M universitat
™ innsbruck

Program Verification

Part 3 — Semantics of Functional Programs

René Thiemann

Department of Computer Science

Functional Programming — Data Types

Summer Term 2024

Overview
e definition of a small functional programming language
® operational semantics

® a model in many-sorted logic
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Functional Programming — Data Types
Data Type Definitions
® a functional program contains a sequence of data type definitions
® while processing the sequence, we determine the set of types Ty, the signature 3, and the
predicates P, which are all initially empty

® each data type definition has the following form
dataT=c1:T1 X ... X Tim, — 7T

| ... where

| eniTn1 X oo X Ty — T
* ¢ Ty fresh type name
® iy cn &% and ciF#cjfori#j fresh and distinct constructor names
® eachr,; e {T}UTy only known types
® exists ¢; such that 7; ; € Ty for all j non-recursive constructor

o effect: add type, constructors and equality predicate

* Ty:=Tyu{r}
Y :=YU{e1:T11 X ... X Timy = TyeveyCpiTn1 X oo X Ty, —> T}

e P.=PU{=,C7x7}
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Functional Programming — Data Types Functional Programming — Data Types

Data Type Definitions: Examples

e Ty=S=P=0 Data Type Definitions: Standard Model
® data Nat = Zero : Nat | Succ : Nat — Nat ® while processing data type definitions we also build a model M for the functional
* processing updates Ty = {Nat}, program, called the standard model

¥ = {Zero : Nat, Succ : Nat — Nat} ® when processing

dataT=ci:7m1 X ... X Timy —7T

| en:iTni X oo X Tym, = T

and P = {=nat C Nat x Nat}
e data List = Nil : List | Cons : Nat x List — List
e processing updates Ty = {Nat, List},

S — {Zero : Nat, Succ : Nat — Nat, Nil : List, Cons : Nat x List — List} ° ((:ieﬁn(:: umvet}']se1 .,if‘fzr n)ew type 7 inductively via the following inference rules
. . one for eac i<n
and P = {=nat C Nat x Nat, =t C List x List} ==
e data BList = NilB : BList | ConsB : Bool x BList — BList €A, o tm €A
not allowed, since Bool ¢ Ty ci(tl, - ytm,) € Ar
° LList = Nil : LLi ns : List x LLi LLi . .
data I IStd N N_:St ‘dC(()j s:List | (;St '_>Z Ist ® define cM(t1, ... tm,) = ci(ts, -y tm,;) uninterpreted constructors
not allowed, since Nil and Cons are already in o define =M = {(t,1) | t € A} equality
® data Tree = Node : Tree x Nat x Tree — Tree
not allowed, since all constructors are recursive
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Functional Programming — Data Types Functional Programming — Data Types

Data Type Definitions: Example and Standard Model Well-Definedness of Standard Model

e data Nat = Zero : Nat | Succ : Nat — Nat ® question: is the standard model really a model in the sense of many-sorted logic
® processing creates universe Ap,¢ via the inference rules ® is there a U_nique type for each ¢; € ¥ and =r€ P
te A ® are the definitions of ¢ and = well-defined
Tee e A Se—Niztl ® are the definitions of A, well-defined, i.e., A, # @
ero € cc(t) € s .
Nat uce(t) Nat e recall: each data definition has the following form
i.e., Anat = {Zero, Succ(Zero), Succ(Succ(Zero)), ...} data 7= c1iTiy X ..o X Timy =7
e ZeroM = Zero Succ™(t) = Succ(t) | ...
o =t = {(Zero, Zero), (Succ(Zero), Succ(Zero)), ...} | en Tt X oo X Tam, =T
e data List = Nil : List | Cons : Nat x List — List
) X . ) where
® processing creates universe A via the inference rules 1 ¢ Ty fresh type name
t1 € Anat  to € Alist ® Clyen €% and ci#cjforisy
Nil € ALt Cons(t1,t2) € Apist fresh and distinct constructor names
® ecach 7y ; € {T}UTy only known types
i.e., AList = {Nil, Cons(Zero, Nil), Cons(Succ(Zero), Nil), ...} ® exists ¢; such that 7, ; € Ty for all j non-recursive constructor
° :/L\gt = {(Nil, Nil), (Cons(Zero, Nil), Cons(Zero, Nil)), ...} ® what could happen if one of the conditions is dropped?
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Functional Programming — Data Types

Non-Empty Universes

® without the last condition (non-recursive constructor) the following data type declaration
would be allowed (assuming that Nat and Succ are fresh names)

data Nat = Succ : Nat — Nat

with the universe defined as the inductive set Apnat

t e -ANat
Succ(t) € Anat

® consequence: Anat = @

® hence, non-recursive constructors are essential for having non-empty universes
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Functional Programming — Data Types

Current State

® presented: data type definitions
® semantics

® free constructors: each constructor is interpreted as itself

® universe as inductively defined sets: no infinite terms, such as infinite lists
Cons(Zero, Cons(Zero, .. .))
(modeling of infinite data structures would be possible via domain-theory)

® upcoming: functional programs, i.e., function definitions
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Functional Programming — Data Types

Non-Empty Universes: Proof

Theorem

Let there be a list of data type declarations and an arbitrary type 7 from this list. Then
A #o.

Proof

Let 7,..., T, be the sequence of types that have been defined. We show
Pn):=Vi<i<n A, #0

by induction on n. This will entail the theorem.

In the base case we have to prove P(0), which is trivially true. Now let us show P(n + 1)
assuming P(n). Because of P(n), we only have to prove A,  , # @. By the definition of
data types, there must be some ¢; : 751 X ... X Tjm; — Tny1 Where all 7 ; € {71,...,7}. By
the IH P(n) we know that A, . # & for all j between 1 and m;. Hence, there must be terms
th€An,, ... tm, € ATi,mi' Consequently, ¢;(t1,...,tm;) € Ar,,, and hence A, # @.
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Functional Programming — Function Definitions

Splitting the signature

e distinguish between
® constructors, declared via data
e.g., Nil, Succ, Cons
® defined functions, declared via equations
e.g., append, add, reverse

(start with capital letters in Haskell)

(start with lowercase letters in Haskell)

e formally, we have X =CW D
® ( is set of constructors, defined via data
® constructors are written ¢, ¢;, d in generic constructs such as data type definitions
® start with uppercase letters in concrete examples (Succ, Cons)
® D is set of defined symbols, defined via function declarations
® defined (function) symbols are written f, f;, g in generic constructs such as function
definitions
® start with lowercase letters in concrete examples (append, reverse)
[ ]

we use F', G for elements of > whenever separation between C and D is not relevant

® note that in the standard model, A; is exactly 7(C), := T (C, @),
which is the set of constructor ground terms of type 7
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Functional Programming — Function Definitions

Function Definitions

® besides data type definitions, a functional program consists of a sequence of function
definitions, each having the following form

fimx...xmm—T
lh=mr where

by = T

e fisafreshnameand D:=DU{f 7 X...x 7, = T}
(hence, f is also added to ¥ = C U D)

e each left-hand side (lhs) ¢; is linear

® each lhs ¢; is of the form f(p1,...,pn) with all p;'s being patterns

e each lhs ¢; and rhs r; only use currently known symbols: ¢;,7; € T(X,V)

e each lhs ¢; and rhs r; respect the type: ¢4;,7; € T(X, V),

® each equation ¢; = r; satisfies the variable condition Vars(r;) C Vars(¢;)
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Functional Programming — Function Definitions

Notions for Preparing Function Definitions

® a pattern is a term in 7(C,V), usually written p or p;
® aterm ¢ in T(X,V) is linear, if all variables within ¢ occur only once

® reverse(Cons(z, Cons(y, zs))) v
® reverse(Cons(z, Cons(z, zs))) X
e the variables of a term ¢ are defined as Vars(t)
® Vars(z) = {z}
® Vars(F(t1,...,tn)) = Vars(t1) U... U Vars(t,)
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Functional Programming — Function Definitions

Function Definitions: Examples

® assume data types Nat and List have been defined as before (slide 5)

add : Nat x Nat — Nat
add(Zero,y) =y
add(Succ(z), y) = add(z, Succ(y))

append : List x List — List
append(Cons(z, zs), ys) = Cons(z, append(zs, ys))
append(zs, ys) = ys

head : List — Nat
head(Cons(z, zs)) =

zeros : List
zeros = Cons(Zero, zeros)
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Function Definitions: Non-Examples

Functional Programming — Function Definitions

® assume program from previous slides + data Bool = True | False

RT (DCS @ UIBK)

even : Nat — Bool
even(Zero) = True
even(Succ(x)) = odd(x)
odd : Nat — Bool
odd(Zero) = False
odd(Succ(x)) = even(z)
random : Nat

random =z

minus : Nat x Nat — Nat
minus(Succ(z), Succ(y)) = minus(z, y)
minus(z, Zero) = x
minus(z, z) = Zero

minus(add(z,y),z) =y

Part 3 — Semantics of Functional Programs

Semantics for Function Definitions — Continued

® required: fM:

TC)r x...xT(C)r, = T(C)r

e idea: define fM(ty,...,t,) as

the result of f(t1,...,t,) after evaluation w.r.t. equations in program

® several issues:

® how is term evaluation defined?

17/51

Functional Programming — Function Definitions

® briefly: replace instances of |hss by instances of rhss as long as possible

® is result unique?
® is result element of 7(C),?
® does evaluation terminate?
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Functional Programming — Function Definitions

Semantics for Function Definitions

® problem: given a function definition

we need to extend the semantics in the standard model, i.e., define the function

or equivalently

fim X X1 =T

5127‘1

by = T,

fMiAL XX AL — A

FM Ty % oo X T(C)r, — T(C)s

e idea: define fM(ty,...,t,) as

RT (DCS @ UIBK)

Function Definitions: Examples

the result of f(t1,...,t,) after evaluation w.r.t. equations in program

Part 3 — Semantics of Functional Programs

® consider previous program, type declarations omitted

add(Zero,y) =y

add(Succ(z),y) = add(x, Succ(y))
append(Cons(z, zs), ys) = Cons(z, append(zs, ys))
append(zs, ys) = ys

head(Cons(z, zs)) = =

zeros = Cons(Zero, zeros)

® is result unique? no: consider ¢ = append(Cons(Zero, Nil), Nil)

then ¢
and ¢

3

4)

Nil

) Cons(Zero, append(Nil, Nil)) o Cons(Zero, Nil)

® is result element of 7(C),? no: head(Nil) cannot be evaluated

® does evaluation terminate? no: zeros = Cons(Zero, zeros) = ...

® solution: further restrictions on function definitions
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Functional Programming — Function Definitions

(1)
(2)
(3)
(4)
(5)
(6)
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Functional Programming — Operational Semantics

Functional Programming — Operational Semantics

Matching
® we define matching as an operation on a set of pairs P = {(¢1,¢1),..., (n,tn)} and the
task is to decide: do. 10 =t1 A ... Nlo =t,, e,
® either return the required substitution o in the form of a set of pairs {(x1,$1),..., (Tm,Sm)}

with all x; distinct which can then be interpreted as the substitution o defined by

T if x = x; for some ¢
o(z) = .
x, otherwise

® or return L indicating that no such substitution exists

® matching algorithm: apply rules ~ as long as possible

PW{(F(lry . 00)s F(t1 e ta))} ~ PUL(CL 1), s (bnstn)} (decompose)
PW{(F(..),G(...))} ~ L if F #£G (clash)
PW{(F(...),z)} ~L ifzeV (fun-var)
Py {(z,s),(z,t)} ~ L ifzeVand s#t (var-clash)
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Functional Programming — Operational Semantics

Functional Programming: Operational Semantics
® operational semantics: formal definition on how evaluation proceeds step-by-step

® main operation: applying a substitution o : V — T(X,V) to a term,
can be defined recursively

® zo=o(x)
® F(ty,...,tn)o = F(t10,...,t,0)

® one-step evaluation relation — C 7(3,V) x T (X, V) defined as inductive set

¢ = r is equation in program

root ste
bo = ro P
FeY s, <=t ite i toxt
rewrite in contex
F(81,c.y8iy.oy8n) <= F(s1,...,ti,...,8n)

® given a term ¢ and a lhs ¢, for checking whether a root-step is applicable one needs
matching: Jo.fo =t (and also deliver that o)

® same evaluation as in functional programming (lecture),
except that order of equations is ignored and here it becomes formal
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Functional Programming — Operational Semantics

Matching — Example

® we want to test whether there is a root step possible for the term
t = append(Cons(y, Nil), Cons(y, ys)) w.r.t. the equation
(¢ = r) = (append(Cons(z, xs), ys) = Cons(x, append(zs, ys)))

® setup matching problem {(¢,t)}

P = {(append(Cons(z, zs), ys), append(Cons(y, Nil), Cons(y, ys)))}
~ {(Cons(z, xs), Cons(y, Nil)), (ys, Cons(y, ys)) }

~ {(z,y), (ws, Nil), (ys, Cons(y, ys))}

Y, ifz==x
Nil, if z=as
® obtain substitution o(z) = Cons( L
ons(y,ys), ifz=ys
z, otherwise

® so, t = fo — ro = Cons(x, append(zs, ys))o = Cons(y, append(Nil, Cons(y, ys)))
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Functional Programming — Operational Semantics

Matching — Verification and Termination Proof
® matching algorithm

PH’J{(F(fl,...,fn),F(tl,...,tn))} f\vPU{(fl,tl),...

Pw...n L

s (n,ta)}  (decompose)

(other rules)

® soundness = termination + partial correctness
® termination: in each step, the sum of the size of terms (# symbols) is decreased

ta))| = |F(l1,..., )|+ |F(t1, ..., t)]

—1+Z|€|+1+Z|’fl
>Z|€\+th\
ZZI&-,Q)I

[(F(l1,...,0n), F(t1,...,
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Functional Programming — Operational Semantics

Matching — Structure of Result
® matching algorithm: apply ~ as long as possible

PW{(F(l1,....4n), F(t1,...,t))} N~ PU{(l1,t1),. .., (ln,tn)} (decompose)
PWU{(F(.),G(.)}~L if F#G (clash)
PY{(F(...),z)} ~ L ifzeV (fun-var)
Py {(x, s) (z,t)} ~ L ifreVands#t (var-clash)

® property: result of matching algorithm on well-typed inputs is L or set

{(z1,51),- -, (Tm, Sm)} with all z; distinct
® proof
® assume result is not L, then it must be some set of pairs P = {(u1,51),..., (Um,Sm)}

where no rule is applicable

® if all u;'s are variables, then the result follows: there cannot be two entries (u;,s;) and
(uj,s;) with u; = u; and s; # s; because then "var-clash” would have been applied

® it remains to consider the case that some u; = F({1,...,4,)

® s, = F(t1,...,tx), as result is not L, cf. “clash” and “fun-var”

® then k = n because of type preservation: contradiction to “decompose”
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Functional Programming — Operational Semantics

Matching — Type Preservation

® matching algorithm

PH’J{(F(fh...7£n),F(t1,...,tn))} mPU{(El,tl),...

Pw...n L

s Uy tn)} (decompose)

(other rules)

® property: we say that a set of pairs P is type-correct, iff for all pairs (¢,t) € P the types
of £ and ¢ are identical, i.e.,, 7. {{, ¢t} CT(Z, V),

® theorem: whenever P is type-correct, then P will stay type-correct during the algorithm;
consequently, any result # | will be type-correct

® proof: we prove an invariant, so we only need to prove that the property is maintained
when performing a single ~-step in the algorithm:
consider “decompose”
® we can assume {F(¢1,...,4,), F(t1,...,
® so [': 71 X...xT, — 7 for suitable 7;
® hence, {¢;,t;} CT(%,V),, forall i

tn)} CT(3,V)r
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Functional Programming — Operational Semantics

Matching — Preservation of Solutions
® matching algorithm

PW{(F(l1,....6n), F(t1,...,t))} " PU{(l1,t1),. .., (ln,tn)} (decompose)
PW{(F(...),G(...))} ~ L if F+£G (clash)
PY{(F(...),z)} ~ L ifzeV (fun-var)

Py {(x, s) (z, )} ~ L ifreVands#t (var-clash)

® property: algorithm preserves matching substitutions
(where L has no matching substitution)
e proof by considering invariant of single step: whenever P ~ P’, then o is a matcher of P
iff o is matcher of P’
e clash: both “o is matcher of {(F(...),G(...))} UP" and

“o is matcher of 1" are wrong: F(ty,...)o0 = F(t10,...) # G(...)
® fun-var and var-clash are similar
® decompose: F(ly1,...,4p)0 = F(t1,...,tn)
— F(lio,...,.0,0) = F(t1,...,t,)
(—)élo'Ztl/\,../\[nO':tn
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Functional Programming — Operational Semantics

Matching Algorithm — Summary

® algorithm: apply ~ as long as possible
® (one) termination proof

® (many) partial correctness proofs
mainly by showing invariants that are preserved by ~ L.
e type preservation Semantics in the Standard Model
® preservation of matching substitutions
® result is L or a set which encodes a substitution
® application: compute root steps by testing whether decomposition of term into {o for
equation ¢ = r is possible

® core of functional programming (and term rewriting)

® much better algorithms exists, which avoid to match against all Ihss, based on
precalculation (term indexing), e.g., group equations by root symbol of lhss
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Semantics in the Standard Model Semantics in the Standard Model

Towards Semantics in Standard Model .
Type Preservation of —

® evaluation of terms is now explained: one-step relation — . o how that .
. C : ) aim: show that < preserves types:
® algorithm for evaluation is similar to matching algorithm:

apply —-steps until no longer possible teT(E V) —mt—=s—seT(E,V),
® questions are similar as in matching algorithm
® termination: do we always get result?
® preservation of types? ® preliminary: we call a substitution type-correct, if o(z) € T(2,V), whenever z : 7 € V
® is result a desired value, i.e., a constructor ground term? ® easy result: whenever t € T(X,V), and o is type-correct, then to € T(3,V),
® is result unique? (how would you prove it?)

e proof will be by induction w.r.t. inductively defined set < for arbitrary

® questions don't have positive answer in general, cf. slide 20
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Semantics in the Standard Model

Type Preservation of — — Proof

® proof: induction w.r.t. inductively defined set < for arbitrary 7
® base case: {o — ro for some equation £ = r of the program where {o € T(X,V), and
we have to prove ro € T(Z, V),
® since o € T(X,V),, and {,r € T(X,V), by the definition of functional programs, we
conclude that o is type-correct, cf. slide 26
® and since r € T(X,V), and o is type-correct, then also ro € T(X,V),, cf. previous slide
® step case: F(S1,...,8i,...,8n) < F(s1,...,t;,...,8y,) since s; <= t;, we know
F(s1,..-,8iy---,8n) € T(X,V), and have to prove F(s1,...,ti,...,8,) € T(X, V),
® since F($1,...,8i,...,5n) € T(X,V),, we know that F': 7y X ... X 7, = 7 € ¥ and each
55 €T(E, V), for1<j<n
® by the IH we know ¢; € T(X,V),, — note that here we can take a different type than 7,
namely 7;, because the induction was for arbitrary 7
® but then we immediately conclude F(s1,...,t;,...,8,) € T(X, V),
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Semantics in the Standard Model

Preservation of Groundness of —*

® aterm ¢ is ground if Vars(t) = @, or equivalently if ¢ € T(X)

® recall aim: we want to evaluate ground term like append(Cons(Zero, Nil), Nil) to element
of universe, i.e., constructor ground term

® hence, we need to ensure that result of evaluation with < is ground

® preservation of groundness can be shown with similar proof structure as in the proof of
preservation of types
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Semantics in the Standard Model

Type Preservation of —*

e finally, we can show that evaluation (execution of arbitrarily many <—-steps, written —*)
preserves types, which is an easy induction proof on the number of steps by using
type-preservation of —

® theorem: whenever t € T(X,V), and t —* s, then s € T(X,V),

® proofs to obtain global result

1. show that matching preserves types (slide 26)
proof via invariant, since matching algorithm is imperative (while rules-applicable ...)
2. show that substitution application preserves types (slide 31)
proof by induction on terms, following recursive structure of definition of substitution
application (slide 22)
3. show that < preserves types (slide 33)
proof by structural induction w.r.t. inductively defined set <;
uses results 1 and 2
4. show that <™ preserves types
proof on number of steps; uses result 3
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Semantics in the Standard Model

Normal Forms — The Results of an Evaluation
® aterm ¢ is a normal form (w.r.t. <) if no further <-steps are possible:
iﬂs. t—s
® whenever t <—* s and s is in normal form, then we write
t's
and call s a normal form of ¢

® normal forms represent the result of an evaluation
® known results at this point: whenever t € 7(X), and t <' s then

* seT(X,V), (type-preservation)

* seT(X) (groundness-preservation)

* seT(X), (combined)
® missing:

* seT(C), (constructor-ground term)

® s is unique
® s always exists
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Semantics in the Standard Model

Pattern Completeness

® a function symbol f: 71 X ... x 7, = 7 € D is pattern complete iff for all t; € T(C),,
.., tn € T(C),, there is an equation £ = r in the program, such that £ matches

flta, ... tn)

® a functional program is pattern complete iff all f € D are pattern complete

® example

append(Cons(z, zs), ys) = Cons(z, append(zs, ys))
append(Nil, ys) = ys
head(Cons(z, zs)) =

® append is pattern complete
® head is not pattern complete: for head(Nil) there is no matching lhs
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Semantics in the Standard Model
Pattern Disjointness

® a function symbol f: 71 x ... x 7, = 7 € D is pattern disjoint iff for all t; € T(C)~,,
...y ty € T(C)s, there is at most one equation ¢ = r in the program, such that ¢
matches f(t1,...,t,)

® 3 functional program is pattern disjoint iff all f € D are pattern disjoint

® example

append(Cons(z, zs), ys) = Cons(z, append(zs, ys))
append(zs, ys) = ys
head(Cons(x, zs)) = x

® head is pattern disjoint
® append is not pattern disjoint: the term append(Cons(Zero, Nil), Nil) is matched by the Ihss
of both append-equations
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Pattern Completeness and Constructor Ground Terms

® theorem: if a program is pattern complete and ¢ € T(X); is a normal form, then
teT(C),
® proof of P(t,7) by structural induction w.r.t. T(X), for

P(t,7):=tis normal form — t € T(C),

® induction yields only one case: t = F(t1,...,t,) where F: 7y X ... X T, > TE€X

® |H for each i: if ¢; is normal form, then t; € T(C)-,

® premise: F(t1,...,t,) is normal form

® from premise conclude that ¢; is normal form:
(if t; < s; then F(t1,...,t,) < F(t1,...,8i,...,tn) shows that F(t1,...,t,) is not a
normal form)

® in combination with IH: each t; € T(C),

® consider two cases: '€ Cor F €D

® case F' € C: using t; € T(C),, immediately yields F(t1,...,t,) € T(C),

® case F' € D: using pattern completeness and ¢; € 7(C),,, conclude that F(t1,...,t,) must

be matched by Ihs; this is contradiction to F'(¢y,...,%,) being a normal form
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Pattern Disjointness and Unique Normal Forms

® theorem: if a program is pattern disjoint then < is confluent and each term has at most
one normal form

® confluence: whenever s —* t and s —* u then there exists some v such that ¢ —* v and
u—*v
® proof of theorem:
® pattern disjointness in combination with the other syntactic restrictions on functional
programs implies that the defining equations form an orthogonal term rewrite sytem
® Rosen proved that orthogonal term rewrite sytems are confluent
® confluence implies that each term has at most one normal form
® full proof of Rosen given in term rewriting lecture, we only sketch a weaker property on the
next slides, namely local confluence: whenever s < t and s < u then there exists some v
such that t —=* v and u —* v
® Jocal confluence in combination with termination also implies confluence
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Semantics in the Standard Model

Proof of Local Confluence: Two Root Steps

® consider the situation in the diagram where two root steps with equations ¢; = r; and
ly = ro are applied

I\

gﬂ
O: 2

/ Y

7, v,
[\
% 7

because of pattern disjointness: ({1 =11) = (f2 = r2)
® uniqueness of matching: o1(z) = oa(x) for all 2 € Vars(£y ;)
® variable condition of programs: o1(x) = o2(z) for all x € Vars(ry ;)

® hence 1101 = 1909
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Proof of Local Confluence: Root- and Substitution-Step
® consider the situation in the diagram where a root step overlaps with a step done in the

substitution

® just do the steps in reverse order (perhaps multiple times)
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Proof of Local Confluence: Independent Steps

® consider the situation in the diagram where two steps at independent positions are applied

AN

® just do the steps in reverse order
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Semantics in the Standard Model

Graphical Local Confluence Proof
® the diagrams in the three previous slides describe all situations where one term can be
evaluated in two different ways (within one step)
® in all cases the diagrams could be joined
e overall: intuitive graphical proof of local confluence

® often hard task: transform such an intuitive proof into a formal, purely textual proof,
using induction, case-analysis, etc.
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Semantics in the Standard Model

Semantics for Functional Programs in the Standard Model

® we are now ready to complete the semantics for functional programs
® we call a functional program well-defined, if

® it is pattern disjoint,

® it is pattern complete, and

® < is terminating

o for well-defined programs, we define foreach f: 7 X ... x 7, > 7€ D
MET(C)ry X o X T(C)r,, — T(C)r
P, t) = s
where s is the unique normal form of f(t1,...,t,), i.e., f(t1,...,tn) ='s
® remarks:

® a normal form exists, since < is terminating
® s is unique because of pattern disjointness
® s € T(C), because of pattern completeness, and type- and groundness-preservation
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Without Pattern Disjointness
® consider Haskell program

conj :: Bool -> Bool -> Bool
conj True True = True -- (1
conj x N = False -- (2)

® obviously not pattern disjoint
® however, Haskell still has unique results, since equations are ordered

® an equation is only applicable
if all previous equations are not applicable
® so, conj True True can only be evaluated to True

® ordering of equations can be resolved by instantiation equations via complementary

patterns
e equivalent equations (in Haskell) which do not rely upon order of equations
conj :: Bool -> Bool -> Bool
conj True True = True -- (1)
conj False y = False -- (2) with x / False
conj True False = False -- (2) with x / True, y / False
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Summary: Standard Model

® standard model
® universes: T(C),
® constructors: cM(ty,...,t,) =c(t1,... tn)
® defined symbols: fM(ty,...,t,) is normal form of f(t1,...,t,) w.rt. =
e if functional program is well-defined
® pattern disjoint,
® pattern complete, and
® < is terminating
then standard model is well-defined
® upcoming
® what about functional programs that are not well-defined?
® comparison to real functional programming languages
® treatment in real proof assistants
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Without Pattern Disjointness — Continued
® pattern disjointness is sufficient criterion to ensure confluence

® overlaps can be allowed, if they do not cause conflicts

® example:
conj :: Bool -> Bool -> Bool
conj True True = True
conj False y = False -- (1)
conj x False = False -- (2)

the only overlap is conj False False; it is harmless since the term evaluates to the
same result using both (1) and (2)
® translating ordered equations into pattern disjoint equations or equations which only have
harmless overlaps can be done automatically
® usually, there are several possibilities
¢ finding the smallest set of equations is hard
® automatically done in proof-assistants such as Isabelle;
e.g., overlapping conj from previous slide is translated into above one
® consequence: pattern disjointness is no real restriction
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Semantics in the Standard Model

Without Pattern Completeness
® pattern completeness is naturally missing in several functions
® examples from Haskell libraries
head [a] -> a
head (x : xs) = x
® resolving pattern incompleteness is possible in the standard model

® determine missing patterns
® add for these missing cases equations that assign some element of the universe

head(Cons(z, zs)) = x
head(Nil) = some element of T(C)nat

equation as before

new equation

in this way, head becomes pattern complete and head™ is total

“some element” really is an element of T (C)nat,

and not a special error value like L

® the added equation with “some element” is usually not revealed to the user, so the user
cannot infer what number head(Nil) actually is

® consequence: pattern completeness is no real restriction
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Summary of Part 3

o definition of well-defined functional programs

® datatypes and function definitions (first order)
® type-preserving equations within simple type system
® well-defined: terminating, pattern complete and pattern disjoint

® definition of operational semantics —
® definition of standard model
® upcoming

® part 4: detect well-definedness, in particular termination
® part 5: inference rules for standard model, equational reasoning engine
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Without Termination

RT (DCS @ UIBK)

definition of standard model just doesn't work properly in case of non-termination

one possibility: use Scott's domain theory where among others,
explicit L -elements are added to universe
examples

® Anat = {L, Zero, Succ(Zero), Succ(Succ(Zero)), . .., Succ™}

® Auise = {L,Nil, Cons(Zero, Nil), Cons(_L, Nil), Cons(L, L), ...}
then semantics can be given to non-terminating computations

® inf = Succ(inf) leads to inf™ = Succ™®

® undef = undef leads to undef™ = L
problem: certain equalities don't hold w.r.t. domain theory semantics

® assume usual definition of program for minus, then

Va. minus(z, ) = Zero is not true, consider = inf or 2 = undef

since reasoning in domain theory is more complex,
in this course we restrict to terminating functional programs

even large proof assistants like Isabelle and Coq usually restrict to terminating functions
for that reason
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