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Recapitulation: Predicate Logic

Inductively Defined Sets

® one can define sets inductively via inference rules of form

premise; premise,

conclusion
meaning: if all premises are satisfied, then one can conclude
® example: the set of even numbers

v € Even

0 € Even z+ 2 € Fven

® the inference rules describe what is contained in the set

® this can be modeled as formula
0 € Even A (Vz. x € Even — x + 2 € Even)

® nothing else is in the set (this is not modeled in the formula!)
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Recapitulation: Predicate Logic

Inductively Defined Sets, Continued
® the set of even numbers

v € Even
0 € Even

® membership in the set can be proved via inference trees

® example: 4 € Even, proved via inference tree

0 € Even
2 € Fven
4 € FEven

® proving that something is not in the set is more difficult:
show that no inference tree exists

e example: 3 ¢ Even, —2 ¢ Even
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Recapitulation: Predicate Logic

Inductively Defined Sets and Grammars

® inference rules are similar to grammar rules
® example
® the context-free grammar

S —aSab|b|TaS T—TT |e

® is modeled via the inference rules

wE S weT ues
awab € S besS wau € S
weT weT
wu €T eecT

® in the same way, inference trees are similar to derivation trees
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Recapitulation: Predicate Logic

Inductively Defined Sets: Structural Induction

® example: the set of even numbers

v € Fven
0 € Even x + 2 € Even

® inductively defined sets give rise to a structural induction rule
® induction rule for example, written again as inference rule:
y € Even P(0) Vz.P(z) — P(z+2)
P(y)

where P is an arbitrary property; alternatively as formula

Yy.y € Even — P(0) — (Vz.P(x) — P(z + 2)) — P(y)
——

base step
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Recapitulation: Predicate Logic

Inductively Defined Sets: Monotonicity

® inference rules of inductively defined sets must be monotone,
it is not permitted to negatively refer to the currently defined set

® jll-formed example

0 € Bad
0 € Bad 0 ¢ Bad

® one of the problems: the corresponding formula can be contradictory
0 € Bad A (0 € Bad — 0 ¢ Bad)

® allowed example: we define Odd, and negatively refer to previously defined Fven

x ¢ Even
x € 0dd
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Recapitulation: Predicate Logic

Inductively Defined Sets: Structural Induction Continued
® depending on the structure of the inference rules there might be several base- and
step-cases
® example: a definition of the set of even integers
x € EvenZ
0 € EvenZ z+2 € EvenZ

z € BvenZ y € EvenZ
x—y € EvenZ

® structural induction rule in this case contains
® one base case (without induction hypothesis): P(0)
® one step case with one induction hypothesis: Va.P(z) — P(z + 2)
® one step case with two induction hypotheses: Va,y. P(x) — P(y) — P(z —y)
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Recapitulation: Predicate Logic

Example Proof by Structural Induction
® aim: show that every even number y can be written as 2-n

® structural induction rule
y € Even P(0) Vz.P(z) — P(z+2)
P(y)

property P(z): x can be written as 2-nwithn € N; P(z):=3In.neNAz=2-n
® semi-formal proof: apply structural induction rule to show P(y)
® the subgoal y € Even is by assumption
® the base-case P(0) is trivial, since0 =2-0and 0 € N
® the step-case demands a proof of Vz. P(z) — P(x + 2), so let = be arbitrary,
assume P(z) and show P(x + 2)
® because of P(x) there is some n € N such thatz =2-n
® hencen+leNandz+2=2-n+2=2-(n+1)
® thus P(z 4 2) holds by choosing n + 1 as witness in existential quantifier

® hence, Vy.y € Even — dn.n e NAy=2-n
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Recapitulation: Predicate Logic

Further Remark on Inductively Defined Sets
® so far: premises in inference rules speak about set under construction
® in general: there can be additional arbitrary side conditions
® example definition of odd numbers, assuming that Even is already defined:

r € Fven y e Odd
r+y € 0dd

1€ Odd

® structural induction adds these side conditions as additional premises

z€0dd P(l) Vz,y.z € Even — P(y) — P(x +vy)
P(z)
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Recapitulation: Predicate Logic

The Other Direction
® aim: show that 2-n € Even for every natural number n
® here the structural induction rule for Fven is useless, since it has y € Even as a premise

® this proof is by induction on n and by using the inference rules from the inductively
defined set Even (and not the induction rule)

r € Fven

0 € Even x + 2 € Even

® base case n =0: 2-0 =0 € Even by the first inference rule of Even

® step case from n to n + 1:

® the induction hypothesis gives us 2-n € Even
® hence, 2- (n+1) =2-n+2 € Even by the second inference rule of Even
(instantiate x by 2 - n)
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Recapitulation: Predicate Logic

Final Remark on Inductively Defined Sets
® so far: we just considered sets of singleton elements
® in general: sets may contain structured data, e.g. pairs or, more generally, tuples

e example: Fibonacci numbers, (n,z) € Fib encodes that x is n-th Fibonacci number

(n,z) € Fib (n+1,y) € Fib
(n+2,2+vy) € Fib

(0,1) € Fiib (1,1) € Fiib

® since Fib consists of pairs, property in induction formula becomes a binary predicate

(m,z) € Fib P(0,1) P(1,1) Vn,z,y.P(n,z) — P(n+1,y) — P(n+ 2,z +y)
P(m, z)
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Predicate Logic: Terms ecsptutation Predese bose
e 3 set of (function) symbols with arity
® )): set of variables, usually infinite
® example: ¥ = {plus/2,succ/1,zero/0}, V = {z,y,2,...}
e T(X,V): set of terms, inductively defined by two inference rules

eV f/nex tLLeTXV) ... t,, €TV
zeT(E,V) flt1,..tn) € T(Z,V)

for symbols with arity 0 we omit the parenthesis in terms in formulas,
i.e., we write zero as term and not zero()

® examples
® plus(z, plus(plus(zero, x), succ(y))) 4
° (%4
® plus X
® plus(z,y, 2) b 4
® remark: we do not use infix-symbols for formal terms
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Recapitulation: Predicate Logic

Predicate Logic: Syntactic Sugar

® we use all Boolean connectives
® false = —true
* (pVih) = (=(~e A )
* (p— ) =(~p V)
*(pe— ) =((¢ = Y)A [ — 9))
® we permit existential quantification
* (Fr.) =(Vz. ~p)
® however, these are just abbreviations, so when defining properties of formulas, we only
need to consider the connectives from the previous slide

® we use binding precedence = > A > V > — ¢— > JV
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Predicate Logic: Formulas

® 3. set of function symbols, V: set of variables

® P: set of (predicate) symbols with arity
o F(X,P,V): formulas over &, P, and V, inductively defined via

xeV peFX,PV)

Recapitulation: Predicate Logic

true € F(X,P,V) Ve, p € F(X,P,V)

p € F(X,P,V) p e F(E,PV) veF(E,PYV)

_W,OG}-(E,P,V) (p/\’(/)E.F(E,'P,V)
p/neP tHLeT(XV) ... t,eT(E,V)

p(tl,...,tn) E]:(E,'P
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Predicate Logic: Semantics

7V)

s

® defined via models, assignments and structural recursion
® a3 model M for formulas over 2, P, and V consists of

a non-empty set .4, the universe

for each f/n € ¥ there is a total function fM : A" —
for each p/n € P there is a relation p™ C A"

an assignment is a mapping o : V — A

A

e the term evaluation [-]o : T(3,V) — A is defined recursively as

e the satisfaction predicate M =, -

[olo =a@)  and  [f(tr,... ta)la = FM([0]

°* M [, true
o M=o plty,. .. tn) iff ([ti]a, .-, [tn]a) € PM
* ME, oAy iff M=, pand M =, 9
* M=o @ iff M, @
* Mo V. ¢ iff M l=ypima @ forallae A
where afz := a] is defined as afz := d](y) = @
a(y),

as s [tnla)

is defined recursively as

ify==x
otherwise

® if ¢ contains no free variables, we omit o and write M = ¢
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16/45


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recapitulation: Predicate Logic

Examples
e signature: ¥ = {plus/2,succ/1,zero/0}, P = {even/1,=/2}
® model 1:
°* A=N
° plusM(z,y) =z +y, succ™(z) =2+ 1, zeroM =0
® even™ = {2.n|neN}, =M= {(n,n) | n € N}
® M = Va,y.plus(z,y) = plus(y, z)
® model 2:
°* A=1Z
® plusM(x,y) = 2 — y, succ™(z) = |z|, zero™ = 42
® even™ = {2, -7}, =M = {(1000, 2000)}
® M [~ Va,y. plus(z,y) = plus(y, x)
® model 3:
* A= {e}
® plusM(z,y) = e, succM(z) = o, zeroM =
° evenM = {o}, =M =g
® M [~ Va,y. plus(z, y) = plus(y, x)

® not a model:
* A=N, plusM(z,y) =z —y, even™ = {... —4,-2,0,2,4,...}, ...
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Recapitulation: Predicate Logic

A Problem in the Model

® inductively defined sets

. _ neNat
Zero € Nat Succ(n) € Nat
n € Nat xs € List
Nil € List Cons(n, zs) € List
® construction of model
® A= NatU List
® ZeroM = Zero and Succ™(n) = Succ(n)
® NiM = Nil and Cons™(n, zs) = Cons(n, zs)

® problem: this is not a model
® Succ™ must be a total function of type A — A
® but Succ™(Nil) = Succ(Nil) ¢ A
® similar problem: a formula like
Vs ys zs. append(append(zs, ys), zs) = append(zs, append(ys, zs)) would have to hold
even when replacing zs by Zero!
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Models for Functional Programming

® consider program

data Nat = Zero | Succ Nat
data List = Nil | Cons Nat List

® datatype definitions clearly correspond to inductively defined sets

® tentative definition

n € Nat

Zero € Nat Succ(n) € Nat

n € Nat xs € List

Nil € List Cons(n, zs) € List

of universe A of model M for program
A = Nat U List

® obvious definition of meaning of constructors

o ZeroM = Zero,
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SuccM(n) = Succ(n), NilM = Nil, ...
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Solution to the One-Universe Problem

® consider many-sorted logic

® idea: a separate universe for each sort

naming issue: sort in logic ~ type in functional programming

this

lecture: we mainly speak about types

types need to be integrated everywhere

this
[ ]

typed signature
typed terms

typed formulas
typed assignments
typed quantifiers
typed universes
typed models

lecture: simple type system
no polymorphism (no generic List a type)
first-order (no A, no partial application, ...)
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Many-Sorted Predicate Logic: Terms

® T(X,V).: set of terms of type 7, inductively defined

r:TEV
xeT(E,V),
fimx..xm—=17eX t1eT(E, V),

tn € T(Z,V)s,

fltr, .. tn) € T(E, V),

® example

e for ill-typed terms such as Succ(Nil) there is no inference tree

V={n:N,...}
¥ ={Zero:N,Succ: N — N,Nil : L,Cons : N x L — L}

we omit the “€ V" and "€ X" when applying the inference rules

typing terms results in inference trees

n: N

Succ:N—=N neT(Z,V)n

Nil : L

Cons:NxL—L Succ(n) € T(Z, V)N

Nil € T(Z, V),

Cons(Succ(n), Nil) € T(Z, V)L
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Many-Sorted Logic

21/45

Many-Sorted Logic
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Many-Sorted Predicate Logic: Syntax
® Ty: set of types where each 7 € Ty is just a name
example: Ty = {Nat, List, ...}
¥: set of function symbols; each f € ¥ has type info € Tyt
we write f: 7] X ... X T, — 7o whenever f has type info 71 ... 7,7
example: ¥ = {Zero : Nat, plus : Nat x Nat — Nat, Cons : Nat x List — List,...}

e P: set of predicate symbols; each p € P has type info € Ty*
we write p C 7| X ... X T, whenever p has type info 71 ...7,
example: P = {< C Nat x Nat, =nat C Nat x Nat,even C Nat,
nonEmpty C List, =&t C List x List,elem C Nat X List,...}
note: no polymorphism, so there cannot be a generic equality symbol
® V) set of variables, typed
example: V = {n : Nat, zs : List, ...}
we write V; as the set of variables of type 7
® notation

® function and predicate symbols: blue color, variables: black color
® often Ty and V are not explicitly specified
RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications

Many-Sorted Logic
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Many-Sorted Logic

Many-Sorted Predicate Logic: Formulas
® recall: V, ¥ and P are typed sets of variables, function symbols and predicate symbols
® next we define typed formulas F (X, P, V) inductively
® the definition is similar as in the untyped setting

only difference: add types to inference rule for predicates

zeV peFXE,PV)

true € F(3,P,V) V. o € F(3,P,V)
peF(EP,V) peF(X,P,V) veFEPYV)
~p € F(X,P,V) pAY € F(X,P,V)
(pngx...XTn)E'P t1€T(E,V)Tl tnET(E,V)Tn

p(tr, - tn) € F(5,P, V)
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Many-Sorted Logic

Many-Sorted Predicate Logic: Semantics

® defined via typed models and assignments
® a model M for formulas over Ty, ¥, P, and V consists of
® a collection of non-empty universes A, one for each 7 € Ty
e foreach f: 7 X ...x 7, = T € ¥ there is a function fM: A, x...x A, — A,
® foreach (p C 7y X ... X 7,) € P there is a relation pM C A, x ... x A,,
® an assignment is a type-preserving mapping @ : V — U, 7 Ar,
i.e., whenever z : 7 € V then a(z) € A-
® the term evaluation [-]o : T(2, V), — A, is defined recursively as
* [z]a = a(2)
* [ftr, - t)la = A ([t1]as - - - [En]a)
note that -], is overloaded in the sense that it works for each type 7
e the satisfaction predicate M =, - is defined recursively as
® M=o Vo ¢ iff M =y p.—a) @ for all a € A, where 7 is the type of =

° M=o pte, ... tn) iff ([ti]a,-- -, [ta]a) € p™
® .. .remainder as in untyped setting
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Many-Sorted Logic

Many-Sorted Predicate Logic: Well-Definedness

® consider the term evaluation
* [z]a = a(2)
* [ftr, - ti)la = ([tilas - - [En]a)
® it was just stated that this a function of type []o : T(X, V), = A;
® similarly, the definition
°M ':a p(th e »tn) iff ([[tl]]aa ERRE) [[tn]]a) € pM
has to be taken with care: we need to ensure that ([t1]a, - -
such that the membership test is type-correct

. [ta]a) and pM fit together,

® in general, such type-preservation statements need to be proven!

® however, often this is not even mentioned
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Example
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Ty = {Nat, List}
3 = {Zero : Nat, Succ : Nat — Nat, Nil : List,app : List x List — List}
P = {= C List x List}

Anat =N

Alist = {[z1,.--,20) | n € N,V <i < n.x; € N}
ZeroM =0

SuccM(n) =n+1

definition is okay: m can be no list, since n € Ay, =N
NilM =[]

appM([21, -+ 20, W15 Ym)) = [T15 - s Ty Y1y - - - Y
again, this is sufficiently defined, since the arguments of app™ are two lists

=M = {(zs,25) | 5 € AList}
M | Vs, ys, zs. app(zs, app(ys, zs)) = app(app(zs, ys), zs)
M W= Vas. app(zs, zs) = s M = Fzs. app(zs, zs) = s

Part 2 — A Logic for Program Specifications

Type-Checking
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Type-Checking

Type-Checking
® inference trees are proofs that certain terms have a certain type
® inference trees cannot be used to show that a term is not typable

® want: executable algorithm that given 3, V, and a candidate term,
computes the type or detects failure

® in Haskell: function definition with type

typeCheck Sig -> Vars -> Term -> Maybe Type

® preparation: error handling in Haskell with monads
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. . Type-Checking
Error-Handling with Monads
e recall Haskell's I/O-monad
® 10 a internally stores a state (the world) and returns result of type a
® with do-blocks, we can sequentially perform |0-actions, and receive intermediate values;
core function for sequential composition: (>>=) I0a -> (a->I0b) ->I00b

® example
greeting = do
x <- getLine -- I0 String, action: read user input
putStr "hello " -- I0 (), action: print something
putStr x -- I0 (), action: print something
return (x ++ x) -- I0 String, no action, return result

® also Maybe can be viewed as monad

® Maybe a internally stores a state (successful or error) and returns result of type a
® core functions for Maybe-monad
® (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
Nothing >>= _ = Nothing -- errors propagate
Just x >>=f = f x
® return :: a -> Maybe a
return x = Just x
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. . . . Type-Checkin
Explicit Error-Handling with Maybe : ¢
® recall Haskell's builtin type
data Maybe a = Just a | Nothing
e useful to distinguish successful from non-successful computations

® Just x represents successful computation with result value x
® Nothing represents that some error occurred

® example for explicit error handling: evaluating an arithmetic expression
data Expr = Var String | Plus Expr Expr | Div Expr Expr

eval :: (String -> Integer) -> Expr -> Maybe Integer
eval alpha (Var x) = Just (alpha x)
eval alpha (Plus el e2) = case (eval alpha el, eval alpha e2) of
(Just x1, Just x2) -> Just (x1 + x2)
_ —> Nothing
eval alpha (Div el e2) = case (eval alpha el, eval alpha e2) of
(Just x1, Just x2) —->
if x2 /= 0 then Just (x1 “div” x2) else Nothing
-> Nothing
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Type-Checking

Monads in Haskell

® Haskell's |/O-monad
e (>>=) I0a > (a->I0Db) ->I0Db
® return :: a -> I0 a
® the error monad of type Maybe a
® (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
® return :: a -> Maybe a
® generalization: arbitrary monads via type-class
class Monad m where
>>=) ::ma->(@->mb) >mb
return a->ma
® 10 and Maybe are instances of Monad
® do-notation is available for all monads
® monad-instances should satisfy the three monad laws
(return x) >»>=f = f x
m >>= return = m
(m >>=f) >>=g m>>= (\ x => f x >= g)
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. . . . Type-Checking Type-Checking
Example: Expression-Evaluation in Monadic Style

data Expr = Var String | Plus Expr Expr | Div Expr Expr Example Library Function for Monads
® mapM :: Monad m => (a -> m b) -> [a] -> m [b]

eval :: (String -> Integer) —> Expr —> Maybe Integer ® similar tomap :: (a -> b) -> [a] -> [b], just in monadic setting
eval alpha (Var x) = return (alpha x) ® applies a monadic function sequentially to all list elements
eval alpha (Plus el e2) = do ® possible implementation

x1 <- eval alpha el mapM f [] = return []

x2 <- eval alpha e2 mapM £ (x : xs) = do

return (x1 + x2) y<tx

ys <- mapM f xs

eval alpha (Div el e2) = do
1 < 1 aloh 1 return (y : ys)
x eval alpha € ® consequence for Maybe-monad:
x2 <- eval alpha e2 -
X o . mapM f [x_1, ..., x_n] = return ys
if x2 /= 0 then return (x1 “div’ x2) else Nothing is satisfied iff
® advantages ® f x i =return y_iforall1<i<n, and
® no pattern-matching on Maybe-type required any more, more readable code; ®ys=I[yt, ..., ynl
hence monadic style simplifies reasoning about these programs
® easy to switch to other monads, e.g. for errors with messages
® Prelude already contains several functions for monads
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Type-Checking Type-Checking

Type-Checking Algorithm Correctness of Type-Checking
® back to type-checking ® aim: prove correctness of type-checking algorithm
e (informal) proof is performed in two steps

® ift € T(3,V), then typeCheck sigma vars t = return tau
® if typeCheck sigma vars t = return tauthent¢ e T (X, V),

® the algorithm can now be defined concisely as
type Type = String

:ziz z:;;m = :tizi ® before these two steps are done, some alignment of the representation is performed
type Vars = Var -> Maybe Type ® in the theory V is set of type-annotated variables

® in the program vars is a partial function from variables to types
type FSymInfo = ([Typel, Type) ® obviously, these two representations can be aligned:

type Sig = FSym -> Maybe FSymInfo
data Term = Var Var | Fun FSym [Term]

x: 7 €V is the same as vars x = return tau

® similarly for function symbols we demand that

typeCheck :: Sig -> Vars -> Term -> Maybe Type Jim X X1 27 €X
typeCheck sigma vars (Var x) = vars x is the same as
typeCheck sigma vars (Fun f ts) = do sigma f = return ([tau_1,...,tau_n], tau_0)

® moreover the term representations can be aligned, e.g.

(tysIn,tyOut) <- sigma f
,tn) is the same as Fun £ [t_1, ..., t_n]

tysTs <- mapM (typeCheck sigma vars) ts [, ...
if tysTs == tysIn then return tyOut else Nothing from now on we mainly use mathematical notation assuming the obvious alignments,

even when executing Haskell programs
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Type-Checking

Completeness of Type-Checking Algorithm
if t € T(X,V); then typeCheck ¥V t = return 7
e proof is by structural induction according to the definition of 7(X, V),

® note that in the definition of the inductively defined set 7 (X, V), the 7 changes;
therefore, the induction rule uses a binary property:

teT (X, V), Ve,mp.2:179 €V — Plx,70) (%)
P(t,7)
VFoT0se ooy Tastlye o ostn [T X oo X Ty > Tp € X — (%)
P(ty,m1) — ... — P(tp, ) — P(f(t1,-.,tn),70)

® in our case P(t,7) is typeCheck ¥ V t = return 7
® base case:
® let x: 71 €V, aim is to prove P(z, 1)
® via the alignment we know V = = return
(where V refers to the partial function within the algorithm)
® hence by the definition of the algorithm: typeCheck ¥V x =V x = return 19

RT (DCS @ UIBK) Part 2 — A Logic for Program Specifications 37/45

Type-Checking

Soundness of Type-Checking Algorithm
if typeCheck ¥V t = return T then t € T(X,V),

® we perform structural induction on ¢
(w.r.t. untyped terms as defined by the Haskell datatype definition)

® the induction rule only mentions a unary property
Va. P(Var x) (%)
P(t: Term)
Vit ..oty P(t1) — ... — P(tn) — P(f(t1,...,tn)) (%)

e first attempt: define P(¢) as
typeCheck ¥V t = return 7 — t € T(3, V),

e then the induction hypothesis in the case f(¢1,...,t,) for each t; is
P(t;) = (typeCheck ¥V t; = return 7 — t; € T (X, V)7)

® the IH is unusable as ¢; will have type 7; which in general differs from 7
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Type-Checking

Completeness of Type-Checking Algorithm
recall: P(t,7) is typeCheck ¥V t = return T

® it remains to prove (x),solet f: 7 X ... X7, > Tp € X

e we have to prove P(f(t1,...,tn), o) using the induction hypothesis P(t;, ;) for all

1<i1<n

® via the alignment we know X f = return ([11,..., 7], 70)
® from the induction hypothesis we know that

map (typeCheck X V) [t1,...,tn] = [return 71, ..., return 7,
® hence, by the definition of mapM,

mapM (typeCheck X V) [t1,...,ty] = return [11,..., Ty

® hence by evaluating the Haskell-code we obtain
typeCheck XV f(t1,...,tn)

=4f [11,...,7Tn) = [71,...,Tn] then return 7y else Nothing
= return Ty
so P(f(t1,...,tn), o) is satisfied
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Induction Proofs with Arbitrary Variables fopeiChectine

® previous slide: using
P(t) = (typeCheck XV t = return T — t € T(Z,V),)
as property in induction rule is too restrictive, leads to IH
P(t;) = (typeCheck ¥V t; = return 1 — t; € T(Z,V);)

® aim: ability to use arbitrary 7; in IH instead of 7

® formal solution via universal quantification:
define P and @ as follows and use P in induction

Q(t, 1) = (typeCheck ¥V t = return 1 — t € T(X,V);)
P(t) = (V7. Q(t,7))
e effect: induction hypothesis for ¢; will be P(t;) = (V7. Q(t;, 7)) which in particular
implies the desired Q(t;, 7;)
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Induction Proofs with Arbitrary Variables fopeichecine

® previous slide:

Q(t,7) = (typeCheck LV t = return 7 — t € T(3,V),)
P(t) = (V7. Q(t, 7))

® we now prove P(t) by induction on ¢, this time being quite formal
® base case: t = Var x

® we have to show P(t) = P(Var z) = (V7. Q(Var x, 7))
o V-intro: pick an arbitrary 7 and show Q(Var z,7), i.e.,
typeCheck ¥V (Var z) = return 71 — x € T(X,V)-
® —-intro: assume typeCheck ¥V (Var x) = return T,
and then show z € T(3,V),
® simplify assumption typeCheck XV (Var x) = return T to V & = return 7
® by alignment this is identical to z : 7 € V
® use introduction rule of 7(X, V), to finally show z € T(X, V),

note that step o is the only additional (but obvious) step that was required to deal with
the auxiliary universal quantifier
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Induction Proofs with Arbitrary Variables: Remarks TvpeChecking

Q(t,7) = (typeCheck ¥V t = return 1 — t € T(X,V);)
P(t) = (V7. Q(t,7))

® the method to make a variable arbitrary within an induction proof is always the same, via
universal quantification

e the required steps within the formal reasoning (marked with o in the previous proof) are
also automatic

® therefore, in the following we will just write statements like
“we perform induction on x for arbitrary y and 2"
or
“we prove P(x,y,z) by induction on x for arbitrary y and z"
without doing the universal quantification explicitly

® the effect of introducing arbitrary variables is a generalization:
instead of proving P(x,y, z) for a fixed y and z, we show it for all y and z
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Induction Proofs with Arbitrary Variables: Step Case

Type-Checking

Q(t,7) = (typeCheck LV t = return 7 — t € T (3, V),)
P(t) = (V7. Q(t, 7))

® step case: t = f(t1,...,tn)

o

we have to show P(f(t1,...,tn)) = (V7. Q(f(t1,...,tn), 7))

V-intro: pick an arbitrary 7 and show Q(f(t1,...,ts),7), i.e.,

typeCheck ¥V f(t1,...,tn) = return 7 — f(t1,...,tn) € T(E, V),

—-intro: assume typeCheck XV f(t1,...,tn) = return 7, and show

f(tla . ~7tn) € T(E7V)7'

by the assumption typeCheck ¥V f(t1,...,tn) = return 7 and by definition of typeCheck,
we know that there must be types 71, ..., 7, such that

mapM (typeCheck ¥ V) [t1,...,t,] = return [71,...,7,], and hence

typeCheck ¥V t; = return 7; for all 1 <i<n

again using the assumption and the algorithm definition we conclude that

Y f=return ([r1,...,m],7) and thus, f: 71 X ... X T, > T EX

by the IH we conclude P(t;) and hence Q(t;, ;) using V-elimination

in combination with typeCheck ¥ V t; = return 7; we arrive at t; € T(X,V),, and can
finally apply the introduction rules for typed terms to conclude f(ty,...,t,) € T(X,V),
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Type-Checking

Summary of Type-Checking

definition of typed terms via inference rules

® equivalent definition via type-checking algorithm

both representations have their advantages

inference rules come with convenient induction principle
type-checking can also detect typing errors, i.e.,
it can show that something is not member of an inductively defined set

® note: we have verified a first non-trivial program!

® given the precise semantics of typed terms

RT (DCS @ UIBK)

via an intuitive meaning of what inductively defined sets are
with an intuitive meaning of how Haskell evaluates
with intuitively created alignments
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Summary of Chapter
® inductively defined sets give rise to structural induction rule

® inductively defined sets can be used to model datatypes of
(first-order non-polymorphic) functional programs

® many sorted/typed terms and predicate logic allows adequate modeling of datatypes
e verified type-checking algorithm

® induction proofs with “arbitrary” variables
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