. un |VerS|tat Summer Term 2024
™ innsbruck

Program Verification
Part 4 — Checking Well-Definedness of Functional Programs

René Thiemann

Department of Computer Science

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/

Overview

® recall: a functional program is well-defined if
® it is pattern disjoint,
® it is pattern complete, and
® < js terminating

¢ well-definedness is prerequisite for standard model, for derived theorems, ...
® task: given a functional program as input, ensure well-definedness

known: type-checking algorithm

missing: algorithm for type-inference

missing: algorithm for deciding pattern disjointness

missing: algorithm for deciding pattern completeness

missing: methods to ensure termination

® all of these missing parts will be covered in this chapter

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 2/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Type-Checking with Implicit Variables

Type-Checking with Implicit Variables

Type-Inference

® structure of functional programs

® data-type definitions
® function definitions: type of new function + defining equations
® not mentioned: type of variables

® in proseminar: work-around via fixed scheme which does not scale
® singleton characters get type Nat

w_n

® words ending in “s" get type List
® aim: infer suitable type of variables automatically

® example: given FP

append : List x List — List
append(Cons(z,y), z) = Cons(z, append(y, 2))
append(Nil, z) = z

we should be able to infer that = : Nat, y : List and z : List in the first equation,
whereas x : List in the second equation

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 4/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Type-Checking with Implicit Variables

Interlude: Maybe-Type for Errors
e recall type-checking algorithm
typeCheck :: Sig —> Vars -> Term -> Maybe Type
typeCheck sigma vars (Var x) = vars x
typeCheck sigma vars (Fun f ts) = do
(tysIn,tyOut) <- sigma f
tysTs <- mapM (typeCheck sigma vars) ts
if tysTs == tysIn then return tylut else Nothing
® Maybe-type is only one possibility to represent computational results with failure
® let us abstract from concrete Maybe-type:

® introduce new type Check to represent a result or failure
type Check a = Maybe a

® function return :: a -> Check a to produce successful results
® function to raise a failure
failure :: Check a

failure = Nothing
® convenience function: asserting a property
assert :: Bool -> Check ()

assert p = if p then return () else failure
RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 5/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Making Type-Checking More Abstract fopeChecting it mplie Yarbies
® original type-checking algorithm
typeCheck :: Sig -> Vars -> Term -> Maybe Type
typeCheck sigma vars (Var x) = vars x
typeCheck sigma vars (Fun f ts) = do
(tysIn,tyOut) <- sigma f
tysTs <- mapM (typeCheck sigma vars) ts
if tysTs == tysIn then return tylut else Nothing
e with new abstract types and functions
typeCheck :: Sig -> Vars -> Term -> Check Type
typeCheck sigma vars (Var x) = vars x
typeCheck sigma vars (Fun f ts) = do
(tysIn,tyOut) <- sigma f
tysTs <- mapM (typeCheck sigma vars) ts
assert (tysTs == tysIn)
return tyQOut

® advantage: readability, change Check-type easily

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 6/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Type-Checking with Implicit Variables

Back to Type-Checking and Type-Inference
® known: type-checking algorithm
typeCheck :: Sig -> Vars -> Term -> Check Type
® type Sig = FSym -> Check ([Typel, Type) — X
® type Vars = Var -> Check Type — V
® typeCheck takes ¥ and V and delivers type of term
® we want a function that works in the other direction: it gets an intended type as input,
and delivers a suitable type for the variables
inferType :: Sig -> Type -> Term -> Check [(Var,Type)]
® then type-checking an equation without explicit Vars is possible
typeCheckEqgn :: Sig -> (Term, Term) -> Check ()
typeCheckEqn sigma (Var x, r) = failure
typeCheckEgn sigma (1 @ (Fun f _), r) = do
(_,ty) <- sigma f
vars <- inferType sigma ty 1
tyR <- typeCheck sigma (\ x -> lookup x vars) r
assert (ty == tyR)

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 7/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Type-Checking with Implicit Variables

Type-Inference Algorithm

® note: upcoming algorithm only infers types of variables

(in polymorphic setting often also type of function symbols is inferred)

inferType :: Sig -> Type -> Term -> Check [(Var,Type)]
inferType sigma ty (Var x) = return [(x,ty)]
inferType sigma ty (Fun f ts) = do

(tysIn,tyOut) <- sigma f

assert (length tysIn == length ts)

assert (tyOut == ty)
varsL <- mapM (\ (ty, t) -> inferType sigma ty t) (zip tysIn ts)

let vars = nub (concat varsL) -- nub removes duplicates
assert (distinct (map fst vars))
return vars

distinct :: Eq a => [a] -> Bool
distinct xs = length (nub xs) == length xs
8/100

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Type-Checking with Implicit Variables

Soundness of Type-Inference Algorithm

® properties

° ift € T(X,V), then inferType ¥ 7 t = return (V N Vars(t))
® if inferType 3 7 t = return V then

® YV is well-defined (no conflicting variable assignments) and
° teT(X, V),

® properties can be shown in similar way to type-checking algorithm, cf. slides 2/35-42

® note that ‘if t € T(X,V), then inferType ¥ 7 t # failure' is a property which is not
strong enough when performing induction

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 9/100

http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/02x1.pdf#page=35
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Changing the Error Monad

Changing the Error Monad

Weakness of Maybe-Type for Errors

® situation: several functions for checking properties of terms, equations, which can be
assembled to check functional programs w.r.t. slides 3/4 (data-type definitions), 3/15
(function definitions) and partly 3/45 (well-definedness)
® inferType :: Sig -> Type -> Term -> Check [(Var,Type)]
® typeCheck :: Sig -> Vars -> Term -> Check Type
® typeCheckEqn :: Sig -> (Term, Term) -> Check ()

® problem: if checks are not successful, we just get result Nothing
e desired: informative error message why a functional program is refused

® possible solution: use more verbose error type than Maybe
type Check a = Either String a

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 11/100

http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/03x1.pdf#page=4
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/03x1.pdf#page=15
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/03x1.pdf#page=45
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Changing the Error Monad

Changing Implementation of Interface

e current interface for error type
® type Check a = Maybe a

® function return :: a —-> Check a

® function assert :: Bool -> Check ()
® function failure :: Check a

[]

do-blocks, monadic-functions such as mapM, etc.

® it is actually easy to change to Either-type for errors

type Check a = Either String a
return, do-blocks and mapM are unchanged, since these are part of generic monad interface
functions assert and failure need to be changed, since they now require error messages

RT (DCS @ UIBK)

failure :: String -> Check a

failure = Left

assert :: Bool -> String -> Check ()

assert p err = if p then return () else failure err

Part 4 — Checking Well-Definedness of Functional Programs 12/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Changing the Error Monad

Changing Algorithms for Checking Properties
® adapting algorithms often only requires additional error messages
e before change (type Check a = Maybe a)
typeCheck :: Sig -> Vars -> Term -> Check Type
typeCheck sigma vars (Var x) = vars x
typeCheck sigma vars (Fun f ts) = do
(tysIn,tyOut) <- sigma f
tysTs <- mapM (typeCheck sigma vars) ts
assert (tysTs == tysIn)
return tyQOut
e after change (type Check a = Either String a)
typeCheck :: Sig —> Vars -> Term -> Check Type
typeCheck sigma vars (Var x) = ...
typeCheck sigma vars t@(Fun f ts) = do

assert (tysTs == tysIn) (show t ++ " ill-typed")

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 13/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Changing the Error Monad

Changing Algorithms for Checking Properties, Continued

® example requiring more changes; with type Check a = Maybe a
typeCheckEgqn sigma (Var x, r) = failure
typeCheckEgn sigma (1 @ (Fun f _), r) = do
(_,ty) <- sigma f
vars <- inferType sigma ty 1
tyR <- typeCheck sigma (\ x -> lookup x vars) r
assert (ty == tyR)
® new version with type Check a = Either String a
typeCheckEqn sigma (Var x, r) = failure "var as lhs"
typeCheckEqn sigma (1 @ (Fun f _), r) = do

tyR <- typeCheck sigma (\ x -> lookup x vars) r
assert (ty == tyR) "types of lhs and rhs don't match"
® problem: lookup produces Maybe, not Either String

® solution: use maybeToEither :: e -> Maybe a -> Either e a

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 14/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Changing the Error Monad

Fixed Type-Checking Algorithm with Error Messages

import Data.Either.Utils -- for maybeToEither

-—- import requires MissingH 1ib; if not installed, define it yourself:
—-- maybeToEither e Nothing Left e
-- maybeToEither _ (Just x) = return x

typeCheckEqn sigma (Var x, r) = failure "var as lhs"
typeCheckEqn sigma (1 @ (Fun f _), r) = do
(_,ty) <- sigma f
vars <- inferType sigma ty 1
tyR <- typeCheck
sigma
(\ x -> maybeToEither
(x ++ " is unknown variable")
(lookup x vars))
r

assert (ty == tyR) "types of lhs and rhs don't match"

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 15/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Processing Functional Programs

Processing Functional Programs

® aim: write program which takes

® functional program as input (data type definitions + function definitions)
® checks the syntactic requirements

® stores the relevant information in some internal representation

® later: also checks well-definedness

® such a program is essential part of a compiler

® program should be easy to verify

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs

Processing Functional Programs

17/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Processing Functional Programs

Recall: Data Type Definitions

® given: set of types Ty, signature X =CWD
® cach data type definition has the following form
dataT=c1:7T11 X ... X T m =T
| ... where
| en i Tna X oo X Tpm, — T
° T ¢Ty fresh type name
® ¢, €3 and ¢ #cjfori#j
fresh and distinct constructor names

® eachr; € {T}UTy only known types

® exists ¢; such that 7; ; € Ty for all j non-recursive constructor
e effect: add new type and new constructors

* = U {r)

¢ C:=CU{c1 1 X .. X Timy = TyeeyCniTn1 X oo X Tyom, —> T}

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 18/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Existing Encoding of Part 2: Signatures and Terms

type

type
type
type
type
type
type

data

Check a = ... —— Maybe a or Either String a
Type = String

Var = String

FSym = String

Vars = Var -> Check Type

FSymInfo = ([Typel, Type)

Sig = FSym -> Check FSymInfo

Term = Var Var | Fun FSym [Term]

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs

Processing Functional Programs

19/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Processing Functional Programs

Encoding Functional Programs in Haskell

—-- input: unchecked data-type definitions and function definitions
data DataDefinition = Data Type [(FSym, FSymInfo)]
data FunctionDefinition = ... —-- later
type FunctionalProg =
([DataDefinition], [FunctionDefinition])

-- internal representation
type Siglist = [(FSym, FSymInfo)] -- signatures as list

type Defs = Siglist -- list of defined symbols
type Cons = SigList -- list of constructors
type Equations = [(Term, Term)] -- all function equations

-— all combined in Haskell-type; it also stores known types
data ProgInfo = Proglnfo [Type] Cons Defs Equations

—-- checking single data type definition
processDataDefinition ::
ProgInfo -> DataDefinition —> Check ProglInfo

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 20/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Processing Functional Programs

Checking a Single Data Definitions

processDataDefinition
(ProgInfo tys cons defs eqgs)
(Data ty newCs)
= do
assert (not (elem ty tys))
let newTys = ty : tys
assert (distinct (map fst newCs))
assert (all (\ (c,_) -> all (/= c) (map fst (cons ++ defs))) newCs)
assert (all (\ (_,(tysIn,tyOut)) ->
tyOut == ty &&
all (\ ty -> elem ty newTys) tysIn) newCs)
assert (any
(\ (_,(tysIn,_)) -> all (/= ty) tysIn) newCs)
return (ProgInfo newTys (newCs ++ cons) defs eqs)

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 21/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Processing Functional Programs

Checking Several Data Definitions

® processing many data definitions can be easily done by using fo1dM: predefined monadic
version of foldl
foldM :: Monad m => (b -> a => m b) -> b -> [a] ->m b
foldM f e [] = return e
foldM f e (x : xs) = do
d <-fex
foldM f d xs

processDataDefinition ::
ProgInfo -> DataDefinition —-> Check ProglInfo
processDataDefinition = ... -- previous slide

processDataDefinitions
ProgInfo -> [DataDefinition] -> Check ProgInfo

processDataDefinitions = foldM processDataDefinition

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 22/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Processing Functional Programs

Checking Function Definitions w.r.t. Slide 3/15

data FunctionDefinition = Function

FSym -- name of function
FSymInfo -- type of function
[(Term,Term)] -- equations

processFunctionDefinition
ProgInfo -> FunctionDefinition —-> Check ProglInfo
processFunctionDefinition = ... -- exercise

processFunctionDefinitions

ProgInfo -> [FunctionDefinition] -> Check ProgInfo
processFunctionDefinitions =

foldM processFunctionDefinition

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 23/100

http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/03x1.pdf#page=15
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Processing Functional Programs

Checking Functional Programs

initialProgInfo = ProgInfo [1 [1 [1 []

processProgram :: FunctionalProg —-> Check Proglnfo
processProgram (dataDefs, funDefs) = do
pi <- processDataDefinitions initialProgInfo dataDefs
processFunctionDefinitions pi funDefs

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 24/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Processing Functional Programs

Current State

® processProgram :: FunctionalProg -> Check ProgInfo is Haskell program to
check user provided functional programs, whether they adhere to the specification of
functional programs w.r.t. slides 3/4 and 3/15
its functional style using error monads permits us to easily verify its correctness

® no induction required

® based on assumption that builtin functions behave correctly, e.g., all, any, nub, ...

® missing: checks for well-defined functional programs w.r.t. slide 3/45

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 25/100

http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/03x1.pdf#page=4
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/03x1.pdf#page=15
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/03x1.pdf#page=45
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Disjointness

Checking Pattern Disjointness

Deciding Pattern Disjointness

® program is pattern disjoint if forall f : 7y X -+ X7, >7€Dandallt; € T(C)ry, ...,
tn € T(C);, there is at most one equation £ = r in the program, such that ¢ matches

f(tl, . ,tn)

® in proseminar it was proven that pattern disjointness is equivalent to the following
condition: for each pair of distinct equations £1 = r1 and ¢ = ro, ¢1 and a variable
renamed variant of /5 do not unify

® key missing part for checking pattern disjointness is an algorithm for unification:

given two terms s and ¢, decide Jo. s0 = to

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 27/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Disjointness

Unification Algorithm of Martelli and Montanari

® input: unification problem U = {s; L t1,...,8p z tn}
® question: is U solvable, i.e., does there exist a solution o,
a substitution satisfying Vi € {1,...,n}.s;0 = t;o
® two different kinds of output:
® unification problem in solved form:
{z1 . Vi, .nns T z U, } with distinct x;'s

solved forms can be interpreted as substitution

o(z) = {vi, if £ =x;

x, otherwise

and this o will be solution of U
® |, indicating that U is not solvable

e algorithm itself is build via one-step relation ~» which is applied as long as possible

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 28/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Disjointness

Unification Algorithm of Martelli and Montanari, continued

: T ? ?
® input: unification problem U = {s1 =t1,...,8, =t}
® output: solution of U via solved form or L, indicating unsolvability

® algorithm applies ~» as long as possible; ~~ is defined as

UU{t=t}~U (delete)
UU{f(ut, ... up) = fur, ... o)t~ UU{uy =v1,...,vs =vp} (decompose)
UU{f(ur,...,up) = glor, ..., v0)}~ L, if fAgVEk#£L (clash)
UU{f(..) 2}~ UU{e < f(.)} (swap)
Uu{z L Fl)}~ L, ifx € Vars(f(...)) (occurs check)

UU{z = th~ Uz/tyU{z =t}

(eliminate)
if x ¢ Vars(t) and x occurs in U

notation U{x/t}: apply substitution {z/t} on all terms in U (lhs + rhs)

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 29/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Disjointness

Correctness of Unification Algorithm

® we only state properties (proofs: see term rewriting lecture)
® -~ terminates
® normal form of ~~ is L or a solved form

® whenever U ~» V, then U and V have same solutions
® in total: to solve unification problem U

® determine some normal form V of U
® if V = 1 then U is unsolvable
® otherwise, V represents a substitution that is a solution to U

® note that ~~ is not confluent
? ? z/y ? ? ?
*{z=yy=z} ~ {z=yy=y}~{z=y}
? ? y/x ? ? ?
*{z=yy=z}t > {z=ry=z}~{y=ux}

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 30/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Disjointness

Correctness of an Implementation of a (Unification) Algorithm

® any concrete implementation will make choices
® preference of rules
® selection of pairs from U
® representation of sets U
® (pivot-selection in quicksort)
® (order of edges in graph-/tree-traversals)
[}

® task: how to ensure that implementation is sound
® solution: refinement proof

® aim: reuse correctness of abstract algorithm (~)
® define relation between representations in concrete and abstract algorithm (this was called
alignment before and done informally)
® show that concrete algorithm has less behaviour, i.e., every result of concrete (deterministic)
algorithm can be related to some result of (non-deterministic) abstract algorithm
® benefit: clear separation between
® soundness of abstract algorithm (solves unification problems)
® soundness of implementation (implements abstract algorithm)

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 31/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

A Concrete Implementing of the Unification Algorithm

subst :: Var -> Term -> Term -> Term

subst x t = applySubst (\ y -> if y == x then t else Var y)

unify :: [(Term, Term)] -> Check [(Var, Term)]

unify u = unifyMain u []

unifyMain :: [(Term, Term)] -> [(Var,Term)] -> Check [(Var, Term)]

unifyMain [] v = return v

unifyMain ((Fun f ts, Fun g ss) : u) v = do
assert (f == g && length ts == length ss)
unifyMain (zip ts ss ++ u) v

unifyMain ((Fun f ts, x) : u) v =
unifyMain ((x, Fun f ts) : u) v

unifyMain ((Var x, t) : w) v =

if Var x == t then unifyMain u v
else do
assert (not (x “elem” varsTerm t))
unifyMain

(map (\ (1,r) -> (subst x t 1, subst x t 1)) u)
((x,t) : map (\ (y, s) => (y, subst x t s)) v)

return solved form

clash
decompose

swap

delete

occurs check
eliminate

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs

Checking Pattern Disjointness

32/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Disjointness

Notes on Implementation

® it is non-trivial to prove soundness of implementation, since there are several differences
w.r.t. ~»

® unifyMain takes two parameters u and v
® these represent one unification problem u U v
® rule-application is not tried on v, only on u
® we need to know that v is in normal form w.r.t. ~
® in (occurs check)-rule, the algorithm has no test that rhs is function application
® we need to show that this will follow from other conditions
® in (elimination)-rule, the algorithm substitutes only in rhss of v
® we need to know that substituting in Ihss of v has no effect
® in (elimination)-rule, the algorithm does not check that = occurs in remaining problem
® we need to check that consequences don't harm

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 33/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Disjointness

Soundness via Refinement: Setting up the Relation

e relation ~ formally aligns parameters of concrete algorithm (u and v) with
parameters of abstract algorithm (U); ~ also includes invariants of implementation

® set converts list to set, we identify s Z ¢ with (s,t)
® (u,v) ~Uiff
® [J =set uUsetw,
® set v is in normal form w.r.t. ~» (notation: set v € NF(~)), and
e for all (x,t) € set v: x does not occur in
® since alignment between concrete and abstract parameters is specified formally,
alignment properties of auxiliary functions can also be made formal
® set (z:xs) ={x}Uset xs
set (zs ++ ys) = set xs U set ys
set (le [1’17 s ,Zlfn] [yla s 7yn]) - {(xl,yl)a R (xnyyn)}
set (map f [x1,...,2n]) ={f z1,..., f T}
subst x t s = s{x/t}

these properties can be proven formally and also be applied formally
(although we don't do it in the upcoming proof)

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 34/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Disjointness

Soundness via Refinement: Main Statement

e define setMaybe Nothing = L, setMaybe (Just w) = set w

® property: whenever (u,v) ~ U and unifyMain u v = res then U ~' setMaybe res

® once property is established, we can prove that implementation solves unification
problems

RT (DCS @ UIBK)

assume input u, i.e., invocation of unify u which yields result res
hence, unifyMain u [| = res

moreover, (u, []) ~ set u by definition of ~

via property conclude set u ~' setMaybe res

at this point apply correctness of ~:

setMaybe res is the correct answer to the unification problem set u

Part 4 — Checking Well-Definedness of Functional Programs 35/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Disjointness

Proving the Refinement Property
e property P(u,v,U): (u,v) ~ U A unifyMain u v = res — U ~' setMaybe res
(u,v) ~U <— U = set uU set v A set v € NF(~) AVY(z,t) € set v. x ¢ Vars(u)

e we prove the property P(u,v,U) by induction on w and v w.r.t. the algorithm for
arbitrary U, i.e., we consider all left-hand sides and can assume that the property holds
for all recursive calls;
induction w.r.t. algorithm gives partial correctness result (assumes termination)

® in the lecture, we will cover a simple, a medium, and the hardest case

® case 1 (arguments [] and v):
® we have to prove P([],v,U), so assume
(*) (.v) ~ U and
(**) wnifyMain [| v = res
® from (*) conclude U = set v and set v € NF(~)
® from (**) conclude res = Just v and hence, setMaybe res = set v
® we have to show U ~' setMaybe res, i.e., set v ~' set v which is satisfied since
set v € NF(~)

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 36/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Disjointness

® P(u,v,U): (u,v) ~ U A unifyMain u v = res — U ~' setMaybe res

® (u,v) ~U — U =set uUset vAsetve NF(~)AVY(x,t) € set v. z ¢ Vars(u)
case 2 (arguments (f(¢s), g(ss)) : u and v)

® we have to prove P((f(ts),g(ss)) : u,v,U), so assume

(*) ((f(ts),9(ss)) : u,v) ~ U and
(**) unifyMain ((f(ts),g(ss)) : u) v = res
® consider sub-cases
® —(f =gAlength ts = length ss):
® from (**) conclude setMaybe res = L

® from (*) conclude f(ts) < g(ss) € U and hence U ~~ L by (clash)
* consequently, U ~~' setMaybe res
® f=gAlength ts = length ss:

® from (**) conclude res = unifyMain ((f(ts), g(ss)) : u) v = unifyMain (zip ts ss ++ u) v

® from (*) and alignment for zip and ++ conclude U = {f(ts) < g(ss)} U set uwU set v and
hence U ~~ set (zip ts ss ++ u) U set v =: V by (decompose)

® we get P(zip ts ss ++ u,v,V) as IH; (zip ts ss ++ u,v) ~ V follows from (*), so
U~V ~~' setMaybe res

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 37/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Disjointness

* P(u,v,U): (u,v) ~ U A unifyMain u v = res — U ~' setMaybe res
® (u,v) ~U +— U = set uUset vAset vE NF(~)AV(z,t) € set v. z ¢ Vars(u)

case 4 (arguments (z,t) : u and v)

® we have to prove P((z,t) : u,v,U), so assume
(*) ((z,¢) : u,v) ~ U and
(**) unifyMain ((x,t) : u) v = res
® consider sub-cases (where the red part is not triggered by structure of algorithm)
® x#tAx ¢ Vars(t) Ax occurs in set uwU set v:

RT (DCS @ UIBK)

define u' = map (A(l,r). (subst x t I, subst x t 1)) u

define v' = map (A\(y, s). (y, subst x t s)) v

define V' = (set uw U set v){z/t} U {x < t}

from (**) conclude res = unifyMain ((z,t) : u) v = unifyMain v’ ((z,t) : V')

from IH conclude P(u/, (z,t) : v/, V) and hence, (v/, (z,t) : v') ~ V — V ~' setMaybe res

for proving U ~' setMaybe res it hence suffices to show (u/, (x,t) : v') ~V and U ~ V

v {z < t}Uset uUset v~ (set wUset v){z/t}U{z/t} =V
by (eliminate) because of preconditions

Part 4 — Checking Well-Definedness of Functional Programs

38/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Disjointness

® (u,v) ~U — U = set uUset v A set v e NF(~)AVY(x,t) € set v. z ¢ Vars(u)

case 4 (arguments (z,t) : u and v)

® we have to prove P((z,t) : u,v,U), so assume (*) ((z,t) : u,v) ~U and ...
and consider sub-case x # t A x ¢ Vars(t) A x occurs in set uU set v:

RT (DCS @ UIBK)

define v’ = map (A(l,7). (subst x t I, subst x t r)) u

define v’ = map (A\(y, s). (y, subst © t s)) v

define V = (set u U set v){z/t} U{z < t}

we still need to show (u/, (x,t) : v') ~ V

since (*) holds, we know V (y, s) € set v. x # y

hence, v = map (A\(y,s). (subst x t y, subst x t s)) v

so, V = (set u){z/t} U{x < th U (set v){z/t} = set u' U set ((x,t):v")

we show Y(y, s) € set ((x,t) : v). y ¢ Vars(u') as follows:

x & Vars(u') since x ¢ Vars(t); and if (y, s) € set v/, then (y,s’) € set v for some s’ and by
(*) we conclude y ¢ Vars((x,t) : u); thus, y & Vars((set uw){z/t}) = Vars(u')

we finally show set ((x,t) : v") € NF(~): so, assume to the contrary that some step is
applicable; by the shape of set ((z,t) : v') we know that the step can only be (eliminate),
(delete) or (occurs check); all of these cases result in a contradiction by using the available
facts

Part 4 — Checking Well-Definedness of Functional Programs 39/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Disjointness

Proving the Refinement Property
® remaining cases: similar, cf. exercises

® summary

non-trivial implementation of abstract unification algorithm ~~
® optimizations required additional invariants, encoded in refinement relation
® proof of correctness can be done formally
® induction + case analysis proof uses mostly the structure of the Haskell code;
exception: case analysis on "z occurs in set u U set v”
most cases can easily be solved, after having identified suitable invariants
® fully reuse correctness of ~~
® we only proved partial correctness
® termination of implementation: consider lexicographic measure

([Vars(set u)|, [ul ,length [z | (¢, Var x) + u))
—_——— ~—
(eliminate) (decomp),(delete) (swap)

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 40/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Completeness

Checking Pattern Completeness

Pattern Problems

® reminder: program is pattern complete, if forall f: 7 x ... x 7, = 7€ D and all
ti € T(C)s, there is some lhs that matches f(t1,...,t,)

® algorithm considers more generic shape
® matching problems mp consist of pairs of terms (¢, £) where
® {is a term, representing the set of all its constructor ground instances, e.g., t = f(21,...,Zn)
® (is (a subterm of) some lhs
® semantics: find one substitution « such that ¢ = £ for all (¢,£) € mp
® reason: decomposition of terms
® pattern problems pp consist of multiple matching problems
® semantics: disjunction, i.e., find one suitable matching problem
® reason: a term t might be matched by arbitrary lhs
e initially: pp = {{(¢,€1)},...,{(t,€n)}} for Ihss £y, ..., £,
® sets of pattern problems P consist of several pattern problems
® semantics: conjunction
® reason: consider different ground instances and different defined function symbols
® initial set of pattern problems: Pinit = {{{(f(21,...,2n),€)} | £ is Ihs of f-eqn.} | f € D}
® overall semantics: P is complete iff

Vpp € P.No : V — T(C).Imp € pp. Fy.V(t,£) € mp.to = by

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 42/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Completeness

Reformulation of Pattern Completeness of Programs

e definitions of previous slide (omitting types)

® program is pattern complete iff for all f € D and all ¢; € T(C) there is some lhs that
matches f(t1,...,tn)

® Pt = {{{(f(z1,...,2,),£)} | £ is Ihs of f-equation} | f € D}
® P is complete iff Vpp € P.Vo : V — T(C).Imp € pp. I7.V(t,£) € mp. to = by

e corollary: program is pattern complete iff P;,;; is complete
Task: determine completeness of pattern problems

® algorithm modifies matching problems and (sets of) pattern problems

® special problems: L represents a non-solvable matching problem and an incomplete set
of pattern problems, and T represents a complete pattern problem

® here: only consider linear pattern problems, i.e., problems where variables in lhss of
programs occur at most once

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 43/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Completeness

Transforming Matching and Pattern Problems

{(f(t1y. .o stn), f(lr, ... 0n)) Wmp — {(t1,41), ..., (tn, ln)} Ump (decompose)
{(t,z)} Ymp — mp (match)

(G gl Nywmp— L iff#g (clash)

{mp}wpp = {mp'tUpp if mp —mp' (simp-mp)

{L}wpp— pp (remove-mp)

{otwpp —~T (success)

{pp} W P = {pptUP if pp— pp' (simp-pp)

{8}y P — | (failure)

{TtwP—~P (remove-pp)

{pp} @ P — Inst(pp,z) U P if mp € pp and (z, f(...)) € mp
(instantiate)
where Inst(pp,) contains a pattern problem ppo, . for each constructor ¢ where
e rx:7andc:m X X1, —>7Tand x1:7q, ..., Ty : Ty are fresh, and

® ppog . is obtained from pp by replacing each pair (t,£) by (t{z/c(z1,...,2p)}, ()

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 44/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Completeness

Example

consider
data Bool = True : Bool | False : Bool

41 := conj(True, True) =
Uy := conj(False, y) =
U3 := conj(x, False) =
then we have
Pinit = {{{(conj(z1, x2), 1)}, {(conj(x1, x2), £2)}, {(conj(x1, ¥2), 3) } } }
—* L{(z1, True), (z2, True) }, {(x1, False), (x2,9)}, {(z1, x), (x2, False) } } }
—* L{(z1, True), (z2, True) }, {(x1, False) }, {(x2, False) } } }
— fL{(True, True), (x2, True)}, {(True, False)}, {(z2, False)} },
{{(False, True), (x2, True) }, {(False, False)}, { (z2, False) } } }
—* (g, True) }, L, {(x2, False) }}, {L, 2, {(z2,False)}}}
(
(

—* (22, True)}, {(z2, False) } } }
— {L{(True, True)}, {(True False)}g

RT (DCS @ UIBK) art 4 — Checking Well

{d{(False True)}, {(False, False) } } } —*

fin f Functional Programs

45/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Completeness
Example
consider
data Bool = True : Bool | False : Bool
41 := conj(True, True) =
ly := conj(False, y) =
then we have

Pinit = {{{(conj(z1, 22), €1)}, {(conj(z1, x2), £2) } } }
—* L (1, True), (z2, True)}, {(x1, False) } } }
— {{{(True, True), (x2, True)}, {(True, False)}},

(
(
(
{{(False, True), (z2, True)}, {(False, False)}} }
= {{{(z2, True)}, L}, {L,2}}

(

(

=" {{{(z2, True)} }}
— f{I{(True, True)} }, {{(False, True)}}} —~* {T, 0} — L

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 46/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Completeness

Partial Correctness of —

® theorem: whenever P — (), then P is complete iff () is complete
e corollary: if P —* & then P is complete,

and if P —* 1 then P is not complete
e definition: P is complete iff

Vpp € P.Yo : V — T(C). Imp € pp. Fy.V(t,¢) € mp.to = b

=)
® proof of theorem by case analysis on the various rules
® (clash): first inline rule to {{{(f(...),9(...))} Wmp} Wpp} W P — {pp}UP,if f#g

® by definition of completeness and structure of rule it suffices to show that completeness is
preserved by rule

HC-)sg(-)} Wmp} wpp — pp

=:mp’

® hence, it suffices to show that % is not satisfied when choosing mp’ in the existential
quantifier Imp € pp.. ..

® but this property is easy to see, since to = £v is never satisfied if (¢,£) is (f(...),g(...))
® many other rules are similar, exceptions are (match) and (instantiate)

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 47/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Partial Correctness of —, continued

Checking Pattern Completeness

e definition: P is complete iff
Vpp € P.¥o : V — T(C).3Imp € pp. 3. V(t,£) € mp.to = by
® proof continued

® (instantiate): {pp} W P — Inst(pp,x)U P, where x : 7, T has constructors ¢y, ..., ¢y, and
o; ={x/c;i(x1,...,xk)} for fresh x;, and Inst(pp,z) = {ppo; | 1 <i < n}

we only consider one direction of the proof: we assume that Inst(pp, z) is complete and prove
that pp is complete

® to this end, consider an arbitrary constructor ground substitution o

® since o is constructor ground, we know o(x) = ¢;(t1,...,tk) for some constructor ¢; and
constructor ground terms t1,...,tx
o Ly, ify=ua;

define o' (y) =
) o(y), otherwise

® o’ is well-defined since the z;'s are distinct, and ¢’ is a constructor ground substitution
® note that to = to;o’ for all terms ¢ that occur in pp since the z;'s are fresh
® by completeness of Inst(pp,x) there must be some mp € ppo; and 7 such that

Y(t,£) € mp. to’ = Ly

® hence, there is some mp € pp and v such that V(¢,£) € mp. to;0’ = vy
® together with to = to;0’ we conclude that pp is complete

RT (DCS @ UIBK)

Part 4 — Checking Well-Definedness of Functional Programs 48/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Completeness

Correctness of —, Missing Parts

® already proven

® if P —~* & then P is complete
® if P —* | then P is not complete

® open: termination of —»

® open: can — get stuck?

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 49/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Completeness

— Cannot Get Stuck

{(f(t1y. oo stn), f(lr, ... 0n)) Wmp — {(t1,41), ..., (tn, ln)} Ump (decompose)
{(t,z)} ¥mp — mp (match)

(G gl Nywmp— L iff#g (clash)

{mp}wpp = {mp'tUpp if mp —mp' (simp-mp)

{L}wpp— pp (remove-mp)

{otwpp —~T (success)

{pp} W P = {pptUP if pp— pp' (simp-pp)

{8} P — | (failure)

{TtwP—~P (remove-pp)

{pp} W P — Inst(pp,z) U P if mp € pp and (z, f(...)) € mp
(instantiate)

¢ lemma: whenever P is well-typed and in normal form w.r.t. —, then P € {@, 1}

® proof: by a large case-analysis
RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 50/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Completeness

Termination of —

{ppy & P == {pp'} UP if pp— pp/ (simp-pp)
{O}W P — 1| (failure)
{T}JyP—~P (remove-pp)
{pp} W P — Inst(pp,x) U P if mp € pp and (x, f(...)) € mp (instantiate)

e define |¢ — t| as a measure of difference of ¢ and ¢
® |¢ — x| = number of function symbols in ¢

® |f(€13"'7£n)7f(t17"~7tn)| :Zi Mz*til

® | —t| =0, in all other cases
® map each pattern problem pp to number |pp| = Zmpepp,(te Yemp |0 — t|
® map each set of pattern problem P to multiset {|pp| | pp € P}

e this multiset decreases in (instantiate) and is not increased in the other —=-rules
(multiset decrease: M UN >™ M UN'if N # @ andVy € N'.3z € N.z > y)

® hence (instantiate) cannot be applied infinitely often
® since the remaining rules also terminate, — must terminate

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 51/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Completeness

Implementation and Complexity of —

clearly, — is formulated abstractly

a concrete implementation has to use a concrete representation for matching- and
pattern problems; it has to resolve non-determinism, e.g., order of rules, selection of
instantiation variables, etc.

theorem: deciding pattern completeness is co-NP-hard

consequence: worst-case complexity on required number of —>-steps unlikely to be
sub-exponential

fully verified implementation exists

currently fastest known algorithm for pattern completeness, developed for this lecture

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 52/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Completeness

Summary on Pattern Completeness
® pattern completeness of functional programs is decidable:
program is pattern complete iff P;,;; —' &
® two possible extensions

® generation of counter-examples
® handling of non-linear pattern problems

® partial correctness was proven via invariant of —»
® termination of — was shown via multisets and a dedicated measure
® termination proof was tricky, definitely required human interaction

® in contrast: upcoming part is on automated termination proving

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 53/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Dependency Pairs

Termination — Dependency Pairs

Termination of Programs

® the question of termination is a famous problem

® Turing showed that “halting problem” is undecidable
® halting problem

® question: does program (Turing machine) terminate on given input
® problem is semi-decidable: positive instances can always be identified
® algorithm: just simulate the program and then say “yes, terminates”

® we here consider universal termination, i.e., termination on all inputs
® universal termination is not even semi-decidable

e despite theoretical limits: often termination can be proven automatically

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 55/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Dependency Pairs

Termination of Functional Programs

e for termination, we mainly consider functional programs which are pattern-disjoint;
hence, < is confluent

® consequence: it suffices to prove innermost termination, i.e., the restriction of < such
that arguments ¢; will be fully evaluated before evaluating a function invocation

flt1, ..o tn)

e example without confluence

f(True, False,) = f(z, x, z)
flo.oyoyz)=x (all other cases)
coin = True

coin = False

® both f and coin terminate if seen as separate programs

® program is innermost terminating, but not terminating in general

f(True, False, coin) < f(coin, coin, coin) <2 f(True, False, coin) < ...
RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 56/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Dependency Pairs

Subterm Relation and Innermost Evaluation

® define > as the strict subterm relation and > as its reflexive closure

t; > s
F(tl,...,tn)bti F(tl,...,tn)l>8

® innermost evaluation <+ is defined similar to one-step evaluation —

i <=t e i text
i rewrite in contex
F(sty ey SiyeeaySn) <> F(S1,... iy .., Sn)
¢ = r is equation in program Vs < lo. s € NF'(—)
: root step
lo <5 ro

® example
f(True, False, coin) < f(coin, coin, coin)

since coin < f(True, False, coin) and coin ¢ NF(—)

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 57/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Dependency Pairs

Strong Normalization

e relation > is strongly normalizing, written SN (), if there is no infinite sequence
ai > agz > ag » ...

® strong normalization is other notion for termination

® strong normalization of a relation is equivalent to soundness of induction principle w.r.t.

that relation;
the following two conditions are equivalent

® SN(+)
® VP (Vo. Vy. 2>y — Py) — Pz) — (Vo. P x)
® equivalence shows why it is possible to perform induction w.r.t. algorithm for terminating
programs

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 58/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination Analysis with Dependency Pairs
® aim: prove SN (<)
® only reason for potential non-termination: recursive calls

e for each recursive call of equation f(t1,...,t,) =¢=1r> f(s1,...,s,) build one
dependency pair with fresh (constructor) symbol f:

Aty tn) = fH(s1, .0, 80)
define DP as the set of all dependency pairs
® example program for Ackermann function has three dependency pairs
ack(Zero,y) = Succ()
ack(Succ(z), Zero) = ack(z, Succ(Zero))
ack(Succ(z), Succ(y)) = ack(z, ack(Succ(z),y))
ackf(Succ(x), Zero) — ack®(x, Succ(Zero))
ack(Succ(z), Succ(y)) — ackﬁ(a: ack(Succ(z),y))
ack®(Succ(x), Succ(y)) — ack?(Succ(z), y)

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs

Termination — Dependency Pairs

59/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Dependency Pairs

Termination Analysis with Dependency Pairs, continued

® dependency pairs provide characterization of termination

e definition: let P C DP; a P-chain is a possible infinite sequence
s101 — 1101 ¥ So09 — 1909 cdy* S303 — 1303 S

such that all s; — t; € P and all s;0; € NF(—)

® 5,0, — t;0; represent the “main” recursive calls that may lead to non-termination
® {,0; =" s;410;41 corresponds to evaluation of arguments of recursive calls

e theorem: SN (<) iff there is no infinite DP-chain

¢ advantage of dependency pairs

® in infinite chain, non-terminating recursive calls are always applied at the root
® simplifies termination analysis

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 60/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Dependency Pairs

Example of Evaluation and Chain
minus(z, Zero

nus(m)
Zero
Succ(div(minus(z, y), Succ(y)))

— minus®(z,)

minus(Succ(z), Succ(

div(Zero, Succ(y
div(Succ(z), Succ(y
minus?(Succ(x), Succ(y
(

)
) =
)
)=
)
div¥(Succ(z), Succ(y))

(¥)
)
)
)
)) — div¥(minus(x, y), Succ(y))
® example innermost evaluation

div(Succ(Zero), Succ(Zero))

<5 Succ(div(minus(Zero, Zero), Succ(Zero)))

<5 Succ(div(Zero, Succ(Zero)))

<3 Succ(Zero)

and its (partial) representation as DP-chain
div¥(Succ(Zero), Succ(Zero))

— div¥(minus(Zero, Zero), Succ(Zero))
<is* div¥(Zero, Succ(Zero))

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 61/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Proving

Termination — Dependency Pairs

Termination

® global approaches

try to find one termination argument that no infinite chain exists

® jterative approaches

identify dependency pairs that are harmless, i.e., cannot be used infinitely often in a chain
remove harmless dependency pairs from set of dependency pairs
until no dependency pairs are left

® we focus on iterative approaches, in particular those that are incremental

RT (DCS @ UIBK)

incremental: a termination proof of some function stays valid

if later on other functions are added to the program

incremental termination proving is not possible in general case (for non-confluent programs),
consider coin-example on slide 56

Part 4 — Checking Well-Definedness of Functional Programs 62/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Subterm Criterion

Termination — Subterm Criterion

A First Termination Technique — The Subterm Criterion

® the subterm criterion works as follows

® et PC DP

® choose f%, a symbol of arity n

® choose some argument position i € {1,...,n}

e demand s; > t; for all f¥(sy,...,8,) = ff(t1,...,tn) € P
® define P = {fu(sl, .. ~7Sn) — fﬁ(tl, Ce ,tn) epP | S; > f,}
[}

then for proving absence of infinite P-chains it suffices to prove absence of infinite
P\ P.-chains, i.e., one can remove all pairs in Py

® observations

® easy to test: just find argument position ¢ such that each i-th argument of all
ft-dependency pairs decreases w.r.t. > and then remove all strictly decreasing pairs

® incremental method: adding other dependency pairs for g* later on will have no impact

® can be applied iteratively

® fast, but limited power

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 64/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Subterm Criterion

Subterm Criterion — Example

® consider a program with the following set of dependency pairs

ack?(Succ(z), Zero) — ack?(x, Succ(Zero)) (1)
ack®(Succ(z), Succ(y)) — ack(z, ack(Succ(x), y)) (2)
ackf(Succ(x), Succ(y)) — ack?(Succ(z), y) (3)

minus?(Succ(x), Succ(y)) — minust(z, y) (4)
div*(Succ(z), Succ(y)) — div¥(minus(x, y), Succ(y)) (5)
plus?(Succ(z), y) — plust(y, z) (6)

® it is easy to remove (4) by choosing any argument of minus’
* we can remove (1) and (2) by choosing argument 1 of ack®
* afterwards we can remove (3) by choosing argument 2 of ack?

® it is not possible to remove any of the remaining dependency pairs (5) and (6) by the
subterm criterion

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 65/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Subterm Criterion

Subterm Criterion — Soundness Proof
* assume the chosen parameters in the subterm criterion are f* and i

® it suffices to prove that there is no infinite chain
s101 — 1101 ¥ S909 — 1909 Ay ¥ S303 — t303 dsF

such that all s; — ¢; € P, all s; and t; have f* as root and there are infinitely many
sj — tj € Py; perform proof by contradiction
® hence all s; — t; are of the form f*(sj1,...,8jn) = f*(tj1,- - tjn)
® from condition s;; > t;; of criterion conclude s;;0; > t;,0;
and if 85 — tj € P. then S5 B> tj,i and thus 805 > tj’l'O'j
® we further know ;;0; ddy* 5j41,i0j41 since fﬁ is a constructor
® this implies ¢j;0; = $j4+1,,0j41 since t;;,0; € NF(—) as
tj’idj < 84045 < fﬁ(Sjlej, R ,Sijj) =80 € NF(‘—))
® obtain an infinite sequence with infinitely many ©>; this is a contradiction to SN (>>)
81,01 > t1 301 = 89,09 B> 19 ;00 = 83,03 B> 13,03 = ...

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 66/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Size-Change Principle

Termination — Size-Change Principle

The Size-Change Principle

® the size-change principle abstracts decreases of arguments into size-change graphs
® size-change graph
[}

let f% be a symbol of arity n
® a size-change graph for f% is a bipartite graph G = (V, W, E)
the nodes are V.= {1;n,...,nin} and W = {1out, ..., Nout }
E'is a set of directed edges between in- and out-nodes labelled with >~ or -
t

the size-change graph G of a dependency pair f#(s1,...,s,) — fH(t1,...,t,) defines E as
follows

® Qi = jour € E whenever s; > t; (strict decrease)

-

® iin = jout € E whenever s; =t; (weak decrease)

® in representation, in-nodes are on the left, out-nodes are on the right, and subscripts are
omitted

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 68/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Size-Change Principle

Example — Size-Change Graphs

e consider the following dependency pairs; they include permutations that cannot be solved
by the subterm criterion

f*(Succ(z),y) — (=, Succ(z)) (7)
fﬁ(:v, Succ(y)) — fﬁ(y, x) (8)

® obtain size-change graphs that contain more information than just the size-decrease in
one argument, as we had in subterm criterion

Gr: 11 Gg: 1

N X

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 69/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Size-Change Principle

Multigraphs and Concatenation

e graphs can be glued together, tracing size-changes in chains, i.e., subsequent dependency
pairs

e definition: let G be a set of size-change graphs for the same symbol f%; then the set of
multigraphs for % is defined as follows

® every G € G is a multigraph
® whenever there are multigraphs GG; and G5 with edges F1 and FEs then also the
concatenated graph G = G+ G4 is a multigraph; here, the edges of E of G are defined as
e ifi>jeFE andj ke Ey theni>keckE
® if at least one of the edges i — j and j — k is labeled with > then ¢ — k is labeled with >,
otherwise with -

-
® if the previous rules would produce two edges @ 5k and i = k, then only the former is added
to £

® a multigraph G is maximal if G = G-G

® since there are only finitely many possible sets of edges,
the set of multigraphs is finite and can easily be computed

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 70/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Size-Change Principle

Example — Multigraphs
® consider size-change graphs

Gr: 11 Gg: 1, 1
X X
2 2 2 2
® this leads to three maximal multigraphs
G(7) * G(g) 01 :>>_1 G(g) ° G(7) : 1>_ 1 G(S) ° G(S) 01 i> 1
N /!)
2 2 2—>2 259

® and a non-maximal multigraph

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Funct%nal Progams 71/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Size-Change Principle

Size-Change Termination

instead of multigraphs, one can also glue two graphs G; and G3 by just identifying the
out-nodes of (G with the in-nodes of G5, defined as G1 o Go; in this way it is also
possible to consider an infinite sequence of graphs Gi o GaoGso...

example:
Gy oG oG oGm: 11, 1, 151
- -
2\ 2><2><2\ 2
definition: a set G of size-change graph is size-change terminating iff for every infinite

concatenation of graphs of G there is a path with infinitely many i>—edges

theorem: let P be a set of dependency pairs for symbol f# and G be the corresponding
size-change graphs; if G is size-change terminating, then there is no infinite P-chain

the proof is mostly identical to the one of the subterm criterion

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 72/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Size-Change Principle

Deciding Size-Change Termination

definition: a set G of size-change graph is size-change terminating iff for every infinite
concatenation of graphs of G there is a path with infinitely many i>—edges
checking size-change termination directly is not possible
still, size-change termination is decidable
theorem: let G be a set of size-change graphs; the following two properties are equivalent
1. G is size-change terminating
2. every maximal multigraph of G contains an edge 7 5

although the above theorem only gives rise to an EXPSPACE-algorithm, size-change
termination is in PSPACE;

in fact, size-change termination is PSPACE-complete

despite the high theoretical complexity class, for sets of size-change graphs arising from
usual algorithms, the number of multigraphs is rather low

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 73/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Size-Change Principle

Proof of Theorem

® the direction that size-change termination implies the property on maximal multigraphs
can be done in a straight-forward way

® the other direction is much more advanced and relies upon Ramsey's theorem in its
infinite version

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 74/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Size-Change Principle

Proof of Theorem: Easy Direction (1. implies 2.)

assume that G is size-change terminating, and consider any maximal graph G

since G is a multigraph, it can be written as G = G1+ ... *G,, with each G; € G
consider infinite graph Gy o...0G,o0G10...0Gpo...

because of size-change termination, this graph contains path with infinitely many
Z-edges

hence GoGo... also has a path with infinitely many i>—edges

on this path some index ¢ must be visited infinitely often

hence there is a path of length k such that Go G o... oG (k-times) contains a path
from the leftmost argument 7 to the rightmost argument 7 with at least one i>—edge
consequently G+G-+ ... +G (k-times) contains an edge i = i

by maximality, G = G+G- ... -G, and thus G contains an edge ¢ 5

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 75/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Size-Change Principle

Ramsey’s Theorem

e definition: given set X and n € N, we define X (™) as the set of all subsets of X of

size n; formally:
XMW ={Z|ZCXNA|Z|=n}

® Ramsey's Theorem — Infinite Version

letn e N

let C be a finite set of colors

let X be an infinite set

let ¢ be a coloring of the size n sets of X, i.e., ¢c: X(™ — C

theorem: there exists an infinite subset Y C X such that all size n sets of Y have the same
color

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 76/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Size-Change Principle

Proof of Theorem: Hard Direction (2. implies 1.)
e consider some arbitrary infinite graph Goo Gy o0 Gso...
e for n < m define G,y = Gpe ... * Gt

® by Ramsey’s theorem there is an infinite set I C N such that G, ;,, is always the same
graph G for all n,m € I with n <m
(n =2, C = multigraphs, X =N, c({n,m}) = Grininm} maz{nm})

G is maximal: for n; < ng < ng with {ny,n9,n3} C I, we have
Gning =Gny* oo *Gryo1°Gpyt oo *Grg—1 = Gy ny * Gng ng, and thus G = GG

by assumption, G contains edge @ 5

let I = {ny,na,...} with n; < mng < ... and obtain

GooGlo...
=Gpo...0Gp,—10Gp, 0...0Gy,_10Gp,0...0Gp,_10...
~Gpo...0Gp,_10G oG o...

Lo . . S -
so that edge ¢ = ¢ of GG delivers path with infinitely many —-edges
RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 77/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Size-Change Principle

Proof of Ramsey’s Theorem

® Ramsey's Theorem — Infinite Version
® letneN
let C' be a finite set of colors
let X be an infinite set
let ¢ be a coloring of the size n sets of X, i.e., ¢: X(™ — C
theorem: there exists an infinite subset Y C X such that all size n sets of Y have the same
color
e proof of Ramsey's theorem is interesting
® it is simple, in that it only uses standard induction on n with arbitrary ¢ and X
® it is complex, in that it uses a non-trivial construction in the step-case, in particular applying
the IH infinitely often

® base case n = 0 is trivial, since there is only one size-0 set: the empty set

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 78/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Proof of Ramsey’s Theorem — Step Case n =m + 1

Termination — Size-Change Principle
define Xo = X

pick an arbitrary element ag of Xy

define Yy = Xo \ {ao}; define coloring ¢’ : Yo(m) —Casd(Z)=c(ZU{ap})

IH yields infinite subset X; C Y such that all size m sets of X; have the same color ¢
w.r.t. ¢

hence, c({ap} U Z) = ¢ for all Z € X§m)

next pick an arbitrary element a; of X to obtain infinite set X5 C X7 \ {a1} such that
c{a1} U Z) = ¢, for all Z € X{™

by iterating this obtain elements ag, a1, as, ..., colors ¢y, ¢y, ¢ ... and sets

Xo, X1, Xo, ... satisfying the above properties

since C' is finite there must be some color d in the infinite list ¢y, ¢1, ... that occurs
infinitely often; define Y = {a; | ¢; = d}

Y has desired properties since all size n sets of Y have color d: if Z € Y(") then Z can
be written as {ai, ..., a;, } with iy < ... <i,; hence, Z = {a; } U Z' with 2’ € X",
e, c(Z)=c¢,=d

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 79/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Size-Change Principle

Summary of Size-Change Principle

size-change principle abstracts dependency pairs into set of size-change graphs
if no critical graph exists (multigraph without edge i Lay i), termination is proven
soundness relies upon Ramsey's theorem

subsumes subterm criterion in the following sense:
if all DPs can be deleted by subterm criterion, then also size-change principle is successful

still no handling of defined symbols in dependency pairs as in

div¥(Succ(z), Succ(y)) — div¥(minus(z, y), Succ(y))

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 80/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Reduction Pairs

Termination — Reduction Pairs

Reduction Pairs

® recall definition: P-chain is sequence
s101 — 1101 ¥ So09 — 1909 ¥ S303 — t303 ds* oL

such that all s; — t; € P and all s;0; € NF(<)
® previously we used > on s; — t; to ensure decrease s;o; > t;0;
® previously we used s;o € NF(<—) and > to turn <5* into =
® now generalize > to strongly normalizing relation >

® now demand /¢ - r for equations to ensure decrease t;0; 7 S; 11011
e definition: reduction pair (>,) is pair of relations such that

® SN(>)

® - is transitive
> and 77 are compatible: > o>~ C >
both - and 7 are closed under substitutions: s =t — so 2 to
7 is closed under contexts: s 7ot — F(...,s,...) 5 F(...,t,...)
note: > does not have to be closed under contexts

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 82/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Reduction Pairs

Applying Reduction Pairs

® recall definition: P-chain is sequence
s101 — t10q ¥ So09 — 1909 ¥ S303 — 1303 S

such that all s; — t; € P and all s;,0 € NF(—)

e demand s ~ ¢ for all s — t € P to ensure s;0; =~ t;0;

demand ¢ - r for all equations to ensure t;0; 7 Si+10+1
define P = {s >t € P|s >t}
effect: pairs in P cannot be applied infinitely often and can therefore be removed

theorem: if there is an infinite P-chain, then there also is an infinite P\ P._-chain

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 83/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Reduction Pairs

Example

® remaining termination problem

minus(z, Zero
minus(Succ(x), Succ(y
div(Zero, Succ

(
div(Succ(z), Succ(y
(

) =

) =

) = Zero
) = Succ(div(minus(z, y), Succ(y)))
)

divf(Succ(x), Succ(y)) — div¥(minus(z, y), Succ(y))

® constraints

minus(z, Zero) 77,

minus(Succ(z), Succ(y)) mlnus(a: Y)

div(Zero, Succ(y)) - Zero

div(Succ(z), Succ(y)) 7 Succ(div(minus(z, y), Succ(y)))
div¥(Succ(z), Succ(y)) > div(minus(z,), Succ(y))

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 84/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

RT (DCS @ UIBK

Termination — Reduction Pairs

Usable Equations

divf(Succ(x), Succ(y)) — div¥(minus(z, y), Succ(y))

® requiring £ 7, r for all program equations ¢ = r is quite demanding
® not incremental, i.e., adding other functions later will invalidate proof
® not necessary, i.e., argument evaluation in example only requires minus
e definition: the usable equations I/ w.r.t. a set P are program equations of those symbols
that occur in P or that are invoked by (other) usable equations; formally, let £ be set of
equations of program, let root (f(...)) = f; then U is defined as

s—teP tbu f=re& rootu=roott

l=rcl
U=r"cld v">u €=rcé& rootu=root/l
f=recld

® observation whenever t;0; <5* s;110;+1 in chain, then only usable equations of {s; — ¢;}

can be used
) Part 4 — Checking Well-Definedness of Functional Programs 85/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Reduction Pairs

Applying Reduction Pairs with Usable Equations

® recall definition: P-chain is sequence
s101 — 1101 ¥ So09 — 1909 ¥ S303 — 1303 dy* o

such that all s; — ¢; € P and all s;0 € NF(<)
* choose a symbol f% and define Py ={s—te P|root s= il
® demand s t forall s - 1 € P
® demand ¢ r for all [= r € U where U are usable equations w.r.t. Py
® define P = {s »t € Pp|s~t}
o effect: pairs in P cannot be applied infinitely often and can therefore be removed

¢ theorem: if there is an infinite P-chain, then there also is an infinite P\ P._-chain

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 86/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Reduction Pairs

Example with Usable Equations

® remaining termination problem

minus(z, Zero
minus(Succ(x), Succ(y
div(Zero, Succ

(
div(Succ(z), Succ(y
(

) =

) =

) = Zero
) = Succ(div(minus(z, y), Succ(y)))
)

divf(Succ(x), Succ(y)) — div¥(minus(z, y), Succ(y))

® constraints
minus(z, Zero) =~ x
minus(Succ(z), Succ(y)) 2 minus(z,y)
div¥(Succ(z), Succ(y)) > div¥(minus(z, y), Succ(y))

® because of usable equations, applying reduction pairs becomes incremental: new function

definitions won't increase usable equations of DPs of previously defined equations
RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 87/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Reduction Pairs

Remaining Problem

® given constraints

minus(x, Zero) = x
minus(Succ(zx), Succ(y)) 2 minus(z, y)
div¥(Succ(z), Succ(y)) > div¥(minus(z, y), Succ(y))

find a suitable reduction pair such that these constraints are satisfied
® many such reduction pairs are available (cf. term rewriting lecture)

® Knuth—Bendix order (constraint solving is in P)
recursive path order (NP-complete)
polynomial interpretations (undecidable)

® powerful

® intuitive

® automatable
® matrix interpretations (undecidable)
weighted path order (undecidable)

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 88/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Reduction Pairs

Polynomial Interpretation
® interpret each n-ary symbol F' as polynomial pp(z1,...,x,)
® variables in polynomials range over N and polynomials have to be weakly monotone

i >y —> pr(X1, .o Ty) 2 DE(X1, e Yy e, Tn)

sufficient criterion: forbid subtraction and negative numbers in pg
® interpretation is lifted to terms by composing polynomials

[x] ==
[F(t1,. .. tn)]) =pr([t1], .., [ta])

>) is defined as

(~ . _
szt iff Vi e N*. [s] > [t]
(>,) is a reduction pair, e.g.,
® SN(>) follows from strong-normalization of > on N
® = is closed under contexts since each pr is weakly monotone

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 89/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Reduction Pairs

Example — Polynomial Interpretation
® given constraints
minus(x, Zero) 7~
minus(Succ(z), Succ(y)) zZ minus(z, y)
divf(Succ(x), Succ(y)) > divf(minus(z,y), Succ(y))

and polynomial interpretation

Pminus(T1, T2) = 21
PZero = 2
Psucc(®1) = 1+ 71
Paiv (71, 22) = 21 + 32
we obtain polynomial constraints
[minus(z, Zero)] = = > = = [z]
[minus(Succ(x), Succ(y))] = 1 + 2 > = = [minus(z, y)]
[divF(Succ...)] = 4+ z + 3y > 3+ = + 3y = [divF(minus...)]

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs

90/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Reduction Pairs

Solving Polynomial Constraints

® each polynomial constraint over N can be brought into simple form “p > 0" for some
polynomial p
® replace p1 > pa by p1 > p2+1
® replace p;1 > ps by p1 —p2 >0
® the question of “p > (0" over N is undecidable
(Hilbert's 10th problem)

® approximation via absolute positiveness: if all coefficients of p are non-negative, then
p > 0 for all instances over N

e division example has trivial constraints

original simplified
T > 0>0
l+z>x 1>0
44+z4+3y>3+x+3y 0>0

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 91/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Reduction Pairs

Finding Polynomial Interpretations

® in division example, interpretation was given on slides
® aim: search for suitable interpretation

® approach: perform everything symbolically

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 92/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Reduction Pairs

Symbolic Polynomial Interpretations
e fix shape of polynomial, e.g., linear

pr(x1,...,xn) = Fo+ Flag + - + Fra,
where the F; are symbolic coefficients

Prinus(T1, T2) = 71
DZero = 2
Psucc(®1) = 1+ 21
Paivt (T1,22) = 1 + 32

concrete interpretation above becomes symbolic

Pminus(Z1, 2) = Mo + M2 + Maxy
DZero = Lo
Psucc(r1) = So + S121
Paive (21, 72) = do + d171 + dawo

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 93/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Reduction Pairs

Symbolic Polynomial Constraints

® given constraints

minus(x, Zero) I~ x
minus(Succ(z), Succ(y)) 7 minus(z,y)
divF(Succ(x), Succ(y)) > div¥(minus(z,), Succ(y))

® obtain symbolic polynomial constraints

mo + miz + moZg > x
mo + m1(So + S12) + m2(So + S1y) > mo + mix + may
do +d1(So + S1z) + d2(So + S1y) > do + di(mo + m1z + may)
+ d2(So + S1y)
¢ and simplify to

(m150 + mQSO) + (m151 — ml)w + (m251 — mg)y >0
(dlso —dimg — 1) + (d151 — dlml)x + (—dlmg)y >0

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 94/100

(mo + mQZO) + (m1 — l)x >0

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Reduction Pairs

Absolute Positiveness — Symbolic Example
® on symbolic polynomial constraints
(mo + mQZO) + (m1 — 1)$ >0
(m150 + mQSO) + (m151 — ml)x + (mQSl — mg)y >0
(d150 —dimg — 1) + (d151 — dlml)x + (—dlmg)y >0

absolute positiveness works as before; obtain constraints

mo—l—ngOZO m1—120
m1So + maSg > 0 m1S1 —m; >0 msS; —mg >0
dlso—dlmo—l ZO d151—d1m1 ZO —d1m2 ZO

® at this point, use solver for integer arithmetic to find suitable coefficients (in N)

® popular choice: SMT solver for integer arithmetic where one has to add constraints
mo > 07m1 Zoqu 20750 20751 20720 207

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 95/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Constraint Solving by Hand — Example

® original constraints

mo—l—ngOZO m1—120
m1Sg + maSp > 0 miS1 —my >0
d150—d1m0—1 ZO d151—d1m1 ZO

® delete trivial constraints

mi — 1 > 0
m151 —my > 0
d150—d1m0—120 dlSl—dlml ZO
® conclusions
mq Z 1 d1 Z 1
So>1 S1>1
my =0 S1>my
RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs

Termination — Reduction Pairs

m251 — My Z 0
—d1m2 > 0

m251 — mg > 0
—d1m2 Z 0

96/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Reduction Pairs

Constraint Solving by SMT-Solver — Example

® original constraints

m0+m22020 m1—120
m1Sp + msSy > 0 miSy —my >0 msS; — mg >0
d150—d1m0—120 d151—d1m1 ZO —d1m220

e encode as SMT problem in file division.smt2

(set-logic QF_NIA)

(declare-fun m0 () Int) ... (declare-fun d2 () Int)
(assert (>=m0 0)) ... (assert (>=d2 0))

(assert (>= (+ mO (x m2 Z0)) 0))

(assert (>= (x (- 1) d1 m2) 0))
(check-sat)

(get-model)

(exit)

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs

97/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Constraint Solving by SMT-Solver — Example Continued

® invoke SMT solver, e.g., Microsoft’s open source solver Z3

cmd> z3 division.smt2

sat

(model
(define-fun
(define-fun
(define-fun
(define-fun
(define-fun
(define-fun
(define-fun
(define-fun
(define-fun

)

di
S1
SO
Z0
m2
ml
mO
d2
do

O
O
O
0O
O
O
O
O
O

Int 8)
Int 15)
Int 8)
Int 0)
Int 0)
Int 12)
Int 4)
Int 0)
Int 0)

® parse result to obtain polynomial interpretation

RT (DCS @ UIBK)

Part 4 — Checking Well-Definedness of Functional Programs

Termination — Reduction Pairs

98/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Reduction Pairs

Constraint Solving by SMT-Solver — Scepticism

e polynomial interpretation found by SMT solving approach is generated by complex
(potentially buggy) tool

® however, termination is essential for well-defined programs, i.e., in particular to derive
correct theorems

® solution: certification

® search for interpretation can be done in arbitrary untrusted way
® write simple trusted checker that certifies whether concrete interpretation indeed satisfies all

constraints
® |ike solving NP-complete problem: positive answer can easily be verified

® in fact, this approach is heavily used in termination proving

® untrusted tools: AProVE, T7To, Terminator, ...
® trusted checker: CeTA; soundness formally proven in Isabelle/HOL

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 99/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Reduction Pairs

Summary

® pattern-completeness and pattern-disjointness are decidable
® termination proving can be done via

dependency pairs
subterm criterion
size-change termination

[]
[]
[]
® polynomial interpretation

® termination proving often performed with help of SMT solvers

® increase reliability via certification: checking of generated proofs

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 100/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Type-Checking with Implicit Variables
	Changing the Error Monad
	Processing Functional Programs
	Checking Pattern Disjointness
	Checking Pattern Completeness
	Termination – Dependency Pairs
	Termination – Subterm Criterion
	Termination – Size-Change Principle
	Termination – Reduction Pairs

