples
® signature: ¥ = {plus/2,succ/1,zero/0}, P = {even/1,=/2}

® model 1:
A=N
plus™ (x y)=z+vy, such( y=z+1, zeroM =0
even™ = {2.n|n e N}, =M = {(n,n) | n € N}
M =V, y. plus(z,y) = plus(y, z)
® model 2:
* A=1Z
® plusM ( ,y) = x — 1y, succM(z) = |z|, zeroM = 42
® even™ = {2, -7}, =M = {(1000,2000)}
® M Va,y. plus(z, y) = plus(y, x)

® model 3:
* A={e}
® plus™(x,y) = o, succ™(z) = o, zero™ = o
* evenM = {o}, =M =g
[}

M £V, y. plus(z, y) = plus(y, =)
® not a model:
* A=N, plusM(x,y) =z —y, even™ = {.. -2,0,2,4,...}, ...
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Recapitulation: Predicate Logic

Models for Functional Programming

® consider program

data Nat = Zero | Succ Nat
data List = Nil | Cons Nat List

® datatype definitions clearly correspond to inductively defined sets

n € Nat
Zero € Nat Succ(n) € Nat
n € Nat  as € List
Nil € List Cons(n, zs) € List

e tentative definition of universe A of model M for program

A = Nat U List
® obvious definition of meaning of constructors
e ZeroM = Zero, Succ™(n) = Succ(n), NilM = Nil, ...
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Recapitulation: Predicate Logic

A Problem in the Model

¢ inductively defined sets

n € Nat
Zero € Nat Succ(n) € Nat
n € Nat  as € List
Nil € List Cons(n, xs) € List
® construction of model

® A= NatUList
® ZeroM = Zero and SuccM(n) = Succ(n)
® NilM = Nil and Cons™M(n, zs) = Cons(n, zs)

® problem: this is not a model
® Succ™ must be a total function of type A — A
® but Succ™(Nil) = Succ(Nil) ¢ A
® similar problem: a formula like
Vs ys zs. append(append(xs, ys), zs) = append(zs, append(ys, zs)) would have to hold
even when replacing zs by Zero!
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Many-Sorted Logic



Solution to the One-Universe Problem

consider many-sorted logic

idea: a separate universe for each sort

naming issue: sort in logic ~ type in functional programming

this

lecture: we mainly speak about types

types need to be integrated everywhere

this
[ ]

typed signature
typed terms

typed formulas
typed assignments
typed quantifiers
typed universes
typed models

lecture: simple type system
no polymorphism (no generic List a type)
first-order (no A, no partial application, ...)
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Many-Sorted Logic

Many-Sorted Predicate Logic: Syntax
e Ty: set of types where each 7 € Ty is just a name
example: Ty = {Nat, List, ...}
® Y. set of function symbols; each f € 3 has type info € Ty
we write f : 71 X ... X T, — T9 whenever f has type info 7 ... 7,7
example: X = {Zero : Nat, plus : Nat x Nat — Nat, Cons : Nat x List — List, ...}

e P: set of predicate symbols; each p € P has type info € Ty*
we write p C 71 X ... X 75, whenever p has type info 7 ...7,
example: P = {< C Nat x Nat,=n,: C Nat x Nat, even C Nat,
nonEmpty C List, =it C List x List,elem C Nat x List,...}
note: no polymorphism, so there cannot be a generic equality symbol
® V): set of variables, typed
example: V = {n : Nat, zs : List, ...}
we write V; as the set of variables of type 7
® notation

® function and predicate symbols: blue color, variables: black color

® often Ty and V are not explicitly specified
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Many-Sorted Logic

Many-Sorted Predicate Logic: Terms
® T(X,V),: set of terms of type 7, inductively defined
x:TeY
xeT(E,V),
finx...xm—=>17€X HLeT(EV)y ... theT(E,V),
f(t, ... tn) € T(E, V),

® example
e V={n:N,...}
Y ={Zero: N,Succ: N — N,Nil : L,Cons : N x L — L}

® we omit the “€ V" and “€ X" when applying the inference rules
® typing terms results in inference trees
_ n:N
Succ:N—=N neT(Z, V)N Nil : L
Cons:NxL—L Succ(n) € T(E,V)n Nil € T(3, V)L

Cons(Succ(n), Nil) € T(, V)L

e for ill-typed terms such as Succ(Nil) there is no inference tree
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Many-Sorted Logic
Many-Sorted Predicate Logic: Formulas
® recall: V, ¥ and P are typed sets of variables, function symbols and predicate symbols
® next we define typed formulas F(X, P, V) inductively
e the definition is similar as in the untyped setting

only difference: add types to inference rule for predicates

reV peFXE,P,V)

true € F(3, P, V) Va. ¢ € F(5,P, V)

p e F(X,P,V) p € F(5,P,V) ¢eF(EP,V)
—p € F(X,P,V) pAYp € F(E,P,V)
PCmx...xm)€eP tLeT(E, V) ... th €T(E, V),

p(ti,...,tn) € F(X,P,V)
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Many-Sorted Logic

Many-Sorted Predicate Logic: Semantics

e defined via typed models and assignments
® a model M for formulas over Ty, X, P, and V consists of

® 3 collection of non-empty universes A, one for each 7 € Ty

® foreach f: 7y x ... x 7, = 7 € X there is a function fM: A, x...x A, — A,
e for each (p C 71 X ... x 7,,) € P there is a relation pM C A, x ... x A,,

[ ]

an assignment is a type-preserving mapping a : V —= J, 7 Ar,
i.e., whenever z : 7 € V then a(z) € A,
® the term evaluation [-]o : 7(X,V), — A, is defined recursively as
* [z]a = alz)
* [f(tr, - ta)la = MI0]as - [tn]a)
note that [-], is overloaded in the sense that it works for each type 7
® the satisfaction predicate M =, - is defined recursively as
* M=o V. ¢ iff M =y5.—q) ¢ for all a € A, where 7 is the type of

* M=o p(ts,. - tn) iff ([t]as-- -, [tn]a) € P™M
® .. .remainder as in untyped setting
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Many-Sorted Logic

Example

Ty = {Nat, List}

Y. = {Zero : Nat, Succ : Nat — Nat, Nil : List, app : List x List — List}
P = {= C List x List}

® -ANat:N
o Aiist = {[z1,... 2] | n € N,VI <i<n.z; € N}
° ZeroM =0

® SuccM(n) =n+1
definition is okay: n can be no list, since n € Ayt = N
e NiM =]
® appM([:L‘l, o aan [yla s ;ym]) = [:El’ <oy Tns Y1, - aym]
again, this is sufficiently defined, since the arguments of app™ are two lists
o =M — {(zs,25) | x5 € AList}
M = Vas, ys, zs. app(ws, app(ys, 25)) = app(app(as, ys), )
M £ Vas. app(xs, zs) = xs M |= Jzs. app(zs, xs) = xs
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Many-Sorted Logic

Many-Sorted Predicate Logic: Well-Definedness

® consider the term evaluation
* [z]o = a(x)

° [f(ts,. s ta)]a = fM([[tl]]aa s [tnla)
® it was just stated that this a function of type []o : T(2, V), — A
e similarly, the definition
o Ml plts, ... t) iff ([t1]as - - - [tn]a) € pM
has to be taken with care: we need to ensure that ([ti]a,. .., [tn]o) and p™ fit together,
such that the membership test is type-correct

® in general, such type-preservation statements need to be proven!

® however, often this is not even mentioned
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Type-Checking

Type-Checking
® inference trees are proofs that certain terms have a certain type
® inference trees cannot be used to show that a term is not typable

® want: executable algorithm that given X, V, and a candidate term,
computes the type or detects failure

® in Haskell: function definition with type
typeCheck :: Sig -> Vars -> Term -> Maybe Type

® preparation: error handling in Haskell with monads
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Explicit Error-Handling with Maybe fpechecte
® recall Haskell's builtin type
data Maybe a = Just a | Nothing

e useful to distinguish successful from non-successful computations

® Just x represents successful computation with result value x
® Nothing represents that some error occurred

e example for explicit error handling: evaluating an arithmetic expression
data Expr = Var String | Plus Expr Expr | Div Expr Expr

eval :: (String -> Integer) -> Expr -> Maybe Integer
eval alpha (Var x) = Just (alpha x)
eval alpha (Plus el e2) = case (eval alpha el, eval alpha e2) of
(Just x1, Just x2) -> Just (x1 + x2)
-> Nothing
eval alpha (Div el e2) = case (eval alpha el, eval alpha e2) of
(Just x1, Just x2) ->
if x2 /= 0 then Just (x1 “div" x2) else Nothing
-> Nothing
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Error-Handling with Monads fpechecte
e recall Haskell's |/O-monad

® 10 a internally stores a state (the world) and returns result of type a
® with do-blocks, we can sequentially perform 10-actions, and receive intermediate values;

core function for sequential composition: (>>=) :: I0 a -=> (a -> I0 b) -> I0 b
® example
greeting = do
x <- getlLine -- I0 String, action: read user input
putStr "hello " -- I0 (), action: print something
putStr x -- I0 (), action: print something
return (x ++ x) -- I0 String, no action, return result

® also Maybe can be viewed as monad

® Maybe a internally stores a state (successful or error) and returns result of type a
® core functions for Maybe-monad
® (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

Nothing >>= _ = Nothing -- errors propagate
Just x >>=f = f x
® return :: a -> Maybe a

return x = Just x
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Monads in Haskell

® Haskell's I/O-monad
(>>=) :: I0a->(a->1I0Db) -> I0 b

return :: a -> I0 a

® the error monad of type Maybe a

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

return :: a -> Maybe a

® generalization: arbitrary monads via type-class

class Monad m where

>>=) ::ma->((@a->mb) ->mb

return :: a -> m a

® 10 and Maybe are instances of Monad
® do-notation is available for all monads
® monad-instances should satisfy the three monad laws

RT (DCS @ UIBK)

(return x) >>= f
m >>= return
(m >>=f) >>=g

f x
m
m>>= (\ x => f x >>= g)
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. . . . Type-Checking
Example: Expression-Evaluation in Monadic Style

data Expr = Var String | Plus Expr Expr | Div Expr Expr

eval :: (String -> Integer) -> Expr -> Maybe Integer
eval alpha (Var x) = return (alpha x)
eval alpha (Plus el e2) = do

x1 <- eval alpha el
x2 <- eval alpha e2
return (x1 + x2)
eval alpha (Div el e2) = do
x1 <- eval alpha el
x2 <- eval alpha e2
if x2 /= 0 then return (x1 “div’ x2) else Nothing

® advantages
® no pattern-matching on Maybe-type required any more, more readable code;
hence monadic style simplifies reasoning about these programs
® easy to switch to other monads, e.g. for errors with messages

® Prelude already contains several functions for monads
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Type-Checking

Example Library Function for Monads

® mapM :: Monad m => (a -> m b) -> [a] -> m [b]
® similar tomap :: (a -> b) -> [a] -> [b], just in monadic setting
® applies a monadic function sequentially to all list elements
® possible implementation
mapM f [] = return []
mapM f (x : xs) = do
y <- f x
ys <- mapM f xs
return (y : ys)
® consequence for Maybe-monad:
mapM f [x_1, ..., x_n] = return ys
is satisfied iff
® f x i = return y_i forall1<i<n, and
® ys = [y_1, ..., y_n]
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Type-Checking

Type-Checking Algorithm
® back to type-checking

® the algorithm can now be defined concisely as

type Type = String

type Var = String
type FSym = String
type Vars = Var -> Maybe Type

type FSymInfo = ([Typel, Type)
type Sig = FSym -> Maybe FSymInfo
data Term = Var Var | Fun FSym [Term]

typeCheck :: Sig —> Vars -> Term -> Maybe Type
typeCheck sigma vars (Var x) = vars x
typeCheck sigma vars (Fun f ts) = do

(tysIn,tyOut) <- sigma f

tysTs <- mapM (typeCheck sigma vars) ts

if tysTs == tysIn then return tylut else Nothing
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Type-Checking

Correctness of Type-Checking
® aim: prove correctness of type-checking algorithm
e (informal) proof is performed in two steps
® ift € T(X,V), then typeCheck sigma vars t = return tau
® if typeCheck sigma vars t = return tauthent e T(%,V),
® before these two steps are done, some alignment of the representation is performed

® in the theory V is set of type-annotated variables
® in the program vars is a partial function from variables to types
® obviously, these two representations can be aligned:
x:7 €V is the same as vars x = return tau
® similarly for function symbols we demand that
fim X X1 > EX
is the same as

sigma f = return ([tau_1,...,tau_n], tau_0)
® moreover the term representations can be aligned, e.g.

flt1,...,t,) is the same as Fun f [t_1, ..., t_n]

from now on we mainly use mathematical notation assuming the obvious alignments,

even when executing Haskell programs
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Type-Checking

Completeness of Type-Checking Algorithm
if t € T(X,V); then typeCheck ¥V t = return 7
® proof is by structural induction according to the definition of 7(X,V),

® note that in the definition of the inductively defined set 7(X, V), the 7 changes;
therefore, the induction rule uses a binary property:

teT(X,V); Va,m9.x:179 €V — P(x,79) (%)
P(t,T)
Vom0, ooy Tty e estp. [T X oo X Ty > Tp € X — (%)
P(t1,71) — ... — P(tn, ) — P(f(t1,...,tn),70)

® in our case P(t,7) is typeCheck ¥V t = return T
® base case:

® let x: 79 €V, aim is to prove P(x, 7))

® via the alignment we know V = = return 7

(where V refers to the partial function within the algorithm)
® hence by the definition of the algorithm: typeCheck ¥V x =V = = return 7
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Type-Checking

Completeness of Type-Checking Algorithm

recall: P(t,7) is typeCheck ¥V t = return T

it remains to prove (x),solet f: 7 X ... X T, = 1) € X

we have to prove P(f(t1,...,tn), 7o) using the induction hypothesis P(t;,7;) for all
1<:<n

via the alignment we know X f = return ([11,..., 7], 70)
from the induction hypothesis we know that

map (typeCheck ¥ V) [t1,...,tn] = [return 1, ..., return 7,]
hence, by the definition of mapM,

mapM (typeCheck ¥ V) [t1,...,ty] = return [11, ..., 7]
hence by evaluating the Haskell-code we obtain

typeCheck XV f(t1,...,tn)

=if [T1,...,Tn] = [T1,...,Tn] then return 1y else Nothing

= return Tg
so P(f(t1,...,tn),70) is satisfied
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Soundness of Type-Checking Algorithm fypeChectine
if typeCheck XV t = return 7 then t € T(X,V),
® we perform structural induction on ¢
(w.r.t. untyped terms as defined by the Haskell datatype definition)
® the induction rule only mentions a unary property
Vo. P(Var z) (%)
P(t: Term)
Vit ... tn. P(t1) — ... — P(tn) — P(f(t1,...,tn)) (%)

e first attempt: define P(t) as
typeCheck XV t = return 1 — t € T (X, V),
e then the induction hypothesis in the case f(¢1,...,t,) for each t; is
P(t;) = (typeCheck ¥V t; = return 7 — t; € T(X,V);)

® the IH is unusable as t; will have type 7; which in general differs from 7
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Induction Proofs with Arbitrary Variables fypeChectine

® previous slide: using
P(t) = (typeCheck ¥V t = return 1 — t € T(X,V);)
as property in induction rule is too restrictive, leads to IH
P(t;) = (typeCheck ¥V t; = return 7 — t; € T(X,V),)

® aim: ability to use arbitrary 7; in IH instead of 7

e formal solution via universal quantification:
define P and @) as follows and use P in induction

Q(t, ) = (typeCheck ¥V t = return T — t € T(X,V);)
P(t) = (V7. Q(t,7))
e effect: induction hypothesis for ¢; will be P(t;) = (V7. Q(t;, 7)) which in particular
implies the desired Q(t;, 7;)
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Induction Proofs with Arbitrary Variables fypeChectine
® previous slide:

Q(t, 7) = (typeCheck ¥V t = return 7 — t € T(3,V),)
P(t) = (V7. Q(t,7))

® we now prove P(t) by induction on ¢, this time being quite formal
® base case: t = Var x
® we have to show P(t) = P(Var x) = (V7. Q(Var z,7))
o V-intro: pick an arbitrary 7 and show Q(Var z,7), i.e.,
typeCheck £V (Var x) = return 7 — x € T (X, V),
® —-intro: assume typeCheck ¥V (Var z) = return T,
and then show z € T(%, V),

® simplify assumption typeCheck ¥V (Var x) = return 7 to V « = return 7
® by alignment this is identical toxz : 7 € V
® use introduction rule of 7(3,V), to finally show z € T(X,V),

note that step o is the only additional (but obvious) step that was required to deal with
the auxiliary universal quantifier
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Type-Checking

Induction Proofs with Arbitrary Variables: Step Case
Q(t,7) = (typeCheck ¥V t = return 1 — t € T(%,V);)
P(t) = (vr. Q(t,7))

® step case: t = f(t1,...,tn)

® we have to show P(f(t1,...,tn)) = (V7. Q(f(t1,..-,tn), 7))

o V-intro: pick an arbitrary 7 and show Q(f(t1,...,t,),7), i.e,
typeCheck ¥V f(t1,...,tn) = return 7 — f(t1,...,t,) € T(E, V),

® —-intro: assume typeCheck ¥V f(t1,...,t,) = return 7, and show
flt1, . ytn) € T(E, V),

® by the assumption typeCheck ¥V f(t1,...,t,) = return 7 and by definition of typeCheck,
we know that there must be types 71,...,7, such that
mapM (typeCheck ¥ V) [t1,...,t,] = return [11,...,7,], and hence
typeCheck XV t; = return 1; forall 1 <i<mn

® again using the assumption and the algorithm definition we conclude that
Y f =return ([11,...,7n],7) and thus, f: 71 X ... X7, > TEX

o by the IH we conclude P(t;) and hence Q(¢;, ;) using V-elimination

® in combination with typeCheck ¥ V t; = return 1; we arrive at t; € T(%,V),, and can

finally apply the introduction rules for typed terms to conclude f(t1,...,t,) € T(X,V),
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- - . . Type-Checkin,
Induction Proofs with Arbitrary Variables: Remarks ’ ’

Q(t,7) = (typeCheck ¥V t = return 1 — t € T(%,V);)
P(t) = (V1. Q(t,7))

® the method to make a variable arbitrary within an induction proof is always the same, via
universal quantification

e the required steps within the formal reasoning (marked with o in the previous proof) are
also automatic

® therefore, in the following we will just write statements like
“we perform induction on x for arbitrary y and 2"
or
“we prove P(z,y,z) by induction on x for arbitrary y and 2"
without doing the universal quantification explicitly

¢ the effect of introducing arbitrary variables is a generalization:
instead of proving P(z,y, z) for a fixed y and z, we show it for all y and z
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Type-Checking

Summary of Type-Checking

e definition of typed terms via inference rules

® equivalent definition via type-checking algorithm
® both representations have their advantages

® inference rules come with convenient induction principle

® type-checking can also detect typing errors, i.e.,

it can show that something is not member of an inductively defined set

® note: we have verified a first non-trivial program!

® given the precise semantics of typed terms
via an intuitive meaning of what inductively defined sets are
with an intuitive meaning of how Haskell evaluates
with intuitively created alignments
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Summary of Chapter

® inductively defined sets give rise to structural induction rule

® inductively defined sets can be used to model datatypes of
(first-order non-polymorphic) functional programs

® many sorted/typed terms and predicate logic allows adequate modeling of datatypes
e verified type-checking algorithm

® induction proofs with “arbitrary” variables
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