
Summer Term 2024

Program Verification
Part 3 – Semantics of Functional Programs

René Thiemann

Department of Computer Science

Overview

• definition of a small functional programming language

• operational semantics

• a model in many-sorted logic

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 2/51

Functional Programming – Data Types

Functional Programming – Data Types

Data Type Definitions

• a functional program contains a sequence of data type definitions

• while processing the sequence, we determine the set of types Ty, the signature Σ, and the
predicates P, which are all initially empty
• each data type definition has the following form

data τ = c1 : τ1,1 × . . .× τ1,m1 → τ
| . . .
| cn : τn,1 × . . .× τn,mn → τ

where

• τ /∈ Ty fresh type name
• c1, . . . , cn /∈ Σ and ci ̸= cj for i ̸= j fresh and distinct constructor names
• each τi,j ∈ {τ} ∪ Ty only known types
• exists ci such that τi,j ∈ Ty for all j non-recursive constructor

• effect: add type, constructors and equality predicate
• Ty := Ty ∪ {τ}
• Σ := Σ ∪ {c1 : τ1,1 × . . .× τ1,m1 → τ, . . . , cn : τn,1 × . . .× τn,mn → τ}
• P := P ∪ {=τ ⊆ τ × τ}

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 4/51

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Functional Programming – Data Types

Data Type Definitions: Examples
• Ty = Σ = P = ∅
• data Nat = Zero : Nat | Succ : Nat→ Nat

• processing updates Ty = {Nat},
Σ = {Zero : Nat,Succ : Nat→ Nat}
and P = {=Nat ⊆ Nat× Nat}
• data List = Nil : List | Cons : Nat× List→ List

• processing updates Ty = {Nat, List},
Σ = {Zero : Nat,Succ : Nat→ Nat,Nil : List,Cons : Nat× List→ List}
and P = {=Nat ⊆ Nat× Nat,=List ⊆ List× List}
• data BList = NilB : BList | ConsB : Bool× BList→ BList
not allowed, since Bool /∈ Ty
• data LList = Nil : LList | Cons : List× LList→ LList
not allowed, since Nil and Cons are already in Σ

• data Tree = Node : Tree× Nat× Tree→ Tree
not allowed, since all constructors are recursive

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 5/51

Functional Programming – Data Types

Data Type Definitions: Standard Model

• while processing data type definitions we also build a modelM for the functional
program, called the standard model

• when processing
data τ = c1 : τ1,1 × . . .× τ1,m1 → τ

| . . .
| cn : τn,1 × . . .× τn,mn → τ

• define universe Aτ for new type τ inductively via the following inference rules
(one for each 1 ≤ i ≤ n)

t1 ∈ Aτi,1 . . . tmi
∈ Aτi,mi

ci(t1, . . . , tmi
) ∈ Aτ

• define cMi (t1, . . . , tmi) = ci(t1, . . . , tmi) uninterpreted constructors
• define =M

τ = {(t, t) | t ∈ Aτ} equality

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 6/51

Functional Programming – Data Types

Data Type Definitions: Example and Standard Model
• data Nat = Zero : Nat | Succ : Nat→ Nat

• processing creates universe ANat via the inference rules

Zero ∈ ANat

t ∈ ANat

Succ(t) ∈ ANat

i.e., ANat = {Zero,Succ(Zero),Succ(Succ(Zero)), . . .}
• ZeroM = Zero SuccM(t) = Succ(t)

• =M
Nat = {(Zero,Zero), (Succ(Zero), Succ(Zero)), . . .}

• data List = Nil : List | Cons : Nat× List→ List

• processing creates universe AList via the inference rules

Nil ∈ AList

t1 ∈ ANat t2 ∈ AList

Cons(t1, t2) ∈ AList

i.e., AList = {Nil,Cons(Zero,Nil),Cons(Succ(Zero),Nil), . . .}
• =M

List = {(Nil,Nil), (Cons(Zero,Nil),Cons(Zero,Nil)), . . .}
RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 7/51

Functional Programming – Data Types

Well-Definedness of Standard Model
• question: is the standard model really a model in the sense of many-sorted logic

• is there a unique type for each ci ∈ Σ and =τ ∈ P
• are the definitions of cMi and =M

τ well-defined
• are the definitions of Aτ well-defined, i.e., Aτ ̸= ∅

• recall: each data definition has the following form

data τ = c1 : τ1,1 × . . .× τ1,m1 → τ
| . . .
| cn : τn,1 × . . .× τn,mn → τ

where
• τ /∈ Ty fresh type name
• c1, . . . , cn /∈ Σ and ci ̸= cj for i ̸= j

fresh and distinct constructor names
• each τi,j ∈ {τ} ∪ Ty only known types
• exists ci such that τi,j ∈ Ty for all j non-recursive constructor

• what could happen if one of the conditions is dropped?

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 8/51

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Functional Programming – Data Types

Non-Empty Universes

• without the last condition (non-recursive constructor) the following data type declaration
would be allowed (assuming that Nat and Succ are fresh names)

data Nat = Succ : Nat→ Nat

with the universe defined as the inductive set ANat

t ∈ ANat

Succ(t) ∈ ANat

• consequence: ANat = ∅
• hence, non-recursive constructors are essential for having non-empty universes

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 9/51

Functional Programming – Data Types

Non-Empty Universes: Proof

Theorem

Let there be a list of data type declarations and an arbitrary type τ from this list. Then
Aτ ̸= ∅.

Proof

Let τ1, . . . , τn be the sequence of types that have been defined. We show

P (n) := ∀1 ≤ i ≤ n. Aτi ̸= ∅

by induction on n. This will entail the theorem.
In the base case we have to prove P (0), which is trivially true. Now let us show P (n+ 1)
assuming P (n). Because of P (n), we only have to prove Aτn+1 ̸= ∅. By the definition of
data types, there must be some ci : τi,1 × . . .× τi,mi → τn+1 where all τi,j ∈ {τ1, . . . , τn}. By
the IH P (n) we know that Aτi,j ̸= ∅ for all j between 1 and mi. Hence, there must be terms
t1 ∈ Aτi,1 , . . . , tmi ∈ Aτi,mi

. Consequently, ci(t1, . . . , tmi) ∈ Aτn+1 , and hence Aτn+1 ̸= ∅.

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 10/51

Functional Programming – Data Types

Current State

• presented: data type definitions
• semantics

• free constructors: each constructor is interpreted as itself
• universe as inductively defined sets: no infinite terms, such as infinite lists

Cons(Zero,Cons(Zero, . . .))
(modeling of infinite data structures would be possible via domain-theory)

• upcoming: functional programs, i.e., function definitions

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 11/51

Functional Programming – Function Definitions

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Functional Programming – Function Definitions

Splitting the signature
• distinguish between

• constructors, declared via data (start with capital letters in Haskell)
e.g., Nil,Succ,Cons

• defined functions, declared via equations (start with lowercase letters in Haskell)
e.g., append, add, reverse

• formally, we have Σ = C ⊎ D
• C is set of constructors, defined via data

• constructors are written c, ci, d in generic constructs such as data type definitions
• start with uppercase letters in concrete examples (Succ,Cons)

• D is set of defined symbols, defined via function declarations
• defined (function) symbols are written f , fi, g in generic constructs such as function

definitions
• start with lowercase letters in concrete examples (append, reverse)

• we use F , G for elements of Σ whenever separation between C and D is not relevant

• note that in the standard model, Aτ is exactly T (C)τ := T (C,∅)τ ,
which is the set of constructor ground terms of type τ

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 13/51

Functional Programming – Function Definitions

Notions for Preparing Function Definitions

• a pattern is a term in T (C,V), usually written p or pi
• a term t in T (Σ,V) is linear, if all variables within t occur only once

• reverse(Cons(x,Cons(y, xs))) ✔
• reverse(Cons(x,Cons(x, xs))) ✘

• the variables of a term t are defined as Vars(t)
• Vars(x) = {x}
• Vars(F (t1, . . . , tn)) = Vars(t1) ∪ . . . ∪ Vars(tn)

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 14/51

Functional Programming – Function Definitions

Function Definitions
• besides data type definitions, a functional program consists of a sequence of function
definitions, each having the following form

f : τ1 × . . .× τn → τ

ℓ1 = r1 where

. . . = . . .

ℓm = rm

• f is a fresh name and D := D ∪ {f : τ1 × . . .× τn → τ}
(hence, f is also added to Σ = C ∪ D)
• each left-hand side (lhs) ℓi is linear

• each lhs ℓi is of the form f(p1, . . . , pn) with all pj ’s being patterns

• each lhs ℓi and rhs ri only use currently known symbols: ℓi, ri ∈ T (Σ,V)
• each lhs ℓi and rhs ri respect the type: ℓi, ri ∈ T (Σ,V)τ
• each equation ℓi = ri satisfies the variable condition Vars(ri) ⊆ Vars(ℓi)

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 15/51

Functional Programming – Function Definitions

Function Definitions: Examples
• assume data types Nat and List have been defined as before (slide 5)

add : Nat× Nat→ Nat

add(Zero, y) = y

add(Succ(x), y) = add(x,Succ(y))

append : List× List→ List

append(Cons(x, xs), ys) = Cons(x, append(xs, ys))

append(xs, ys) = ys

head : List→ Nat

head(Cons(x, xs)) = x

zeros : List

zeros = Cons(Zero, zeros)

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 16/51

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Functional Programming – Function Definitions

Function Definitions: Non-Examples
• assume program from previous slides + data Bool = True | False

even : Nat→ Bool

even(Zero) = True

even(Succ(x)) = odd(x) ✘

odd : Nat→ Bool

odd(Zero) = False

odd(Succ(x)) = even(x) ✘

random : Nat

random = x ✘

minus : Nat× Nat→ Nat

minus(Succ(x),Succ(y)) = minus(x, y)

minus(x,Zero) = x

minus(x, x) = Zero ✘

minus(add(x, y), x) = y ✘
RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 17/51

Functional Programming – Function Definitions

Semantics for Function Definitions

• problem: given a function definition

f : τ1 × . . .× τn → τ

ℓ1 = r1

. . . = . . .

ℓm = rm

we need to extend the semantics in the standard model, i.e., define the function

fM : Aτ1 × . . .×Aτn → Aτ

or equivalently
fM : T (C)τ1 × . . .× T (C)τn → T (C)τ

• idea: define fM(t1, . . . , tn) as

the result of f(t1, . . . , tn) after evaluation w.r.t. equations in program

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 18/51

Functional Programming – Function Definitions

Semantics for Function Definitions – Continued

• required: fM : T (C)τ1 × . . .× T (C)τn → T (C)τ
• idea: define fM(t1, . . . , tn) as

the result of f(t1, . . . , tn) after evaluation w.r.t. equations in program
• several issues:

• how is term evaluation defined?
• briefly: replace instances of lhss by instances of rhss as long as possible

• is result unique?
• is result element of T (C)τ?
• does evaluation terminate?

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 19/51

Functional Programming – Function Definitions

Function Definitions: Examples
• consider previous program, type declarations omitted

add(Zero, y) = y (1)

add(Succ(x), y) = add(x,Succ(y)) (2)

append(Cons(x, xs), ys) = Cons(x, append(xs, ys)) (3)

append(xs, ys) = ys (4)

head(Cons(x, xs)) = x (5)

zeros = Cons(Zero, zeros) (6)

• is result unique? no: consider t = append(Cons(Zero,Nil),Nil)

then t
(3)
= Cons(Zero, append(Nil,Nil))

(4)
= Cons(Zero,Nil)

and t
(4)
= Nil

• is result element of T (C)τ? no: head(Nil) cannot be evaluated

• does evaluation terminate? no: zeros = Cons(Zero, zeros) = . . .

• solution: further restrictions on function definitions

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 20/51

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Functional Programming – Operational Semantics

Functional Programming – Operational Semantics

Functional Programming: Operational Semantics

• operational semantics: formal definition on how evaluation proceeds step-by-step

• main operation: applying a substitution σ : V → T (Σ,V) to a term,
can be defined recursively
• xσ = σ(x)
• F (t1, . . . , tn)σ = F (t1σ, . . . , tnσ)

• one-step evaluation relation ↪→ ⊆ T (Σ,V)× T (Σ,V) defined as inductive set

ℓ = r is equation in program

ℓσ ↪→ rσ
root step

F ∈ Σ si ↪→ ti
F (s1, . . . , si, . . . , sn) ↪→ F (s1, . . . , ti, . . . , sn)

rewrite in context

• given a term t and a lhs ℓ, for checking whether a root-step is applicable one needs
matching: ∃σ. ℓσ = t (and also deliver that σ)

• same evaluation as in functional programming (lecture),
except that order of equations is ignored and here it becomes formal

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 22/51

Functional Programming – Operational Semantics

Matching
• we define matching as an operation on a set of pairs P = {(ℓ1, t1), . . . , (ℓn, tn)} and the
task is to decide: ∃σ. ℓ1σ = t1 ∧ . . . ∧ ℓnσ = tn, i.e.,
• either return the required substitution σ in the form of a set of pairs {(x1, s1), . . . , (xm, sm)}

with all xi distinct which can then be interpreted as the substitution σ defined by

σ(x) =

{
si, if x = xi for some i

x, otherwise

• or return ⊥ indicating that no such substitution exists

• matching algorithm: apply rules ↷ as long as possible

P ⊎ {(F (ℓ1, . . . , ℓn), F (t1, . . . , tn))}↷ P ∪ {(ℓ1, t1), . . . , (ℓn, tn)} (decompose)

P ⊎ {(F (...), G(...))}↷ ⊥ if F ̸= G (clash)

P ⊎ {(F (...), x)}↷ ⊥ if x ∈ V (fun-var)

P ⊎ {(x, s), (x, t)}↷ ⊥ if x ∈ V and s ̸= t (var-clash)

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 23/51

Functional Programming – Operational Semantics

Matching – Example

• we want to test whether there is a root step possible for the term
t = append(Cons(y,Nil),Cons(y, ys)) w.r.t. the equation
(ℓ = r) = (append(Cons(x, xs), ys) = Cons(x, append(xs, ys)))

• setup matching problem {(ℓ, t)}

P = {(append(Cons(x, xs), ys), append(Cons(y,Nil),Cons(y, ys)))}
↷ {(Cons(x, xs),Cons(y,Nil)), (ys,Cons(y, ys))}
↷ {(x, y), (xs,Nil), (ys,Cons(y, ys))}

• obtain substitution σ(z) =

y, if z = x

Nil, if z = xs

Cons(y, ys), if z = ys

z, otherwise

• so, t = ℓσ ↪→ rσ = Cons(x, append(xs, ys))σ = Cons(y, append(Nil,Cons(y, ys)))

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 24/51

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Functional Programming – Operational Semantics

Matching – Verification and Termination Proof
• matching algorithm

P ⊎ {(F (ℓ1, . . . , ℓn), F (t1, . . . , tn))}↷ P ∪ {(ℓ1, t1), . . . , (ℓn, tn)} (decompose)

P ⊎ . . . ↷ ⊥ (other rules)

• soundness = termination + partial correctness

• termination: in each step, the sum of the size of terms (# symbols) is decreased

|(F (ℓ1, . . . , ℓn), F (t1, . . . , tn))| = |F (ℓ1, . . . , ℓn)|+ |F (t1, . . . , tn)|

= 1 +
∑
i

|ℓi|+ 1 +
∑
i

|ti|

>
∑
i

|ℓi|+
∑
i

|ti|

=
∑
i

|(ℓi, ti)|

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 25/51

Functional Programming – Operational Semantics

Matching – Type Preservation

• matching algorithm

P ⊎ {(F (ℓ1, . . . , ℓn), F (t1, . . . , tn))}↷ P ∪ {(ℓ1, t1), . . . , (ℓn, tn)} (decompose)

P ⊎ . . . ↷ ⊥ (other rules)

• property: we say that a set of pairs P is type-correct, iff for all pairs (ℓ, t) ∈ P the types
of ℓ and t are identical, i.e., ∃τ. {ℓ, t} ⊆ T (Σ,V)τ
• theorem: whenever P is type-correct, then P will stay type-correct during the algorithm;
consequently, any result ̸= ⊥ will be type-correct

• proof: we prove an invariant, so we only need to prove that the property is maintained
when performing a single ↷-step in the algorithm:
consider “decompose”
• we can assume {F (ℓ1, . . . , ℓn), F (t1, . . . , tn)} ⊆ T (Σ,V)τ
• so F : τ1 × . . .× τn → τ for suitable τi
• hence, {ℓi, ti} ⊆ T (Σ,V)τi for all i

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 26/51

Functional Programming – Operational Semantics

Matching – Structure of Result
• matching algorithm: apply ↷ as long as possible

P ⊎ {(F (ℓ1, . . . , ℓn), F (t1, . . . , tn))}↷ P ∪ {(ℓ1, t1), . . . , (ℓn, tn)} (decompose)

P ⊎ {(F (...), G(...))}↷ ⊥ if F ̸= G (clash)

P ⊎ {(F (...), x)}↷ ⊥ if x ∈ V (fun-var)

P ⊎ {(x, s), (x, t)}↷ ⊥ if x ∈ V and s ̸= t (var-clash)

• property: result of matching algorithm on well-typed inputs is ⊥ or set
{(x1, s1), . . . , (xm, sm)} with all xi distinct
• proof

• assume result is not ⊥, then it must be some set of pairs P = {(u1, s1), . . . , (um, sm)}
where no rule is applicable

• if all ui’s are variables, then the result follows: there cannot be two entries (ui, si) and
(uj , sj) with ui = uj and si ̸= sj because then “var-clash” would have been applied

• it remains to consider the case that some ui = F (ℓ1, . . . , ℓn)
• si = F (t1, . . . , tk), as result is not ⊥, cf. “clash” and “fun-var”
• then k = n because of type preservation: contradiction to “decompose”

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 27/51

Functional Programming – Operational Semantics

Matching – Preservation of Solutions
• matching algorithm

P ⊎ {(F (ℓ1, . . . , ℓn), F (t1, . . . , tn))}↷ P ∪ {(ℓ1, t1), . . . , (ℓn, tn)} (decompose)

P ⊎ {(F (...), G(...))}↷ ⊥ if F ̸= G (clash)

P ⊎ {(F (...), x)}↷ ⊥ if x ∈ V (fun-var)

P ⊎ {(x, s), (x, t)}↷ ⊥ if x ∈ V and s ̸= t (var-clash)

• property: algorithm preserves matching substitutions
(where ⊥ has no matching substitution)
• proof by considering invariant of single step: whenever P ↷ P ′, then σ is a matcher of P
iff σ is matcher of P ′

• clash: both “σ is matcher of {(F (...), G(...))} ∪ P” and
“σ is matcher of ⊥” are wrong: F (t1, . . .)σ = F (t1σ, . . .) ̸= G(...)

• fun-var and var-clash are similar
• decompose: F (ℓ1, . . . , ℓn)σ = F (t1, . . . , tn)
←→ F (ℓ1σ, . . . , ℓnσ) = F (t1, . . . , tn)
←→ ℓ1σ = t1 ∧ . . . ∧ ℓnσ = tn

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 28/51

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Functional Programming – Operational Semantics

Matching Algorithm – Summary

• algorithm: apply ↷ as long as possible

• (one) termination proof

• (many) partial correctness proofs
mainly by showing invariants that are preserved by ↷
• type preservation
• preservation of matching substitutions
• result is ⊥ or a set which encodes a substitution

• application: compute root steps by testing whether decomposition of term into ℓσ for
equation ℓ = r is possible

• core of functional programming (and term rewriting)

• much better algorithms exists, which avoid to match against all lhss, based on
precalculation (term indexing), e.g., group equations by root symbol of lhss

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 29/51

Semantics in the Standard Model

Semantics in the Standard Model

Towards Semantics in Standard Model

• evaluation of terms is now explained: one-step relation ↪→
• algorithm for evaluation is similar to matching algorithm:

apply ↪→-steps until no longer possible
• questions are similar as in matching algorithm

• termination: do we always get result?
• preservation of types?
• is result a desired value, i.e., a constructor ground term?
• is result unique?

• questions don’t have positive answer in general, cf. slide 20

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 31/51

Semantics in the Standard Model

Type Preservation of ↪→
• aim: show that ↪→ preserves types:

t ∈ T (Σ,V)τ −→ t ↪→ s −→ s ∈ T (Σ,V)τ

• proof will be by induction w.r.t. inductively defined set ↪→ for arbitrary τ

• preliminary: we call a substitution type-correct, if σ(x) ∈ T (Σ,V)τ whenever x : τ ∈ V
• easy result: whenever t ∈ T (Σ,V)τ and σ is type-correct, then tσ ∈ T (Σ,V)τ
(how would you prove it?)

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 32/51

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Semantics in the Standard Model

Type Preservation of ↪→ – Proof

• proof: induction w.r.t. inductively defined set ↪→ for arbitrary τ

• base case: ℓσ ↪→ rσ for some equation ℓ = r of the program where ℓσ ∈ T (Σ,V)τ and
we have to prove rσ ∈ T (Σ,V)τ
• since ℓσ ∈ T (Σ,V)τ , and ℓ, r ∈ T (Σ,V)τ by the definition of functional programs, we

conclude that σ is type-correct, cf. slide 26
• and since r ∈ T (Σ,V)τ and σ is type-correct, then also rσ ∈ T (Σ,V)τ , cf. previous slide

• step case: F (s1, . . . , si, . . . , sn) ↪→ F (s1, . . . , ti, . . . , sn) since si ↪→ ti, we know
F (s1, . . . , si, . . . , sn) ∈ T (Σ,V)τ and have to prove F (s1, . . . , ti, . . . , sn) ∈ T (Σ,V)τ
• since F (s1, . . . , si, . . . , sn) ∈ T (Σ,V)τ , we know that F : τ1 × . . .× τn → τ ∈ Σ and each

sj ∈ T (Σ,V)τj for 1 ≤ j ≤ n
• by the IH we know ti ∈ T (Σ,V)τi – note that here we can take a different type than τ ,

namely τi, because the induction was for arbitrary τ
• but then we immediately conclude F (s1, . . . , ti, . . . , sn) ∈ T (Σ,V)τ

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 33/51

Semantics in the Standard Model

Type Preservation of ↪→∗

• finally, we can show that evaluation (execution of arbitrarily many ↪→-steps, written ↪→∗)
preserves types, which is an easy induction proof on the number of steps by using
type-preservation of ↪→
• theorem: whenever t ∈ T (Σ,V)τ and t ↪→∗ s, then s ∈ T (Σ,V)τ
• proofs to obtain global result

1. show that matching preserves types (slide 26)
proof via invariant, since matching algorithm is imperative (while rules-applicable ...)

2. show that substitution application preserves types (slide 31)
proof by induction on terms, following recursive structure of definition of substitution
application (slide 22)

3. show that ↪→ preserves types (slide 33)
proof by structural induction w.r.t. inductively defined set ↪→;
uses results 1 and 2

4. show that ↪→∗ preserves types
proof on number of steps; uses result 3

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 34/51

Semantics in the Standard Model

Preservation of Groundness of ↪→∗

• a term t is ground if Vars(t) = ∅, or equivalently if t ∈ T (Σ)
• recall aim: we want to evaluate ground term like append(Cons(Zero,Nil),Nil) to element
of universe, i.e., constructor ground term

• hence, we need to ensure that result of evaluation with ↪→ is ground

• preservation of groundness can be shown with similar proof structure as in the proof of
preservation of types

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 35/51

Semantics in the Standard Model

Normal Forms – The Results of an Evaluation

• a term t is a normal form (w.r.t. ↪→) if no further ↪→-steps are possible:

∄s. t ↪→ s

• whenever t ↪→∗ s and s is in normal form, then we write

t ↪→! s

and call s a normal form of t

• normal forms represent the result of an evaluation
• known results at this point: whenever t ∈ T (Σ)τ and t ↪→! s then

• s ∈ T (Σ,V)τ (type-preservation)
• s ∈ T (Σ) (groundness-preservation)
• s ∈ T (Σ)τ (combined)

• missing:
• s ∈ T (C)τ (constructor-ground term)
• s is unique
• s always exists

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 36/51

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Semantics in the Standard Model

Pattern Completeness

• a function symbol f : τ1 × . . .× τn → τ ∈ D is pattern complete iff for all t1 ∈ T (C)τ1 ,
. . . , tn ∈ T (C)τn there is an equation ℓ = r in the program, such that ℓ matches
f(t1, . . . , tn)

• a functional program is pattern complete iff all f ∈ D are pattern complete

• example

append(Cons(x, xs), ys) = Cons(x, append(xs, ys))

append(Nil, ys) = ys

head(Cons(x, xs)) = x

• append is pattern complete
• head is not pattern complete: for head(Nil) there is no matching lhs

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 37/51

Semantics in the Standard Model

Pattern Completeness and Constructor Ground Terms

• theorem: if a program is pattern complete and t ∈ T (Σ)τ is a normal form, then
t ∈ T (C)τ
• proof of P (t, τ) by structural induction w.r.t. T (Σ)τ for

P (t, τ) := t is normal form −→ t ∈ T (C)τ
• induction yields only one case: t = F (t1, . . . , tn) where F : τ1 × . . .× τn → τ ∈ Σ
• IH for each i: if ti is normal form, then ti ∈ T (C)τi
• premise: F (t1, . . . , tn) is normal form
• from premise conclude that ti is normal form:

(if ti ↪→ si then F (t1, . . . , tn) ↪→ F (t1, . . . , si, . . . , tn) shows that F (t1, . . . , tn) is not a
normal form)

• in combination with IH: each ti ∈ T (C)τi
• consider two cases: F ∈ C or F ∈ D
• case F ∈ C: using ti ∈ T (C)τi immediately yields F (t1, . . . , tn) ∈ T (C)τ
• case F ∈ D: using pattern completeness and ti ∈ T (C)τi , conclude that F (t1, . . . , tn) must

be matched by lhs; this is contradiction to F (t1, . . . , tn) being a normal form

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 38/51

Semantics in the Standard Model

Pattern Disjointness

• a function symbol f : τ1 × . . .× τn → τ ∈ D is pattern disjoint iff for all t1 ∈ T (C)τ1 ,
. . . , tn ∈ T (C)τn there is at most one equation ℓ = r in the program, such that ℓ
matches f(t1, . . . , tn)

• a functional program is pattern disjoint iff all f ∈ D are pattern disjoint

• example

append(Cons(x, xs), ys) = Cons(x, append(xs, ys))

append(xs, ys) = ys

head(Cons(x, xs)) = x

• head is pattern disjoint
• append is not pattern disjoint: the term append(Cons(Zero,Nil),Nil) is matched by the lhss

of both append-equations

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 39/51

Semantics in the Standard Model

Pattern Disjointness and Unique Normal Forms

• theorem: if a program is pattern disjoint then ↪→ is confluent and each term has at most
one normal form

• confluence: whenever s ↪→∗ t and s ↪→∗ u then there exists some v such that t ↪→∗ v and
u ↪→∗ v

• proof of theorem:
• pattern disjointness in combination with the other syntactic restrictions on functional

programs implies that the defining equations form an orthogonal term rewrite sytem
• Rosen proved that orthogonal term rewrite sytems are confluent
• confluence implies that each term has at most one normal form
• full proof of Rosen given in term rewriting lecture, we only sketch a weaker property on the

next slides, namely local confluence: whenever s ↪→ t and s ↪→ u then there exists some v
such that t ↪→∗ v and u ↪→∗ v

• local confluence in combination with termination also implies confluence

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 40/51

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Semantics in the Standard Model

Proof of Local Confluence: Two Root Steps

• consider the situation in the diagram where two root steps with equations ℓ1 = r1 and
ℓ2 = r2 are applied

• because of pattern disjointness: (ℓ1 = r1) = (ℓ2 = r2)

• uniqueness of matching: σ1(x) = σ2(x) for all x ∈ Vars(ℓ1/2)
• variable condition of programs: σ1(x) = σ2(x) for all x ∈ Vars(r1/2)
• hence r1σ1 = r2σ2

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 41/51

Semantics in the Standard Model

Proof of Local Confluence: Independent Steps

• consider the situation in the diagram where two steps at independent positions are applied

• just do the steps in reverse order

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 42/51

Semantics in the Standard Model

Proof of Local Confluence: Root- and Substitution-Step
• consider the situation in the diagram where a root step overlaps with a step done in the
substitution

• just do the steps in reverse order (perhaps multiple times)

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 43/51

Semantics in the Standard Model

Graphical Local Confluence Proof

• the diagrams in the three previous slides describe all situations where one term can be
evaluated in two different ways (within one step)

• in all cases the diagrams could be joined

• overall: intuitive graphical proof of local confluence

• often hard task: transform such an intuitive proof into a formal, purely textual proof,
using induction, case-analysis, etc.

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 44/51

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Semantics in the Standard Model

Semantics for Functional Programs in the Standard Model

• we are now ready to complete the semantics for functional programs
• we call a functional program well-defined, if

• it is pattern disjoint,
• it is pattern complete, and
• ↪→ is terminating

• for well-defined programs, we define for each f : τ1 × . . .× τn → τ ∈ D

fM : T (C)τ1 × . . .× T (C)τn → T (C)τ
fM(t1, . . . , tn) = s

where s is the unique normal form of f(t1, . . . , tn), i.e., f(t1, . . . , tn) ↪→! s

• remarks:
• a normal form exists, since ↪→ is terminating
• s is unique because of pattern disjointness
• s ∈ T (C)τ because of pattern completeness, and type- and groundness-preservation

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 45/51

Semantics in the Standard Model

Summary: Standard Model

• standard model
• universes: T (C)τ
• constructors: cM(t1, . . . , tn) = c(t1, . . . , tn)
• defined symbols: fM(t1, . . . , tn) is normal form of f(t1, . . . , tn) w.r.t. ↪→

• if functional program is well-defined
• pattern disjoint,
• pattern complete, and
• ↪→ is terminating

then standard model is well-defined
• upcoming

• what about functional programs that are not well-defined?
• comparison to real functional programming languages
• treatment in real proof assistants

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 46/51

Semantics in the Standard Model

Without Pattern Disjointness
• consider Haskell program
conj :: Bool -> Bool -> Bool

conj True True = True -- (1)

conj x y = False -- (2)

• obviously not pattern disjoint
• however, Haskell still has unique results, since equations are ordered

• an equation is only applicable
if all previous equations are not applicable

• so, conj True True can only be evaluated to True

• ordering of equations can be resolved by instantiation equations via complementary
patterns

• equivalent equations (in Haskell) which do not rely upon order of equations
conj :: Bool -> Bool -> Bool

conj True True = True -- (1)

conj False y = False -- (2) with x / False

conj True False = False -- (2) with x / True, y / False

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 47/51

Semantics in the Standard Model

Without Pattern Disjointness – Continued
• pattern disjointness is sufficient criterion to ensure confluence

• overlaps can be allowed, if they do not cause conflicts

• example:
conj :: Bool -> Bool -> Bool

conj True True = True

conj False y = False -- (1)

conj x False = False -- (2)
the only overlap is conj False False; it is harmless since the term evaluates to the
same result using both (1) and (2)
• translating ordered equations into pattern disjoint equations or equations which only have
harmless overlaps can be done automatically
• usually, there are several possibilities
• finding the smallest set of equations is hard
• automatically done in proof-assistants such as Isabelle;

e.g., overlapping conj from previous slide is translated into above one

• consequence: pattern disjointness is no real restriction

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 48/51

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Semantics in the Standard Model

Without Pattern Completeness
• pattern completeness is naturally missing in several functions

• examples from Haskell libraries
head :: [a] -> a

head (x : xs) = x

• resolving pattern incompleteness is possible in the standard model
• determine missing patterns
• add for these missing cases equations that assign some element of the universe

head(Cons(x, xs)) = x equation as before

head(Nil) = some element of T (C)Nat new equation

• in this way, head becomes pattern complete and headM is total
• “some element” really is an element of T (C)Nat,

and not a special error value like ⊥
• the added equation with “some element” is usually not revealed to the user, so the user

cannot infer what number head(Nil) actually is

• consequence: pattern completeness is no real restriction

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 49/51

Semantics in the Standard Model

Without Termination
• definition of standard model just doesn’t work properly in case of non-termination

• one possibility: use Scott’s domain theory where among others,
explicit ⊥-elements are added to universe
• examples

• ANat = {⊥,Zero,Succ(Zero),Succ(Succ(Zero)), . . . ,Succ∞}
• AList = {⊥,Nil,Cons(Zero,Nil),Cons(⊥,Nil),Cons(⊥,⊥), . . .}

• then semantics can be given to non-terminating computations
• inf = Succ(inf) leads to infM = Succ∞

• undef = undef leads to undefM = ⊥
• problem: certain equalities don’t hold w.r.t. domain theory semantics

• assume usual definition of program for minus, then
∀x.minus(x, x) = Zero is not true, consider x = inf or x = undef

• since reasoning in domain theory is more complex,
in this course we restrict to terminating functional programs

• even large proof assistants like Isabelle and Coq usually restrict to terminating functions
for that reason

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 50/51

Semantics in the Standard Model

Summary of Part 3

• definition of well-defined functional programs
• datatypes and function definitions (first order)
• type-preserving equations within simple type system
• well-defined: terminating, pattern complete and pattern disjoint

• definition of operational semantics ↪→
• definition of standard model
• upcoming

• part 4: detect well-definedness, in particular termination
• part 5: inference rules for standard model, equational reasoning engine

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 51/51

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Functional Programming – Data Types
	Functional Programming – Function Definitions
	Functional Programming – Operational Semantics
	Semantics in the Standard Model

