. un |VerS|tat Summer Term 2024
™ innsbruck

Program Verification
Part 2 — A Logic for Program Specifications

René Thiemann

Department of Computer Science

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/

Recapitulation: Predicate Logic

Recapitulation: Predicate Logic

Inductively Defined Sets

® one can define sets inductively via inference rules of form

premaise; ... premise,

conclusion

meaning: if all premises are satisfied, then one can conclude

® example: the set of even numbers

x € Even
0 € Even T+ 2 € Fven

® the inference rules describe what is contained in the set

® this can be modeled as formula
0 € Even A\ (Vx. x € Even — x + 2 € Even)

® nothing else is in the set (this is not modeled in the formula!)

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 3/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Inductively Defined Sets, Continued
® the set of even numbers
x € FEven

0 € Fven T+ 2 € Fven

® membership in the set can be proved via inference trees

® example: 4 € Fven, proved via inference tree

0 € Even
2 € Fven
4 € Fven

® proving that something is not in the set is more difficult:
show that no inference tree exists

e example: 3 ¢ Fven, —2 ¢ Even

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications

Recapitulation: Predicate Logic

4/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recapitulation: Predicate Logic

Inductively Defined Sets and Grammars

e inference rules are similar to grammar rules
® example
® the context-free grammar

S —aSab|b|TaS T—TT |e€

® is modeled via the inference rules

weS weT uwes
awab € S be S wau € S
weTl uweT
wu €T ecT

® in the same way, inference trees are similar to derivation trees

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 5/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recapitulation: Predicate Logic

Inductively Defined Sets: Monotonicity

¢ inference rules of inductively defined sets must be monotone,
it is not permitted to negatively refer to the currently defined set

® jll-formed example

0 € Bad
0 € Bad 0 ¢ Bad

® one of the problems: the corresponding formula can be contradictory
0 € Bad A (0 € Bad — 0 ¢ Bad)

¢ allowed example: we define Odd, and negatively refer to previously defined Fven

x ¢ Even
z € Odd

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 6/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recapitulation: Predicate Logic

Inductively Defined Sets: Structural Induction

® example: the set of even numbers

xr € Fven
0 € Fven T+ 2 € Fven

® inductively defined sets give rise to a structural induction rule

® induction rule for example, written again as inference rule:

y € Even P(0) Vz.P(x) — P(z+2)
P(y)

where P is an arbitrary property; alternatively as formula

Vy.y € Even — P(0) — (Vz.P(z) — P(x +2)) — P(y)
——

~
base step

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 7/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recapitulation: Predicate Logic

Inductively Defined Sets: Structural Induction Continued
® depending on the structure of the inference rules there might be several base- and
step-cases
e example: a definition of the set of even integers
z € BvenZ
0 € BvenZ 4+ 2 € EvenZ

x € FvenZ vy € FEvenZ
x—y € EvenZ

® structural induction rule in this case contains

® one base case (without induction hypothesis): P(0)
® one step case with one induction hypothesis: Va.P(x) — P(x + 2)
® one step case with two induction hypotheses: Vz,y. P(z) — P(y) — P(z — y)

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 8/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recapitulation: Predicate Logic

Example Proof by Structural Induction

® aim: show that every even number 4 can be written as 2 - n

® structural induction rule
y € Even P(0) Vz.P(x) — P(z+2)
P(y)

e property P(z): x can be written as 2-nwithn € N; P(z):=3n.ne NAz=2-n
® semi-formal proof: apply structural induction rule to show P(y)
® the subgoal y € Even is by assumption
® the base-case P(0) is trivial, since 0 =2-0and 0 € N
® the step-case demands a proof of V. P(z) — P(x + 2), so let = be arbitrary,
assume P(z) and show P(z + 2)
® because of P(z) there is some n € N such thatz =2-n
® hencen+leNandz+2=2-n+2=2-(n+1)
® thus P(z + 2) holds by choosing n + 1 as witness in existential quantifier

® hence, Vy.y € Fven — dn.n e NAy=2-n

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 9/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recapitulation: Predicate Logic

The Other Direction

® aim: show that 2-n € Fven for every natural number n
® here the structural induction rule for Even is useless, since it has y € Even as a premise

e this proof is by induction on n and by using the inference rules from the inductively
defined set Fven (and not the induction rule)

x € Fven
0 € FEven T+ 2 € Even

® base case n =0: 2-0 =0 € FEven by the first inference rule of Fven
® step case fromn ton + 1:

® the induction hypothesis gives us 2 -n € Even
® hence, 2- (n+1) =2-n+2 € Even by the second inference rule of Even
(instantiate = by 2 - n)

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 10/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recapitulation: Predicate Logic

Further Remark on Inductively Defined Sets

® so far: premises in inference rules speak about set under construction

® in general: there can be additional arbitrary side conditions

example definition of odd numbers, assuming that Fven is already defined:

x € Fven y € 0Odd
1€ 0dd x+y e O0dd

® structural induction adds these side conditions as additional premises

z€0dd P(l) Vz,y.x € Even — P(y) — P(x +y)
P(z)

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 11/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recapitulation: Predicate Logic

Final Remark on Inductively Defined Sets

so far: we just considered sets of singleton elements
in general: sets may contain structured data, e.g. pairs or, more generally, tuples

example: Fibonacci numbers, (n,z) € Fib encodes that = is n-th Fibonacci number

(n,xz) € Fib (n+1,y) € Fib
(0,1) € Fib (1,1) € Fib (n+2,7+y) € Fib

since F'ib consists of pairs, property in induction formula becomes a binary predicate

(m,z) € Fib P(0,1) P(1,1) Vn,z,y.P(n,z) — P(n+1,y) — P(n+2,2+y)
P(m, z)

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 12/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recapitulation: Predicate Logic

Predicate Logic: Terms
e 3. set of (function) symbols with arity

®). set of variables, usually infinite

e example: ¥ = {plus/2,succ/1,zero/0}, V = {z,y,2,...}
® T(3,V): set of terms, inductively defined by two inference rules
=R, f/neX tLeT(EYV) ... t,eT(E,V)
reT(X,V) flt1, ... ty) € T(E,V)
e for symbols with arity 0 we omit the parenthesis in terms in formulas,
i.e., we write zero as term and not zero()
® examples
® plus(z, plus(plus(zero, x), succ(y))) v
° z 4
® plus b 4
® plus(z,y, 2) X

® remark: we do not use infix-symbols for formal terms

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 13/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recapitulation: Predicate Logic

Predicate Logic: Formulas
® > set of function symbols, V: set of variables

e P: set of (predicate) symbols with arity
o F(X,P,V): formulas over X, P, and V, inductively defined via

eV peFXE,P,V)

true € F(X,P,V) Va. p € F(3,P,V)

p € F(E,P,V) p e F(E,P,V) YeF(EPYV)

~p € F(E,P,V) N e F(X,P,V)
p/neP t1eT(X,V) ... to,eT(EV)

p(tl,. . .,tn) S .7:(2,73,]})

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 14/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recapitulation: Predicate Logic

Predicate Logic: Syntactic Sugar

® we use all Boolean connectives
false = —true
(e V) = (=(=p A)
(p —) = (@ V)
(=) =((¢ —= V)N (¥ — 9))
® we permit existential quantification
* (Fz.¢) = ~(Vz. ~p)
® however, these are just abbreviations, so when defining properties of formulas, we only
need to consider the connectives from the previous slide

® we use binding precedence = > A > V > — +— > 4V

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 15/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

o . . Recapitulation: Predicate Logic
Predicate Logic: Semantics

e defined via models, assignments and structural recursion
® a3 model M for formulas over X, P, and V consists of

® a non-empty set 4, the universe
e for each f/n € X there is a total function fM : A" — A
e for each p/n € P there is a relation p™ C A"
® an assignment is a mapping a: VYV — A
® the term evaluation [-]o : 7(X,V) — A is defined recursively as
° [[I]]a :O‘(x) and [[f(t17~-~7tn)]]a = fM([[tl]]aa"'7[[tn]]a)
® the satisfaction predicate M |=,, - is defined recursively as
* M =, true
* My p(ts, . tn) iff ([ti]as-- -, [ta]a) € PM
ME. p AN iff M =, ¢ and M =4
M):a - iff M %a‘p
M=o Vo, ¢ iff M =y p—q @ foralla e A

where oz := a] is defined as afz := a](y) = {

a, ify==x
a(y), otherwise

® if © contains no free variables, we omit a and write M |= ¢

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 16/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recapitulation: Predicate Logic

Examples
® signature: ¥ = {plus/2,succ/1,zero/0}, P = {even/1,=/2}

® model 1:
A=N
plus™ (x y)=z+vy, such(y=z+1, zeroM =0
even™ = {2.n|n e N}, =M = {(n,n) | n € N}
M =V, y. plus(z,y) = plus(y, z)
® model 2:
* A=1Z
® plusM (,y) = x — 1y, succM(z) = |z|, zeroM = 42
® even™ = {2, -7}, =M = {(1000,2000)}
® M Va,y. plus(z, y) = plus(y, x)

® model 3:
* A={e}
® plus™(x,y) = o, succ™(z) = o, zero™ = o
* evenM = {o}, =M =g
[}

M £V, y. plus(z, y) = plus(y, =)
® not a model:
* A=N, plusM(x,y) =z —y, even™ = {.. -2,0,2,4,...}, ...

RT (DCS @ UIBK) Part 2 — A Logic for Program Speclflcatlons 17/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recapitulation: Predicate Logic

Models for Functional Programming

® consider program

data Nat = Zero | Succ Nat
data List = Nil | Cons Nat List

® datatype definitions clearly correspond to inductively defined sets

n € Nat
Zero € Nat Succ(n) € Nat
n € Nat as € List
Nil € List Cons(n, zs) € List

e tentative definition of universe A of model M for program

A = Nat U List
® obvious definition of meaning of constructors
e ZeroM = Zero, Succ™(n) = Succ(n), NilM = Nil, ...

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 18/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recapitulation: Predicate Logic

A Problem in the Model

¢ inductively defined sets

n € Nat
Zero € Nat Succ(n) € Nat
n € Nat as € List
Nil € List Cons(n, xs) € List
® construction of model

® A= NatUList
® ZeroM = Zero and SuccM(n) = Succ(n)
® NilM = Nil and Cons™M(n, zs) = Cons(n, zs)

® problem: this is not a model
® Succ™ must be a total function of type A — A
® but Succ™(Nil) = Succ(Nil) ¢ A
® similar problem: a formula like
Vs ys zs. append(append(xs, ys), zs) = append(zs, append(ys, zs)) would have to hold
even when replacing zs by Zero!

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 19/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Many-Sorted Logic

Solution to the One-Universe Problem

consider many-sorted logic

idea: a separate universe for each sort

naming issue: sort in logic ~ type in functional programming

this

lecture: we mainly speak about types

types need to be integrated everywhere

this
[]

typed signature
typed terms

typed formulas
typed assignments
typed quantifiers
typed universes
typed models

lecture: simple type system
no polymorphism (no generic List a type)
first-order (no A, no partial application, ...)

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications

Many-Sorted Logic

21/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Many-Sorted Logic

Many-Sorted Predicate Logic: Syntax
e Ty: set of types where each 7 € Ty is just a name
example: Ty = {Nat, List, ...}
® Y. set of function symbols; each f € 3 has type info € Ty
we write f : 71 X ... X T, — T9 whenever f has type info 7 ... 7,7
example: X = {Zero : Nat, plus : Nat x Nat — Nat, Cons : Nat x List — List, ...}

e P: set of predicate symbols; each p € P has type info € Ty*
we write p C 71 X ... X 75, whenever p has type info 7 ...7,
example: P = {< C Nat x Nat,=n,: C Nat x Nat, even C Nat,
nonEmpty C List, =it C List x List,elem C Nat x List,...}
note: no polymorphism, so there cannot be a generic equality symbol
® V): set of variables, typed
example: V = {n : Nat, zs : List, ...}
we write V; as the set of variables of type 7
® notation

® function and predicate symbols: blue color, variables: black color

® often Ty and V are not explicitly specified
RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 22/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Many-Sorted Logic

Many-Sorted Predicate Logic: Terms
® T(X,V),: set of terms of type 7, inductively defined
x:TeY
xeT(E,V),
finx...xm—=>17€X HLeT(EV)y ... theT(E,V),
f(t, ... tn) € T(E, V),

® example
e V={n:N,...}
Y ={Zero: N,Succ: N — N,Nil : L,Cons : N x L — L}

® we omit the “€ V" and “€ X" when applying the inference rules
® typing terms results in inference trees
_ n:N
Succ:N—=N neT(Z, V)N Nil : L
Cons:NxL—L Succ(n) € T(E,V)n Nil € T(3, V)L

Cons(Succ(n), Nil) € T(, V)L

e for ill-typed terms such as Succ(Nil) there is no inference tree
RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 23/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Many-Sorted Logic
Many-Sorted Predicate Logic: Formulas
® recall: V, ¥ and P are typed sets of variables, function symbols and predicate symbols
® next we define typed formulas F(X, P, V) inductively
e the definition is similar as in the untyped setting

only difference: add types to inference rule for predicates

reV peFXE,P,V)

true € F(3, P, V) Va. ¢ € F(5,P, V)

p e F(X,P,V) p € F(5,P,V) ¢eF(EP,V)
—p € F(X,P,V) pAYp € F(E,P,V)
PCmx...xm)€eP tLeT(E, V) ... th €T(E, V),

p(ti,...,tn) € F(X,P,V)

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 24/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Many-Sorted Logic

Many-Sorted Predicate Logic: Semantics

e defined via typed models and assignments
® a model M for formulas over Ty, X, P, and V consists of

® 3 collection of non-empty universes A, one for each 7 € Ty

® foreach f: 7y x ... x 7, = 7 € X there is a function fM: A, x...x A, — A,
e for each (p C 71 X ... x 7,,) € P there is a relation pM C A, x ... x A,,

[]

an assignment is a type-preserving mapping a : V —= J, 7 Ar,
i.e., whenever z : 7 € V then a(z) € A,
® the term evaluation [-]o : 7(X,V), — A, is defined recursively as
* [z]a = alz)
* [f(tr, - ta)la = MI0]as - [tn]a)
note that [-], is overloaded in the sense that it works for each type 7
® the satisfaction predicate M =, - is defined recursively as
* M=o V. ¢ iff M =y5.—q) ¢ for all a € A, where 7 is the type of

* M=o p(ts,. - tn) iff ([t]as-- -, [tn]a) € P™M
® .. .remainder as in untyped setting

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 25/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Many-Sorted Logic

Example

Ty = {Nat, List}

Y. = {Zero : Nat, Succ : Nat — Nat, Nil : List, app : List x List — List}
P = {= C List x List}

® -ANat:N
o Aiist = {[z1,... 2] | n € N,VI <i<n.z; € N}
° ZeroM =0

® SuccM(n) =n+1
definition is okay: n can be no list, since n € Ayt = N
e NiM =]
® appM([:L‘l, o aan [yla s ;ym]) = [:El’ <oy Tns Y1, - aym]
again, this is sufficiently defined, since the arguments of app™ are two lists
o =M — {(zs,25) | x5 € AList}
M = Vas, ys, zs. app(ws, app(ys, 25)) = app(app(as, ys),)
M £ Vas. app(xs, zs) = xs M |= Jzs. app(zs, xs) = xs

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 26/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Many-Sorted Logic

Many-Sorted Predicate Logic: Well-Definedness

® consider the term evaluation
* [z]o = a(x)

° [f(ts,. s ta)]a = fM([[tl]]aa s [tnla)
® it was just stated that this a function of type []o : T(2, V), — A
e similarly, the definition
o Ml plts, ... t) iff ([t1]as - - - [tn]a) € pM
has to be taken with care: we need to ensure that ([ti]a,. .., [tn]o) and p™ fit together,
such that the membership test is type-correct

® in general, such type-preservation statements need to be proven!

® however, often this is not even mentioned

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 27/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Type-Checking

Type-Checking

Type-Checking
® inference trees are proofs that certain terms have a certain type
® inference trees cannot be used to show that a term is not typable

® want: executable algorithm that given X, V, and a candidate term,
computes the type or detects failure

® in Haskell: function definition with type
typeCheck :: Sig -> Vars -> Term -> Maybe Type

® preparation: error handling in Haskell with monads

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 29/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Explicit Error-Handling with Maybe fpechecte
® recall Haskell's builtin type
data Maybe a = Just a | Nothing

e useful to distinguish successful from non-successful computations

® Just x represents successful computation with result value x
® Nothing represents that some error occurred

e example for explicit error handling: evaluating an arithmetic expression
data Expr = Var String | Plus Expr Expr | Div Expr Expr

eval :: (String -> Integer) -> Expr -> Maybe Integer
eval alpha (Var x) = Just (alpha x)
eval alpha (Plus el e2) = case (eval alpha el, eval alpha e2) of
(Just x1, Just x2) -> Just (x1 + x2)
-> Nothing
eval alpha (Div el e2) = case (eval alpha el, eval alpha e2) of
(Just x1, Just x2) ->
if x2 /= 0 then Just (x1 “div" x2) else Nothing
-> Nothing

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 30/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Error-Handling with Monads fpechecte
e recall Haskell's |/O-monad

® 10 a internally stores a state (the world) and returns result of type a
® with do-blocks, we can sequentially perform 10-actions, and receive intermediate values;

core function for sequential composition: (>>=) :: I0 a -=> (a -> I0 b) -> I0 b
® example
greeting = do
x <- getlLine -- I0 String, action: read user input
putStr "hello " -- I0 (), action: print something
putStr x -- I0 (), action: print something
return (x ++ x) -- I0 String, no action, return result

® also Maybe can be viewed as monad

® Maybe a internally stores a state (successful or error) and returns result of type a
® core functions for Maybe-monad
® (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

Nothing >>= _ = Nothing -- errors propagate
Just x >>=f = f x
® return :: a -> Maybe a

return x = Just x

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 31/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Monads in Haskell

® Haskell's I/O-monad
(>>=) :: I0a->(a->1I0Db) -> I0 b

return :: a -> I0 a

® the error monad of type Maybe a

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

return :: a -> Maybe a

® generalization: arbitrary monads via type-class

class Monad m where

>>=) ::ma->((@a->mb) ->mb

return :: a -> m a

® 10 and Maybe are instances of Monad
® do-notation is available for all monads
® monad-instances should satisfy the three monad laws

RT (DCS @ UIBK)

(return x) >>= f
m >>= return
(m >>=f) >>=g

f x
m
m>>= (\ x => f x >>= g)

Part 2 — A Logic for Program Specifications

Type-Checking

32/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

. . . . Type-Checking
Example: Expression-Evaluation in Monadic Style

data Expr = Var String | Plus Expr Expr | Div Expr Expr

eval :: (String -> Integer) -> Expr -> Maybe Integer
eval alpha (Var x) = return (alpha x)
eval alpha (Plus el e2) = do

x1 <- eval alpha el
x2 <- eval alpha e2
return (x1 + x2)
eval alpha (Div el e2) = do
x1 <- eval alpha el
x2 <- eval alpha e2
if x2 /= 0 then return (x1 “div’ x2) else Nothing

® advantages
® no pattern-matching on Maybe-type required any more, more readable code;
hence monadic style simplifies reasoning about these programs
® easy to switch to other monads, e.g. for errors with messages

® Prelude already contains several functions for monads
RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 33/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Type-Checking

Example Library Function for Monads

® mapM :: Monad m => (a -> m b) -> [a] -> m [b]
® similar tomap :: (a -> b) -> [a] -> [b], just in monadic setting
® applies a monadic function sequentially to all list elements
® possible implementation
mapM f [] = return []
mapM f (x : xs) = do
y <- f x
ys <- mapM f xs
return (y : ys)
® consequence for Maybe-monad:
mapM f [x_1, ..., x_n] = return ys
is satisfied iff
® f x i = return y_i forall1<i<n, and
® ys = [y_1, ..., y_n]

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 34/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Type-Checking

Type-Checking Algorithm
® back to type-checking

® the algorithm can now be defined concisely as

type Type = String

type Var = String
type FSym = String
type Vars = Var -> Maybe Type

type FSymInfo = ([Typel, Type)
type Sig = FSym -> Maybe FSymInfo
data Term = Var Var | Fun FSym [Term]

typeCheck :: Sig —> Vars -> Term -> Maybe Type
typeCheck sigma vars (Var x) = vars x
typeCheck sigma vars (Fun f ts) = do

(tysIn,tyOut) <- sigma f

tysTs <- mapM (typeCheck sigma vars) ts

if tysTs == tysIn then return tylut else Nothing

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 35/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Type-Checking

Correctness of Type-Checking
® aim: prove correctness of type-checking algorithm
e (informal) proof is performed in two steps
® ift € T(X,V), then typeCheck sigma vars t = return tau
® if typeCheck sigma vars t = return tauthent e T(%,V),
® before these two steps are done, some alignment of the representation is performed

® in the theory V is set of type-annotated variables
® in the program vars is a partial function from variables to types
® obviously, these two representations can be aligned:
x:7 €V is the same as vars x = return tau
® similarly for function symbols we demand that
fim X X1 > EX
is the same as

sigma f = return ([tau_1,...,tau_n], tau_0)
® moreover the term representations can be aligned, e.g.

flt1,...,t,) is the same as Fun f [t_1, ..., t_n]

from now on we mainly use mathematical notation assuming the obvious alignments,

even when executing Haskell programs
RT (DCS @ UIBK) Part 2= A Logic for Program Specifications 36/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Type-Checking

Completeness of Type-Checking Algorithm
if t € T(X,V); then typeCheck ¥V t = return 7
® proof is by structural induction according to the definition of 7(X,V),

® note that in the definition of the inductively defined set 7(X, V), the 7 changes;
therefore, the induction rule uses a binary property:

teT(X,V); Va,m9.x:179 €V — P(x,79) (%)
P(t,T)
Vom0, ooy Tty e estp. [T X oo X Ty > Tp € X — (%)
P(t1,71) — ... — P(tn,) — P(f(t1,...,tn),70)

® in our case P(t,7) is typeCheck ¥V t = return T
® base case:

® let x: 79 €V, aim is to prove P(x, 7))

® via the alignment we know V = = return 7

(where V refers to the partial function within the algorithm)
® hence by the definition of the algorithm: typeCheck ¥V x =V = = return 7

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 37/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Type-Checking

Completeness of Type-Checking Algorithm

recall: P(t,7) is typeCheck ¥V t = return T

it remains to prove (x),solet f: 7 X ... X T, = 1) € X

we have to prove P(f(t1,...,tn), 7o) using the induction hypothesis P(t;,7;) for all
1<:<n

via the alignment we know X f = return ([11,..., 7], 70)
from the induction hypothesis we know that

map (typeCheck ¥ V) [t1,...,tn] = [return 1, ..., return 7,]
hence, by the definition of mapM,

mapM (typeCheck ¥ V) [t1,...,ty] = return [11, ..., 7]
hence by evaluating the Haskell-code we obtain

typeCheck XV f(t1,...,tn)

=if [T1,...,Tn] = [T1,...,Tn] then return 1y else Nothing

= return Tg
so P(f(t1,...,tn),70) is satisfied

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 38/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Soundness of Type-Checking Algorithm fypeChectine
if typeCheck XV t = return 7 then t € T(X,V),
® we perform structural induction on ¢
(w.r.t. untyped terms as defined by the Haskell datatype definition)
® the induction rule only mentions a unary property
Vo. P(Var z) (%)
P(t: Term)
Vit ... tn. P(t1) — ... — P(tn) — P(f(t1,...,tn)) (%)

e first attempt: define P(t) as
typeCheck XV t = return 1 — t € T (X, V),
e then the induction hypothesis in the case f(¢1,...,t,) for each t; is
P(t;) = (typeCheck ¥V t; = return 7 — t; € T(X,V);)

® the IH is unusable as t; will have type 7; which in general differs from 7

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 39/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Induction Proofs with Arbitrary Variables fypeChectine

® previous slide: using
P(t) = (typeCheck ¥V t = return 1 — t € T(X,V);)
as property in induction rule is too restrictive, leads to IH
P(t;) = (typeCheck ¥V t; = return 7 — t; € T(X,V),)

® aim: ability to use arbitrary 7; in IH instead of 7

e formal solution via universal quantification:
define P and @) as follows and use P in induction

Q(t,) = (typeCheck ¥V t = return T — t € T(X,V);)
P(t) = (V7. Q(t,7))
e effect: induction hypothesis for ¢; will be P(t;) = (V7. Q(t;, 7)) which in particular
implies the desired Q(t;, 7;)

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 40/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Induction Proofs with Arbitrary Variables fypeChectine
® previous slide:

Q(t, 7) = (typeCheck ¥V t = return 7 — t € T(3,V),)
P(t) = (V7. Q(t,7))

® we now prove P(t) by induction on ¢, this time being quite formal
® base case: t = Var x
® we have to show P(t) = P(Var x) = (V7. Q(Var z,7))
o V-intro: pick an arbitrary 7 and show Q(Var z,7), i.e.,
typeCheck £V (Var x) = return 7 — x € T (X, V),
® —-intro: assume typeCheck ¥V (Var z) = return T,
and then show z € T(%, V),

® simplify assumption typeCheck ¥V (Var x) = return 7 to V « = return 7
® by alignment this is identical toxz : 7 € V
® use introduction rule of 7(3,V), to finally show z € T(X,V),

note that step o is the only additional (but obvious) step that was required to deal with
the auxiliary universal quantifier

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 41/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Type-Checking

Induction Proofs with Arbitrary Variables: Step Case
Q(t,7) = (typeCheck ¥V t = return 1 — t € T(%,V);)
P(t) = (vr. Q(t,7))

® step case: t = f(t1,...,tn)

® we have to show P(f(t1,...,tn)) = (V7. Q(f(t1,..-,tn), 7))

o V-intro: pick an arbitrary 7 and show Q(f(t1,...,t,),7), i.e,
typeCheck ¥V f(t1,...,tn) = return 7 — f(t1,...,t,) € T(E, V),

® —-intro: assume typeCheck ¥V f(t1,...,t,) = return 7, and show
flt1, . ytn) € T(E, V),

® by the assumption typeCheck ¥V f(t1,...,t,) = return 7 and by definition of typeCheck,
we know that there must be types 71,...,7, such that
mapM (typeCheck ¥ V) [t1,...,t,] = return [11,...,7,], and hence
typeCheck XV t; = return 1; forall 1 <i<mn

® again using the assumption and the algorithm definition we conclude that
Y f =return ([11,...,7n],7) and thus, f: 71 X ... X7, > TEX

o by the IH we conclude P(t;) and hence Q(¢;, ;) using V-elimination

® in combination with typeCheck ¥ V t; = return 1; we arrive at t; € T(%,V),, and can

finally apply the introduction rules for typed terms to conclude f(t1,...,t,) € T(X,V),
RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 42/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

- - . . Type-Checkin,
Induction Proofs with Arbitrary Variables: Remarks ’ ’

Q(t,7) = (typeCheck ¥V t = return 1 — t € T(%,V);)
P(t) = (V1. Q(t,7))

® the method to make a variable arbitrary within an induction proof is always the same, via
universal quantification

e the required steps within the formal reasoning (marked with o in the previous proof) are
also automatic

® therefore, in the following we will just write statements like
“we perform induction on x for arbitrary y and 2"
or
“we prove P(z,y,z) by induction on x for arbitrary y and 2"
without doing the universal quantification explicitly

¢ the effect of introducing arbitrary variables is a generalization:
instead of proving P(z,y, z) for a fixed y and z, we show it for all y and z

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 43/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Type-Checking

Summary of Type-Checking

e definition of typed terms via inference rules

® equivalent definition via type-checking algorithm
® both representations have their advantages

® inference rules come with convenient induction principle

® type-checking can also detect typing errors, i.e.,

it can show that something is not member of an inductively defined set

® note: we have verified a first non-trivial program!

® given the precise semantics of typed terms
via an intuitive meaning of what inductively defined sets are
with an intuitive meaning of how Haskell evaluates
with intuitively created alignments

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 44 /45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary of Chapter

® inductively defined sets give rise to structural induction rule

® inductively defined sets can be used to model datatypes of
(first-order non-polymorphic) functional programs

® many sorted/typed terms and predicate logic allows adequate modeling of datatypes
e verified type-checking algorithm

® induction proofs with “arbitrary” variables

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 45/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Recapitulation: Predicate Logic
	Many-Sorted Logic
	Type-Checking
	

