Summer Term 2024

Program Verification

Part 4 - Checking Well-Definedness of Functional Programs

René Thiemann

Department of Computer Science

Type-Checking with Implicit Variables

Overview

- recall: a functional program is well-defined if
 - it is pattern disjoint,
 - it is pattern complete, and
 - ullet \hookrightarrow is terminating
- well-definedness is prerequisite for standard model, for derived theorems, ...
- task: given a functional program as input, ensure well-definedness
 - known: type-checking algorithm
 - missing: algorithm for type-inference
 - missing: algorithm for deciding pattern disjointness
 - missing: algorithm for deciding pattern completeness
 - missing: methods to ensure termination
- all of these missing parts will be covered in this chapter

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

Type-Checking with Implicit Variables

2/100

Type-Inference

- structure of functional programs
 - data-type definitions
 - function definitions: type of new function + defining equations
 - not mentioned: type of variables
- in proseminar: work-around via fixed scheme which does not scale
 - singleton characters get type Nat
 - words ending in "s" get type List
- aim: infer suitable type of variables automatically
- example: given FP

```
\begin{aligned} & \text{append}: \mathsf{List} \times \mathsf{List} \to \mathsf{List} \\ & \text{append}(\mathsf{Cons}(x,y),z) = \mathsf{Cons}(x,\mathsf{append}(y,z)) \\ & \text{append}(\mathsf{Nil},x) = x \end{aligned}
```

we should be able to infer that $x: \mathsf{Nat}, \ y: \mathsf{List}$ and $z: \mathsf{List}$ in the first equation, whereas $x: \mathsf{List}$ in the second equation

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

```
Interlude: Maybe-Type for Errors
```

```
    recall type-checking algorithm
```

```
typeCheck :: Sig -> Vars -> Term -> Maybe Type
typeCheck sigma vars (Var x) = vars x
typeCheck sigma vars (Fun f ts) = do
  (tysIn,tyOut) <- sigma f
  tysTs <- mapM (typeCheck sigma vars) ts
  if tysTs == tysIn then return tyOut else Nothing
```

- Maybe-type is only one possibility to represent computational results with failure
- let us abstract from concrete Maybe-type:
 - introduce new type Check to represent a result or failure type Check a = Maybe a• function return :: a -> Check a to produce successful results function to raise a failure failure :: Check a failure = Nothing • convenience function: asserting a property assert :: Bool -> Check () assert p = if p then return () else failure Part 4 - Checking Well-Definedness of Functional Programs

```
Making Type-Checking More Abstract
```

```
    original type-checking algorithm
```

```
typeCheck :: Sig -> Vars -> Term -> Maybe Type
typeCheck sigma vars (Var x) = vars x
typeCheck sigma vars (Fun f ts) = do
  (tysIn,tyOut) <- sigma f</pre>
  tysTs <- mapM (typeCheck sigma vars) ts
  if tysTs == tysIn then return tyOut else Nothing
```

• with new abstract types and functions

```
typeCheck :: Sig -> Vars -> Term -> Check Type
typeCheck sigma vars (Var x) = vars x
typeCheck sigma vars (Fun f ts) = do
  (tysIn,tyOut) <- sigma f</pre>
  tysTs <- mapM (typeCheck sigma vars) ts
  assert (tysTs == tysIn)
  return tyOut
```

advantage: readability, change Check-type easily

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

Type-Checking with Implicit Variables

5/100

Back to Type-Checking and Type-Inference

```
    known: type-checking algorithm
```

```
typeCheck :: Sig -> Vars -> Term -> Check Type
  • type Sig = FSym -> Check ([Type], Type) - \Sigma
  • type Vars = Var → Check Type - V
  • typeCheck takes \Sigma and \mathcal V and delivers type of term
```

• we want a function that works in the other direction: it gets an intended type as input. and delivers a suitable type for the variables

```
inferType :: Sig -> Type -> Term -> Check [(Var, Type)]
```

• then type-checking an equation without explicit Vars is possible

```
typeCheckEqn :: Sig -> (Term, Term) -> Check ()
typeCheckEqn sigma (Var x, r) = failure
typeCheckEqn sigma (1 0 (Fun f _), r) = do
  ( ,ty) <- sigma f
  vars <- inferType sigma ty 1</pre>
  tyR <- typeCheck sigma (\ x -> lookup x vars) r
  assert (ty == tyR)
```

Type-Inference Algorithm

• note: upcoming algorithm only infers types of variables (in polymorphic setting often also type of function symbols is inferred)

```
inferType :: Sig -> Type -> Term -> Check [(Var, Type)]
inferType sigma ty (Var x) = return [(x,ty)]
inferType sigma ty (Fun f ts) = do
  (tysIn,tyOut) <- sigma f
  assert (length tysIn == length ts)
  assert (tyOut == ty)
  varsL <- mapM (\ (ty, t) -> inferType sigma ty t) (zip tysIn ts)
  let vars = nub (concat varsL) -- nub removes duplicates
  assert (distinct (map fst vars))
  return vars
distinct :: Eq a \Rightarrow [a] \rightarrow Bool
distinct xs = length (nub xs) == length xs
```

Type-Checking with Implicit Variables

6/100

8/100

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

Part 4 - Checking Well-Definedness of Functional Programs

Soundness of Type-Inference Algorithm

- properties
 - if $t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$ then $inferType \Sigma \tau t = return (\mathcal{V} \cap \mathcal{V}ars(t))$
 - if $inferType \Sigma \tau t = return V$ then
 - ullet ${\cal V}$ is well-defined (no conflicting variable assignments) and
 - t ∈ T(Σ, V)_τ
- properties can be shown in similar way to type-checking algorithm, cf. slides 2/35-42
- note that 'if $t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$ then $inferType \Sigma \tau t \neq failure$ ' is a property which is not strong enough when performing induction

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

9/100

Changing the Error Monad

Weakness of Maybe-Type for Errors

- situation: several functions for checking properties of terms, equations, which can be assembled to check functional programs w.r.t. slides 3/4 (data-type definitions), 3/15 (function definitions) and partly 3/45 (well-definedness)
 - inferType :: Sig -> Type -> Term -> Check [(Var,Type)]
 - typeCheck :: Sig -> Vars -> Term -> Check Type
 - typeCheckEqn :: Sig -> (Term, Term) -> Check ()
- problem: if checks are not successful, we just get result Nothing
- desired: informative error message why a functional program is refused
- possible solution: use more verbose error type than Maybe
 type Check a = Either String a

Changing the Error Monad

Changing the Error Monad

Changing Implementation of Interface

- current interface for error type
 - type Check a = Maybe a
 - function return :: a -> Check a
 - function assert :: Bool -> Check ()
 - function failure :: Check a
 - do-blocks, monadic-functions such as mapM, etc.
- it is actually easy to change to Either-type for errors
 - type Check a = Either String a
 - return, do-blocks and mapM are unchanged, since these are part of generic monad interface
 - functions assert and failure need to be changed, since they now require error messages

```
failure :: String -> Check a
failure = Left
assert :: Bool -> String -> Check ()
assert p err = if p then return () else failure err
```

14/100

Changing Algorithms for Checking Properties

```
    adapting algorithms often only requires additional error messages
```

```
before change (type Check a = Maybe a)
typeCheck :: Sig -> Vars -> Term -> Check Type
typeCheck sigma vars (Var x) = vars x
typeCheck sigma vars (Fun f ts) = do
    (tysIn,tyOut) <- sigma f
    tysTs <- mapM (typeCheck sigma vars) ts
    assert (tysTs == tysIn)
    return tyOut</li>
after change (type Check a = Either String a)
typeCheck :: Sig -> Vars -> Term -> Check Type
typeCheck sigma vars (Var x) = ...
typeCheck sigma vars t@(Fun f ts) = do
    ...
assert (tysTs == tysIn) (show t ++ " ill-typed")
    ...
```

Changing Algorithms for Checking Properties, Continued

```
example requiring more changes; with type Check a = Maybe a typeCheckEqn sigma (Var x, r) = failure typeCheckEqn sigma (1 @ (Fun f _), r) = do
    (_,ty) <- sigma f
    vars <- inferType sigma ty l
    tyR <- typeCheck sigma (\ x -> lookup x vars) r
    assert (ty == tyR)
new version with type Check a = Either String a
    typeCheckEqn sigma (Var x, r) = failure "var as lhs"
    typeCheckEqn sigma (1 @ (Fun f _), r) = do
    ...
    tyR <- typeCheck sigma (\ x -> lookup x vars) r
    assert (ty == tyR) "types of lhs and rhs don't match"
problem: lookup produces Maybe, not Either String
```

• solution: use maybeToEither :: e -> Maybe a -> Either e a

RT (DCS @ UIBK) Part 4 – Checking Well-Definedness of Functional Programs

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

Fixed Type-Checking Algorithm with Error Messages

RT (DCS @ UIBK)

```
Changing the Error Monad
```

13/100

Part 4 - Checking Well-Definedness of Functional Programs

Processing Functional Programs

15/100

Processing Functional Programs Processing Functional Programs

Processing Functional Programs

- aim: write program which takes
 - functional program as input (data type definitions + function definitions)
 - checks the syntactic requirements
 - stores the relevant information in some internal representation
 - later: also checks well-definedness
- such a program is essential part of a compiler
- program should be easy to verify

```
Recall: Data Type Definitions
```

- given: set of types $\mathcal{T}_{\mathcal{U}}$, signature $\Sigma = \mathcal{C} \uplus \mathcal{D}$
- each data type definition has the following form

```
data \tau = c_1 : \tau_{1,1} \times \ldots \times \tau_{1,m_1} \to \tau
             c_n: \tau_{n,1} \times \ldots \times \tau_{n,m_n} \to \tau
```

- τ ∉ Tu
- $c_1, \ldots, c_n \notin \Sigma$ and $c_i \neq c_j$ for $i \neq j$

fresh type name

non-recursive constructor

fresh and distinct constructor names only known types

where

- each $\tau_{i,j} \in \{\tau\} \cup \mathcal{T}y$
- exists c_i such that $\tau_{i,j} \in \mathcal{T}_{\mathcal{Y}}$ for all j
- effect: add new type and new constructors
 - $\mathcal{T}_{\mathcal{U}} := \mathcal{T}_{\mathcal{U}} \cup \{\tau\}$
 - $\mathcal{C} := \mathcal{C} \cup \{c_1 : \tau_{1,1} \times \ldots \times \tau_{1,m_1} \to \tau, \ldots, c_n : \tau_{n,1} \times \ldots \times \tau_{n,m_n} \to \tau\}$

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

Processing Functional Programs

17/100

Encoding Functional Programs in Haskell

```
Processing Functional Programs
```

18/100

```
type Check a = ... -- Maybe a or Either String a
type Type = String
type Var = String
type FSym = String
type Vars = Var -> Check Type
type FSymInfo = ([Type], Type)
type Sig = FSym -> Check FSymInfo
data Term = Var Var | Fun FSym [Term]
```

Existing Encoding of Part 2: Signatures and Terms

```
-- input: unchecked data-type definitions and function definitions
data DataDefinition = Data Type [(FSym, FSymInfo)]
data FunctionDefinition = ... -- later
type FunctionalProg =
  ([DataDefinition], [FunctionDefinition])
-- internal representation
type SigList = [(FSym, FSymInfo)] -- signatures as list
type Defs = SigList
                                  -- list of defined symbols
type Cons = SigList
                                  -- list of constructors
type Equations = [(Term, Term)] -- all function equations
-- all combined in Haskell-type; it also stores known types
data ProgInfo = ProgInfo [Type] Cons Defs Equations
-- checking single data type definition
processDataDefinition ::
  ProgInfo -> DataDefinition -> Check ProgInfo
```

Checking a Single Data Definitions

```
processDataDefinition
   (ProgInfo tys cons defs eqs)
   (Data ty newCs)

= do
   assert (not (elem ty tys))
   let newTys = ty : tys
   assert (distinct (map fst newCs))
   assert (all (\ (c, -) -> all (/= c) (map fst (cons ++ defs))) newCs)
   assert (all (\ (_,(tysIn,tyOut)) ->
        tyOut == ty &&
        all (\ ty -> elem ty newTys) tysIn) newCs)
   assert (any
        (\ (_,(tysIn,_)) -> all (/= ty) tysIn) newCs)
   return (ProgInfo newTys (newCs ++ cons) defs eqs)
```

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

21/100

Checking Several Data Definitions

 processing many data definitions can be easily done by using foldM: predefined monadic version of foldl

```
foldM :: Monad m => (b -> a -> m b) -> b -> [a] -> m b
foldM f e [] = return e
foldM f e (x : xs) = do
    d <- f e x
    foldM f d xs

processDataDefinition ::
    ProgInfo -> DataDefinition -> Check ProgInfo
processDataDefinitions ::
    ProgInfo -> [DataDefinition] -> Check ProgInfo
processDataDefinitions ::
```

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

Processing Functional Programs

22/100

Processing Functional Programs

Checking Function Definitions w.r.t. Slide 3/15

Checking Functional Programs

```
initialProgInfo = ProgInfo [] [] []
processProgram :: FunctionalProg -> Check ProgInfo
processProgram (dataDefs, funDefs) = do
   pi <- processDataDefinitions initialProgInfo dataDefs
   processFunctionDefinitions pi funDefs</pre>
```

Current State

- processProgram :: FunctionalProg -> Check ProgInfo is Haskell program to check user provided functional programs, whether they adhere to the specification of functional programs w.r.t. slides 3/4 and 3/15
- its functional style using error monads permits us to easily verify its correctness
 - no induction required
 - based on assumption that builtin functions behave correctly, e.g., all, any, nub, ...
- missing: checks for well-defined functional programs w.r.t. slide 3/45

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

25/100

Checking Pattern Disjointness

Deciding Pattern Disjointness

- program is pattern disjoint if for all $f: \tau_1 \times \cdots \times \tau_n \to \tau \in \mathcal{D}$ and all $t_1 \in \mathcal{T}(\mathcal{C})_{\tau_1}, \ldots, t_n \in \mathcal{T}(\mathcal{C})_{\tau_n}$ there is at most one equation $\ell = r$ in the program, such that ℓ matches $f(t_1, \ldots, t_n)$
- in proseminar it was proven that pattern disjointness is equivalent to the following condition: for each pair of distinct equations $\ell_1=r_1$ and $\ell_2=r_2$, ℓ_1 and a variable renamed variant of ℓ_2 do not unify
- key missing part for checking pattern disjointness is an algorithm for unification:

given two terms s and t, decide $\exists \sigma. s\sigma = t\sigma$

Checking Pattern Disjointness

Checking Pattern Disjointness

Unification Algorithm of Martelli and Montanari

- input: unification problem $U = \{s_1 \stackrel{?}{=} t_1, \dots, s_n \stackrel{?}{=} t_n\}$
- question: is U solvable, i.e., does there exist a solution σ , a substitution satisfying $\forall i \in \{1, \dots, n\}. s_i \sigma = t_i \sigma$
- two different kinds of output:
 - unification problem in solved form:

$$\{x_1\stackrel{?}{=} v_1,\ldots,x_m\stackrel{?}{=} v_m\}$$
 with distinct x_j 's

solved forms can be interpreted as substitution

$$\sigma(x) = \begin{cases} v_i, & \text{if } x = x_i \\ x, & \text{otherwise} \end{cases}$$

and this σ will be solution of U

- ullet $oxedsymbol{\perp}$, indicating that U is not solvable
- \bullet algorithm itself is build via one-step relation \leadsto which is applied as long as possible

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

27/100

RT (DCS @ UIBK)

Part 4

Part 4 - Checking Well-Definedness of Functional Programs

Correctness of Unification Algorithm

• normal form of \rightsquigarrow is \bot or a solved form

 \bullet in total: to solve unification problem U

• if $V = \bot$ then U is unsolvable

ullet determine some normal form V of U

• $\{x \stackrel{?}{=} y, y \stackrel{?}{=} x\} \stackrel{x/y}{\leadsto} \{x \stackrel{?}{=} y, y \stackrel{?}{=} y\} \leadsto \{x \stackrel{?}{=} y\}$

• $\{x \stackrel{?}{=} u, u \stackrel{?}{=} x\} \stackrel{y/x}{\leadsto} \{x \stackrel{?}{=} x, u \stackrel{?}{=} x\} \leadsto \{u \stackrel{?}{=} x\}$

→ terminates

note that → is not confluent

• we only state properties (proofs: see term rewriting lecture)

• whenever $U \rightsquigarrow V$, then U and V have same solutions

ullet otherwise, V represents a substitution that is a solution to U

Unification Algorithm of Martelli and Montanari, continued

- input: unification problem $U = \{s_1 \stackrel{?}{=} t_1, \dots, s_n \stackrel{?}{=} t_n\}$
- output: solution of U via solved form or \bot , indicating unsolvability
- algorithm applies → as long as possible; → is defined as

$$U \cup \{t \stackrel{?}{=} t\} \leadsto U$$
 (delete)

$$U \cup \{f(u_1, \dots, u_k) \stackrel{?}{=} f(v_1, \dots, v_k)\} \leadsto U \cup \{u_1 \stackrel{?}{=} v_1, \dots, v_k \stackrel{?}{=} v_k\}$$
 (decompose)

$$U \cup \{f(u_1, \dots, u_k) \stackrel{?}{=} g(v_1, \dots, v_\ell)\} \leadsto \bot, \text{ if } f \neq g \lor k \neq \ell$$
 (clash)

$$U \cup \{f(\ldots) \stackrel{?}{=} x\} \rightsquigarrow U \cup \{x \stackrel{?}{=} f(\ldots)\}$$
 (swap)

$$U \cup \{x \stackrel{?}{=} f(...)\} \rightsquigarrow \bot$$
, if $x \in \mathcal{V}ars(f(...))$ (occurs check)

$$U \cup \{x \stackrel{?}{=} t\} \leadsto U\{x/t\} \cup \{x \stackrel{?}{=} t\},$$
 (eliminate) if $x \notin \mathcal{V}ars(t)$ and x occurs in U

notation $U\{x/t\}$: apply substitution $\{x/t\}$ on all terms in U (lhs + rhs)

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

29/100 RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

Checking Pattern Disjointness

Correctness of an Implementation of a (Unification) Algorithm

- any concrete implementation will make choices
 - preference of rules
 - selection of pairs from U
 - ullet representation of sets U
 - (pivot-selection in quicksort)
 - (order of edges in graph-/tree-traversals)
 - •
- task: how to ensure that implementation is sound
- solution: refinement proof
 - aim: reuse correctness of abstract algorithm (→)
 - define relation between representations in concrete and abstract algorithm (this was called alignment before and done informally)
 - show that concrete algorithm has less behaviour, i.e., every result of concrete (deterministic) algorithm can be related to some result of (non-deterministic) abstract algorithm
 - benefit: clear separation between
 - soundness of abstract algorithm

(solves unification problems)

soundness of implementation

(implements abstract algorithm)

A Concrete Implementing of the Unification Algorithm

```
subst :: Var -> Term -> Term -> Term
subst x t = applySubst (\ y -> if y == x then t else Var y)
unify :: [(Term, Term)] -> Check [(Var, Term)]
unify u = unifyMain u []
unifyMain :: [(Term, Term)] -> [(Var, Term)] -> Check [(Var, Term)]
unifyMain [] v = return v
                                                      -- return solved form
unifyMain ((Fun f ts, Fun g ss) : u) v = do
  assert (f == g && length ts == length ss)
                                                      -- clash
  unifyMain (zip ts ss ++ u) v
                                                      -- decompose
unifyMain ((Fun f ts, x) : u) v =
  unifyMain ((x, Fun f ts) : u) v
                                                      -- swap
unifyMain ((Var x, t) : u) v =
  if Var x == t then unifyMain u v
                                                      -- delete
    assert (not (x `elem` varsTerm t))
                                                      -- occurs check
                                                      -- eliminate
    unifvMain
      (map ( \ (1,r) -> (subst x t 1, subst x t r)) u)
      ((x,t) : map ( \setminus (y, s) \rightarrow (y, subst x t s)) v)
```

Checking Pattern Disjointness

30/100

Checking Pattern Disjointness

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

31/100

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

32/100

Notes on Implementation

- it is non-trivial to prove soundness of implementation, since there are several differences w.r.t. ↔
 - unifyMain takes two parameters u and v
 - ullet these represent one unification problem $u \cup v$
 - rule-application is not tried on v, only on u
 - ullet we need to know that v is in normal form w.r.t. \leadsto
 - in (occurs check)-rule, the algorithm has no test that rhs is function application
 - we need to show that this will follow from other conditions
 - in (elimination)-rule, the algorithm substitutes only in rhss of v
 - ullet we need to know that substituting in lhss of v has no effect
 - in (elimination)-rule, the algorithm does not check that x occurs in remaining problem
 - we need to check that consequences don't harm

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

RT (DCS @ UIBK)

33/100

Checking Pattern Disjointness

Soundness via Refinement: Main Statement

- define $setMaube\ Nothing = \bot$. $setMaube\ (Just\ w) = set\ w$
- property: whenever $(u, v) \sim U$ and $unifyMain\ u\ v = res$ then $U \rightsquigarrow^! setMaybe\ res$
- once property is established, we can prove that implementation solves unification problems
 - assume input u, i.e., invocation of unify u which yields result res
 - hence, $unifyMain\ u\ []=res$
 - moreover, $(u, []) \sim set \ u$ by definition of \sim
 - via property conclude set $u \rightsquigarrow^! setMaybe \ res$
 - at this point apply correctness of ↔:

setMaybe res is the correct answer to the unification problem set u

Soundness via Refinement: Setting up the Relation

- relation \sim formally aligns parameters of concrete algorithm (u and v) with parameters of abstract algorithm (U): \sim also includes invariants of implementation
 - set converts list to set, we identify $s \stackrel{?}{=} t$ with (s,t)
 - $(u,v) \sim U$ iff
 - $U = set \ u \cup set \ v$.
 - set v is in normal form w.r.t. \rightsquigarrow (notation: set $v \in NF(\rightsquigarrow)$), and
 - for all $(x,t) \in set \ v$: x does not occur in u
- since alignment between concrete and abstract parameters is specified formally, alignment properties of auxiliary functions can also be made formal
 - $set(x:xs) = \{x\} \cup set(xs)$
 - $set(xs ++ ys) = set(xs \cup set(ys))$
 - set $(zip [x_1, \ldots, x_n] [y_1, \ldots, y_n]) = \{(x_1, y_1), \ldots, (x_n, y_n)\}$
 - $set\ (map\ f\ [x_1,\ldots,x_n]) = \{f\ x_1,\ldots,f\ x_n\}$
 - $subst x t s = s\{x/t\}$

these properties can be proven formally and also be applied formally (although we don't do it in the upcoming proof)

Part 4 - Checking Well-Definedness of Functional Programs

Checking Pattern Disjointness

34/100

Proving the Refinement Property

- property P(u, v, U): $(u, v) \sim U \wedge unifyMain \ u \ v = res \longrightarrow U \rightsquigarrow^! setMaybe \ res$
- $(u,v) \sim U \longleftrightarrow U = set \ u \cup set \ v \wedge set \ v \in NF(\leadsto) \wedge \forall (x,t) \in set \ v. \ x \notin Vars(u)$
- we prove the property P(u, v, U) by induction on u and v w.r.t. the algorithm for arbitrary U, i.e., we consider all left-hand sides and can assume that the property holds for all recursive calls;
- induction w.r.t. algorithm gives partial correctness result (assumes termination)
- in the lecture, we will cover a simple, a medium, and the hardest case
- case 1 (arguments [] and v):
 - we have to prove P([], v, U), so assume
 - (*) ([], v) $\sim U$ and (**) $unifyMain \mid v = res$
 - from (*) conclude $U = set \ v \text{ and } set \ v \in NF(\leadsto)$
 - from (**) conclude $res = Just \ v$ and hence, $setMaybe \ res = set \ v$
 - we have to show $U \rightsquigarrow^! setMaybe \ res$, i.e., $set \ v \rightsquigarrow^! set \ v$ which is satisfied since $set \ v \in NF(\leadsto)$

- P(u, v, U): $(u, v) \sim U \wedge unifyMain \ u \ v = res \longrightarrow U \rightsquigarrow^! setMaybe \ res$
- $(u,v) \sim U \longleftrightarrow U = set \ u \cup set \ v \wedge set \ v \in NF(\leadsto) \land \forall (x,t) \in set \ v. \ x \notin Vars(u)$

case 2 (arguments (f(ts), q(ss)) : u and v)

- we have to prove P((f(ts), g(ss)) : u, v, U), so assume
 - $(*) \ ((f(ts),g(ss)):u,v)\sim U \ \text{and} \$
- (**) unifyMain ((f(ts), g(ss)) : u) v = res
- consider sub-cases
 - $\neg (f = g \land length \ ts = length \ ss)$:
 - from (**) conclude $setMaybe \ res = \bot$
 - from (*) conclude $f(ts) \stackrel{?}{=} g(ss) \in U$ and hence $U \leadsto \bot$ by (clash)
 - consequently, $U \rightsquigarrow^! setMaybe \ res$
 - $f = g \land length \ ts = length \ ss$:
 - from (**) conclude res = unifyMain((f(ts), g(ss)) : u) v = unifyMain(zip ts ss ++ u) v
 - from (*) and alignment for zip and ++ conclude $U = \{f(ts) \stackrel{?}{=} g(ss)\} \cup set \ u \cup set \ v$ and hence $U \leadsto set \ (zip \ ts \ ss \ ++ \ u) \cup set \ v =: V$ by (decompose)
 - we get $P(zip\ ts\ ss\ ++\ u,v,V)$ as IH; $(zip\ ts\ ss\ ++\ u,v)\sim V$ follows from (*), so $U\leadsto V\leadsto^! setMaybe\ res$

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

RT (DCS @ UIBK)

37/100

Part 4 - Checking Well-Definedness of Functional Programs

• from (**) conclude res = unifyMain((x,t):u) v = unifyMain((x,t):v')

• $U \stackrel{(*)}{=} \{x \stackrel{?}{=} t\} \cup set \ u \cup set \ v \rightsquigarrow (set \ u \cup set \ v) \{x/t\} \cup \{x/t\} = V$

• from IH conclude P(u',(x,t):v',V) and hence, $(u',(x,t):v') \sim V \longrightarrow V \rightsquigarrow^! setMaybe \ res$ • for proving $U \rightsquigarrow^! setMaybe \ res$ it hence suffices to show $(u',(x,t):v') \sim V$ and $U \rightsquigarrow V$

38/100

Checking Pattern Disjointness

• $(u,v) \sim U \longleftrightarrow U = set \ u \cup set \ v \wedge set \ v \in NF(\leadsto) \wedge \forall (x,t) \in set \ v. \ x \notin \mathcal{V}ars(u)$ case 4 (arguments (x,t): u and v)

- we have to prove P((x,t):u,v,U), so assume (*) $((x,t):u,v)\sim U$ and . . . and consider sub-case $x\neq t \land x\notin \mathcal{V}ars(t) \land x$ occurs in $set\ u\cup set\ v$:
 - define $u' = map (\lambda(l, r). (subst x t l, subst x t r)) u$
 - define $v' = map(\lambda(y, s), (y, subst x t s)) v$
 - define $V = (set \ u \cup set \ v) \{x/t\} \cup \{x \stackrel{?}{=} t\}$
 - we still need to show $(u', (x, t) : v') \sim V$
 - since (*) holds, we know $\forall (y, s) \in set \ v. \ x \neq y$
 - hence, $v' = map(\lambda(y, s), (subst x t y, subst x t s)) v$
 - so, $V = (set \ u)\{x/t\} \cup \{x \stackrel{?}{=} t\} \cup (set \ v)\{x/t\} = set \ u' \cup set \ ((x,t) : v')$
 - we show $\forall (y,s) \in set \ ((x,t):v'). \ y \notin \mathcal{V}ars(u')$ as follows: $x \notin \mathcal{V}ars(u')$ since $x \notin \mathcal{V}ars(t)$; and if $(y,s) \in set \ v'$, then $(y,s') \in set \ v$ for some s' and by (*) we conclude $y \notin \mathcal{V}ars((x,t):u)$; thus, $y \notin \mathcal{V}ars((set \ u)\{x/t\}) = \mathcal{V}ars(u')$
 - we finally show $set\ ((x,t):v')\in NF(\leadsto)$: so, assume to the contrary that some step is applicable; by the shape of $set\ ((x,t):v')$ we know that the step can only be (eliminate), (delete) or (occurs check); all of these cases result in a contradiction by using the available facts

Checking Pattern Disjointness

Proving the Refinement Property

case 4 (arguments (x, t) : u and v)

(*) $((x,t):u,v) \sim U$ and

(**) unifyMain((x,t):u) v = res

• we have to prove P((x,t):u,v,U), so assume

- remaining cases: similar, cf. exercises
- summary
 - non-trivial implementation of abstract unification algorithm →

• P(u, v, U): $(u, v) \sim U \wedge unifuMain \ u \ v = res \longrightarrow U \rightsquigarrow^! setMaube \ res$

• $(u,v) \sim U \longleftrightarrow U = set \ u \cup set \ v \wedge set \ v \in NF(\leadsto) \wedge \forall (x,t) \in set \ v, \ x \notin \mathcal{V}ars(u)$

• consider sub-cases (where the red part is not triggered by structure of algorithm)

• define $u' = map (\lambda(l, r), (subst x t l, subst x t r)) u$

• $x \neq t \land x \notin \mathcal{V}ars(t) \land x$ occurs in $set \ u \cup set \ v$:

• define $v' = map(\lambda(y, s), (y, subst x t s)) v$

• define $V = (set \ u \cup set \ v) \{x/t\} \cup \{x \stackrel{?}{=} t\}$

by (eliminate) because of preconditions

- optimizations required additional invariants, encoded in refinement relation
- proof of correctness can be done formally
 - induction + case analysis proof uses mostly the structure of the Haskell code; exception: case analysis on "x occurs in set u \cup set v"
 - most cases can easily be solved, after having identified suitable invariants
 - fully reuse correctness of \leadsto
- we only proved partial correctness
- termination of implementation: consider lexicographic measure

$$\underbrace{(|Vars(set\ u)|, |u|, |u|, (decomp), (delete)}_{(eliminate)}, \underbrace{|u|, (t, Var\ x) \leftarrow u]}_{(swap)}$$

RT (DCS @ UIBK)

Checking Pattern Completeness

Checking Pattern Completeness

Reformulation of Pattern Completeness of Programs

- definitions of previous slide (omitting types)
 - program is pattern complete iff for all $f\in\mathcal{D}$ and all $t_i\in\mathcal{T}(\mathcal{C})$ there is some lhs that matches $f(t_1,\ldots,t_n)$
 - $P_{init} = \{\{\{(f(x_1, \dots, x_n), \ell)\} \mid \ell \text{ is Ihs of } f\text{-equation}\} \mid f \in \mathcal{D}\}$
 - P is complete iff $\forall pp \in P. \forall \sigma : \mathcal{V} \to \mathcal{T}(\mathcal{C}). \exists mp \in pp. \exists \gamma. \forall (t, \ell) \in mp. t\sigma = \ell \gamma$
- corollary: program is pattern complete iff P_{init} is complete

Task: determine completeness of pattern problems

- algorithm modifies matching problems and (sets of) pattern problems
- special problems:
 \(\preceq \) represents a non-solvable matching problem and an incomplete set
 of pattern problems, and
 \(\preceq \) represents a complete pattern problem
- here: only consider linear pattern problems, i.e., problems where variables in lhss of programs occur at most once

Checking Pattern Completeness

Checking Pattern Completeness

Pattern Problems

- reminder: program is pattern complete, if for all $f: \tau_1 \times \ldots \times \tau_n \to \tau \in \mathcal{D}$ and all $t_i \in \mathcal{T}(\mathcal{C})_{\tau_i}$ there is some lhs that matches $f(t_1, \ldots, t_n)$
- algorithm considers more generic shape
 - matching problems mp consist of pairs of terms (t, ℓ) where
 - t is a term, representing the set of all its constructor ground instances, e.g., $t = f(x_1, \dots, x_n)$
 - ℓ is (a subterm of) some lhs
 - semantics: find one substitution γ such that $t = \ell \gamma$ for all $(t, \ell) \in mp$
 - reason: decomposition of terms
 - pattern problems pp consist of multiple matching problems
 - semantics: disjunction, i.e., find one suitable matching problem
 - ullet reason: a term t might be matched by arbitrary lhs
 - initially: $pp = \{\{(t, \ell_1)\}, \dots, \{(t, \ell_n)\}\}\$ for lhss ℓ_1, \dots, ℓ_n
 - ullet sets of pattern problems P consist of several pattern problems
 - semantics: conjunction
 - · reason: consider different ground instances and different defined function symbols
 - initial set of pattern problems: $P_{init} = \{\{\{(f(x_1, \dots, x_n), \ell)\} \mid \ell \text{ is Ihs of } f\text{-eqn.}\} \mid f \in \mathcal{D}\}$
 - overall semantics: P is complete iff

$$\forall pp \in P. \ \forall \sigma: \mathcal{V} \to \mathcal{T}(\mathcal{C}). \ \exists mp \in pp. \ \exists \gamma. \ \forall (t,\ell) \in mp. \ t\sigma = \ell \gamma$$
Part 4 – Checking Well-Definedness of Functional Programs

RT (DCS @ UIBK)

art 4 – Checking Well-Definedness of Functional Programs 42/100

Transforming Matching and Pattern Problems

$$\{(f(t_1,\ldots,t_n),f(\ell_1,\ldots,\ell_n))\} \uplus mp \rightharpoonup \{(t_1,\ell_1),\ldots,(t_n,\ell_n)\} \cup mp \qquad \qquad \text{(decompose)}$$

$$\{(t,x)\} \uplus mp \rightharpoonup mp \qquad \qquad \text{(match)}$$

$$\{(f(\ldots),g(\ldots))\} \uplus mp \rightharpoonup \bot \qquad \text{if } f\neq g \qquad \qquad \text{(clash)}$$

$$\{mp\} \uplus pp \rightharpoonup \{mp'\} \cup pp \qquad \text{if } mp \rightharpoonup mp' \qquad \qquad \text{(simp-mp)}$$

$$\{\bot\} \uplus pp \rightharpoonup pp \qquad \qquad \text{(remove-mp)}$$

$$\{\varnothing\} \uplus pp \longrightarrow \top$$
 (success)
$$\{pp\} \uplus P \longrightarrow \{pp'\} \cup P \quad \text{if } pp \longrightarrow pp'$$
 (simp-pp)

$$\{\varnothing\} \uplus P \xrightarrow{\quad \underline{\quad}} \bot$$
 (failure)

$$\{\top\} \uplus P \xrightarrow{\hspace{1cm}} P$$
 (remove-pp)
$$\{pp\} \uplus P \xrightarrow{\hspace{1cm}} Inst(pp,x) \cup P \qquad \text{if } mp \in pp \text{ and } (x,f(\ldots)) \in mp$$

 $pp_f \oplus F \xrightarrow{\longrightarrow} Inst(pp, x) \cup F$ if $mp \in pp$ and $(x, f(\dots)) \in mp$ (instantiate)

where Inst(pp,x) contains a pattern problem $pp\sigma_{x,c}$ for each constructor c where

- x: au and $c: au_1 imes \cdots imes au_n o au$ and $x_1: au_1, \, \ldots, \, x_n: au_n$ are fresh, and

$$\begin{aligned} \operatorname{data} \operatorname{Bool} &= \operatorname{True} : \operatorname{Bool} \mid \operatorname{False} : \operatorname{Bool} \\ \ell_1 &:= \operatorname{conj}(\operatorname{True}, \operatorname{True}) = \dots \\ \ell_2 &:= \operatorname{conj}(\operatorname{False}, y) = \dots \\ \ell_3 &:= \operatorname{conj}(x, \operatorname{False}) = \dots \end{aligned}$$

then we have

```
P_{init} = \{\{\{(\mathsf{conj}(x_1, x_2), \ell_1)\}, \{(\mathsf{conj}(x_1, x_2), \ell_2)\}, \{(\mathsf{conj}(x_1, x_2), \ell_3)\}\}\}\}
    \longrightarrow* {{\{(x_1, True), (x_2, True)\}, \{(x_1, False), (x_2, y)\}, \{(x_1, x), (x_2, False)\}\}}}
    \longrightarrow* {{{(x_1, True), (x_2, True)}, {(x_1, False)}, {(x_2, False)}}}
      \longrightarrow {{(True, True), (x_2, \text{True})}, {(True, False)}, {(x_2, \text{False})}},
             \{\{(False, True), (x_2, True)\}, \{(False, False)\}, \{(x_2, False)\}\}\}
    \longrightarrow* {{{(x_2, True)}, \bot, \{(x_2, False)\}}, \{\bot, \emptyset, \{(x_2, False)\}}}
    \longrightarrow* {{{(x_2, True)}, {(x_2, False)}}}
     \longrightarrow {{(True, True)}, {(True, False)}}, {{(False, True)}, {(False, False)}}} \longrightarrow* \varnothing
```

Checking Pattern Completeness

Partial Correctness of —

• theorem: whenever $P \longrightarrow Q$, then P is complete iff Q is complete

• corollary: if $P \longrightarrow^* \emptyset$ then P is complete. and if $P \xrightarrow{\quad w} ^* \bot$ then P is not complete

• definition: P is complete iff

$$\forall pp \in P. \, \forall \sigma : \mathcal{V} \to \mathcal{T}(\mathcal{C}). \, \underbrace{\exists mp \in pp. \, \exists \gamma. \, \forall (t,\ell) \in mp. \, t\sigma = \ell \gamma}_{\text{orb}}$$

- proof of theorem by case analysis on the various rules
 - (clash): first inline rule to $\{\{\{(f(\ldots), g(\ldots))\} \uplus mp\} \uplus pp\} \uplus P \xrightarrow{} \{pp\} \cup P$, if $f \neq g$
 - by definition of completeness and structure of rule it suffices to show that completeness is preserved by rule

$$\underbrace{\{\{(f(\ldots),g(\ldots))\} \uplus mp\}}_{=:mp'} \uplus pp \twoheadrightarrow pp$$

- hence, it suffices to show that ψ is not satisfied when choosing mp' in the existential quantifier $\exists mp \in pp, \dots$
- but this property is easy to see, since $t\sigma = \ell \gamma$ is never satisfied if (t,ℓ) is $(f(\ldots),g(\ldots))$
- many other rules are similar, exceptions are (match) and (instantiate)

Example

consider

```
data Bool = True : Bool | False : Bool
\ell_1 := coni(True, True) = \dots
    \ell_2 := \operatorname{\mathsf{conj}}(\mathsf{False}, y) = \dots
```

then we have

```
P_{init} = \{\{\{(\mathsf{conj}(x_1, x_2), \ell_1)\}, \{(\mathsf{conj}(x_1, x_2), \ell_2)\}\}\}
    \longrightarrow* {{{(x_1, \text{True}), (x_2, \text{True})}, {(x_1, \text{False})}}}
     \longrightarrow {{(True, True), (x_2, True)}, {(True, False)}},
             \{\{(False, True), (x_2, True)\}, \{(False, False)\}\}\}
    \longrightarrow {{{(x_2, True)}, \bot}, {\bot, \varnothing}}
    \longrightarrow* {{{(x_2, True)}}}
     — {{{(True, True)}}, {{(False, True)}}} — * {⊤, ∅} — ⊥
```

RT (DCS @ UIBK)

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

Checking Pattern Completeness

46/100

48/100

Partial Correctness of —. continued

- definition: P is complete iff $\forall pp \in P. \forall \sigma : \mathcal{V} \to \mathcal{T}(\mathcal{C}). \exists mp \in pp. \exists \gamma. \forall (t, \ell) \in mp. t\sigma = \ell \gamma$
- proof continued
 - (instantiate): $\{pp\} \uplus P \rightharpoonup Inst(pp, x) \cup P$, where $x : \tau, \tau$ has constructors c_1, \ldots, c_n , and $\sigma_i = \{x/c_i(x_1, \dots, x_k)\}\$ for fresh x_i , and $Inst(pp, x) = \{pp\sigma_i \mid 1 \le i \le n\}$
 - we only consider one direction of the proof: we assume that Inst(pp,x) is complete and prove that pp is complete
 - \bullet to this end, consider an arbitrary constructor ground substitution σ
 - since σ is constructor ground, we know $\sigma(x) = c_i(t_1, \dots, t_k)$ for some constructor c_i and constructor ground terms t_1, \ldots, t_k
 - define $\sigma'(y) = \begin{cases} t_j, & \text{if } y = x_j \\ \sigma(y), & \text{otherwise} \end{cases}$
 - σ' is well-defined since the x_i 's are distinct, and σ' is a constructor ground substitution
 - note that $t\sigma = t\sigma_i \sigma'$ for all terms t that occur in pp since the x_i 's are fresh
 - by completeness of Inst(pp,x) there must be some $mp \in pp\sigma_i$ and γ such that $\forall (t,\ell) \in mp, \ t\sigma' = \ell \gamma$
 - hence, there is some $mp \in pp$ and γ such that $\forall (t, \ell) \in mp$. $t\sigma_i \sigma' = \ell \gamma$
 - together with $t\sigma = t\sigma_i\sigma'$ we conclude that pp is complete

Part 4 - Checking Well-Definedness of Functional Programs

Correctness of —, Missing Parts

- already proven
 - if $P \xrightarrow{\cdot \cdot \cdot} \emptyset$ then P is complete
 - if $P \xrightarrow{\cdot \cdot \cdot} \bot$ then P is not complete
- open: termination of —
- open: can get stuck?

RT (DCS @ UIBK)

Termination of —

Part 4 - Checking Well-Definedness of Functional Programs

- Cannot Get Stuck

$$\{(f(t_1,\ldots,t_n),f(\ell_1,\ldots,\ell_n))\} \uplus mp \longrightarrow \{(t_1,\ell_1),\ldots,(t_n,\ell_n)\} \cup mp \qquad \text{(decompose)}$$

$$\{(t,x)\} \uplus mp \longrightarrow mp \qquad \text{(match)}$$

$$\{(f(\ldots),g(\ldots))\} \uplus mp \longrightarrow \bot \qquad \text{if } f \neq g \qquad \text{(clash)}$$

$$\{mp\} \uplus pp \longrightarrow \{mp'\} \cup pp \qquad \text{if } mp \longrightarrow mp' \qquad \text{(simp-mp)}$$

$$\{\bot\} \uplus pp \longrightarrow pp \qquad \text{(remove-mp)}$$

$$\{\varnothing\} \uplus pp \longrightarrow \top \qquad \text{(success)}$$

$$\{pp\} \uplus P \longrightarrow \{pp'\} \cup P \quad \text{if } pp \longrightarrow pp' \qquad \text{(simp-pp)}$$

$$\{\varnothing\} \uplus P \longrightarrow \bot \qquad \text{(failure)}$$

$$\{\top\} \uplus P \longrightarrow P \qquad \text{(remove-pp)}$$

$$\{pp\} \uplus P \longrightarrow Inst(pp,x) \cup P \qquad \text{if } mp \in pp \text{ and } (x,f(\ldots)) \in mp$$

$$\text{(instantiate)}$$

- lemma: whenever P is well-typed and in normal form w.r.t. \longrightarrow , then $P \in \{\emptyset, \bot\}$
- proof: by a large case-analysis

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

50/100

Checking Pattern Completeness

Checking Pattern Completeness

49/100

 $\{pp\} \uplus P \longrightarrow \{pp'\} \cup P \text{ if } pp \longrightarrow pp'$ (simp-pp) $\{\varnothing\} \uplus P \longrightarrow \bot$ (failure)

 $\{\top\} \uplus P \xrightarrow{\hspace{1cm}} P$ (remove-pp)

 $\{pp\} \uplus P \longrightarrow Inst(pp, x) \cup P$ if $mp \in pp$ and $(x, f(...)) \in mp$ (instantiate)

- define $|\ell t|$ as a measure of difference of ℓ and t
 - $|\ell x| =$ number of function symbols in ℓ
 - $|f(\ell_1, ..., \ell_n) f(t_1, ..., t_n)| = \sum_i |\ell_i t_i|$
 - $|\ell t| = 0$, in all other cases
- map each pattern problem pp to number $|pp| = \sum_{mp \in pp} |\ell t|$
- map each set of pattern problem P to multiset $\{|pp| \mid pp \in P\}$
- this multiset decreases in (instantiate) and is not increased in the other ——rules (multiset decrease: $M \cup N >^{mul} M \cup N'$ if $N \neq \emptyset$ and $\forall y \in N'$. $\exists x \in N . x > y$)
- hence (instantiate) cannot be applied infinitely often
- since the remaining rules also terminate, must terminate

Implementation and Complexity of —

- clearly, is formulated abstractly
- a concrete implementation has to use a concrete representation for matching- and pattern problems; it has to resolve non-determinism, e.g., order of rules, selection of instantiation variables, etc.
- theorem: deciding pattern completeness is co-NP-hard
- consequence: worst-case complexity on required number of ——-steps unlikely to be sub-exponential
- fully verified implementation exists
- currently fastest known algorithm for pattern completeness, developed for this lecture

Summary on Pattern Completeness

- pattern completeness of functional programs is decidable:
 - program is pattern complete iff $P_{init} = \emptyset$
- two possible extensions
 - generation of counter-examples
 - handling of non-linear pattern problems
- partial correctness was proven via invariant of —
- termination of was shown via multisets and a dedicated measure
- termination proof was tricky, definitely required human interaction
- in contrast: upcoming part is on automated termination proving

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

53/100

Termination - Dependency Pairs

Termination of Programs

- the question of termination is a famous problem
 - Turing showed that "halting problem" is undecidable
 - halting problem
 - question: does program (Turing machine) terminate on given input
 - problem is semi-decidable: positive instances can always be identified
 - algorithm: just simulate the program and then say "yes, terminates"
- we here consider universal termination, i.e., termination on all inputs
- universal termination is not even semi-decidable
- despite theoretical limits: often termination can be proven automatically

Termination – Dependency Pairs

Termination of Functional Programs

Termination - Dependency Pairs

- for termination, we mainly consider functional programs which are pattern-disjoint; hence, \hookrightarrow is confluent
- consequence: it suffices to prove innermost termination, i.e., the restriction of \hookrightarrow such that arguments t_i will be fully evaluated before evaluating a function invocation $f(t_1,\ldots,t_n)$
- example without confluence

$$\begin{split} \mathsf{f}(\mathsf{True},\mathsf{False},x) &= \mathsf{f}(x,x,x) \\ \mathsf{f}(\dots,\dots,x) &= x & \text{(all other cases)} \\ &= \mathsf{coin} &= \mathsf{True} \\ &= \mathsf{coin} &= \mathsf{False} \end{split}$$

- both f and coin terminate if seen as separate programs
- program is innermost terminating, but not terminating in general

 $f(True, False, coin) \hookrightarrow f(coin, coin, coin) \hookrightarrow^2 f(True, False, coin) \hookrightarrow \dots$

Subterm Relation and Innermost Evaluation

• define ▷ as the strict subterm relation and ▷ as its reflexive closure

$$\frac{t_i \triangleright s}{F(t_1, \dots, t_n) \triangleright t_i} \qquad \frac{t_i \triangleright s}{F(t_1, \dots, t_n) \triangleright s}$$

• innermost evaluation $\stackrel{\cdot}{\hookrightarrow}$ is defined similar to one-step evaluation \hookrightarrow

$$\frac{s_i \overset{i}{\hookrightarrow} t_i}{F(s_1, \dots, s_i, \dots, s_n) \overset{i}{\hookrightarrow} F(s_1, \dots, t_i, \dots, s_n)} \text{ rewrite in context} \\ \frac{\ell = r \text{ is equation in program } \quad \forall s \lhd \ell\sigma. \ s \in NF(\hookrightarrow)}{\ell\sigma \overset{i}{\hookrightarrow} r\sigma} \text{ root step}$$

example

$$f(True, False, coin) \not\hookrightarrow f(coin, coin, coin)$$

since coin \triangleleft f(True, False, coin) and coin $\notin NF(\hookrightarrow)$

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

57/100

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

58/100

Termination Analysis with Dependency Pairs Termination - Dependency Pairs

- aim: prove $SN(\stackrel{i}{\hookrightarrow})$
- only reason for potential non-termination: recursive calls
- for each recursive call of equation $f(t_1, \ldots, t_n) = \ell = r \trianglerighteq f(s_1, \ldots, s_n)$ build one dependency pair with fresh (constructor) symbol f^{\sharp} :

$$f^{\sharp}(t_1,\ldots,t_n) \to f^{\sharp}(s_1,\ldots,s_n)$$

define *DP* as the set of all dependency pairs

• example program for Ackermann function has three dependency pairs

$$\begin{aligned} \operatorname{ack}(\operatorname{Zero},y) &= \operatorname{Succ}(y) \\ \operatorname{ack}(\operatorname{Succ}(x),\operatorname{Zero}) &= \operatorname{ack}(x,\operatorname{Succ}(\operatorname{Zero})) \\ \operatorname{ack}(\operatorname{Succ}(x),\operatorname{Succ}(y)) &= \operatorname{ack}(x,\operatorname{ack}(\operatorname{Succ}(x),y)) \\ \operatorname{ack}^\sharp(\operatorname{Succ}(x),\operatorname{Zero}) &\to \operatorname{ack}^\sharp(x,\operatorname{Succ}(\operatorname{Zero})) \\ \operatorname{ack}^\sharp(\operatorname{Succ}(x),\operatorname{Succ}(y)) &\to \operatorname{ack}^\sharp(x,\operatorname{ack}(\operatorname{Succ}(x),y)) \\ \operatorname{ack}^\sharp(\operatorname{Succ}(x),\operatorname{Succ}(y)) &\to \operatorname{ack}^\sharp(\operatorname{Succ}(x),y) \\ \operatorname{Part}_4 - \operatorname{Checking Well-Definedness of Functional Programs} \end{aligned}$$

Strong Normalization

• relation \succ is strongly normalizing, written $SN(\succ)$, if there is no infinite sequence

$$a_1 \succ a_2 \succ a_3 \succ \dots$$

- strong normalization is other notion for termination
- strong normalization of a relation is equivalent to soundness of induction principle w.r.t. that relation;

the following two conditions are equivalent

- *SN*(≻)
- $\forall P. \ (\forall x. \ (\forall y. \ x \succ y \longrightarrow P \ y) \longrightarrow P \ x) \longrightarrow (\forall x. \ P \ x)$
- equivalence shows why it is possible to perform induction w.r.t. algorithm for terminating programs

Termination - Dependency Pairs

Termination Analysis with Dependency Pairs, continued

- dependency pairs provide characterization of termination
- definition: let $P \subseteq DP$; a P-chain is a possible infinite sequence

$$s_1\sigma_1 \to t_1\sigma_1 \stackrel{\leftarrow}{\hookrightarrow} s_2\sigma_2 \to t_2\sigma_2 \stackrel{\leftarrow}{\hookrightarrow} s_3\sigma_3 \to t_3\sigma_3 \stackrel{\leftarrow}{\hookrightarrow} \dots$$

such that all $s_i \to t_i \in P$ and all $s_i \sigma_i \in NF(\hookrightarrow)$

- $s_i\sigma_i o t_i\sigma_i$ represent the "main" recursive calls that may lead to non-termination
- $t_i \sigma_i \stackrel{\cdot}{\hookrightarrow}^* s_{i+1} \sigma_{i+1}$ corresponds to evaluation of arguments of recursive calls
- theorem: $SN(\stackrel{\cdot}{\hookrightarrow})$ iff there is no infinite DP-chain
- advantage of dependency pairs
 - in infinite chain, non-terminating recursive calls are always applied at the root
 - simplifies termination analysis

Termination – Dependency Pairs
Termination – Dependency Pairs

Example of Evaluation and Chain

```
\begin{aligned} & \mathsf{minus}(x,\mathsf{Zero}) = x \\ & \mathsf{minus}(\mathsf{Succ}(x),\mathsf{Succ}(y)) = \mathsf{minus}(x,y) \\ & \mathsf{div}(\mathsf{Zero},\mathsf{Succ}(y)) = \mathsf{Zero} \\ & \mathsf{div}(\mathsf{Succ}(x),\mathsf{Succ}(y)) = \mathsf{Zero} \\ & \mathsf{div}(\mathsf{Succ}(x),\mathsf{Succ}(y)) = \mathsf{Succ}(\mathsf{div}(\mathsf{minus}(x,y),\mathsf{Succ}(y))) \\ & \mathsf{minus}^\sharp(\mathsf{Succ}(x),\mathsf{Succ}(y)) \to \mathsf{minus}^\sharp(x,y) \\ & \mathsf{div}^\sharp(\mathsf{Succ}(x),\mathsf{Succ}(y)) \to \mathsf{div}^\sharp(\mathsf{minus}(x,y),\mathsf{Succ}(y)) \\ & \bullet \text{ example innermost evaluation} \\ & \mathsf{div}(\mathsf{Succ}(\mathsf{Zero}),\mathsf{Succ}(\mathsf{Zero})) \\ & \overset{\mathrel{\mathrel{\mathrel{l}}}}{\hookrightarrow} \mathsf{Succ}(\mathsf{div}(\mathsf{minus}(\mathsf{Zero},\mathsf{Zero}),\mathsf{Succ}(\mathsf{Zero}))) \\ & \overset{\mathrel{\mathrel{\mathrel{\mathrel{l}}}}}{\hookrightarrow} \mathsf{Succ}(\mathsf{div}(\mathsf{Zero},\mathsf{Succ}(\mathsf{Zero}))) \\ & \overset{\mathrel{\mathrel{\mathrel{\mathrel{\mathrel{l}}}}}}{\hookrightarrow} \mathsf{Succ}(\mathsf{Zero}) \\ & \mathsf{and its (partial) representation as } \mathit{DP\text{-}chain} \end{aligned}
```

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

 $\rightarrow \text{div}^{\sharp}(\text{minus}(\text{Zero}, \text{Zero}), \text{Succ}(\text{Zero}))$

 $div^{\sharp}(Succ(Zero), Succ(Zero))$

 $\stackrel{i}{\hookrightarrow}$ * div[#](Zero, Succ(Zero))

Termination – Subterm Criterion

Proving Termination

- global approaches
 - try to find one termination argument that no infinite chain exists
- iterative approaches
 - identify dependency pairs that are harmless, i.e., cannot be used infinitely often in a chain
 - remove harmless dependency pairs from set of dependency pairs
 - until no dependency pairs are left
- we focus on iterative approaches, in particular those that are incremental
 - incremental: a termination proof of some function stays valid if later on other functions are added to the program
 - incremental termination proving is not possible in general case (for non-confluent programs), consider coin-example on slide 56

61/100

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

Termination - Subterm Criterion

62/100

A First Termination Technique - The Subterm Criterion

- the subterm criterion works as follows
 - let $P \subseteq DP$
 - choose f^{\sharp} , a symbol of arity n
 - choose some argument position $i \in \{1, \dots, n\}$
 - demand $s_i \trianglerighteq t_i$ for all $f^{\sharp}(s_1, \ldots, s_n) \to f^{\sharp}(t_1, \ldots, t_n) \in P$
 - define $P_{\triangleright} = \{ f^{\sharp}(s_1, \dots, s_n) \to f^{\sharp}(t_1, \dots, t_n) \in P \mid s_i \triangleright t_i \}$
 - then for proving absence of infinite P-chains it suffices to prove absence of infinite $P \setminus P_{\triangleright}$ -chains, i.e., one can remove all pairs in P_{\triangleright}
- observations
 - easy to test: just find argument position i such that each i-th argument of all f[#]-dependency pairs decreases w.r.t. ≥ and then remove all strictly decreasing pairs
 - ullet incremental method: adding other dependency pairs for g^{\sharp} later on will have no impact
 - can be applied iteratively
 - fast, but limited power

Termination - Subterm Criterion

Subterm Criterion – Example

• consider a program with the following set of dependency pairs

$$\operatorname{\mathsf{ack}}^\sharp(\operatorname{\mathsf{Succ}}(x),\operatorname{\mathsf{Zero}}) \to \operatorname{\mathsf{ack}}^\sharp(x,\operatorname{\mathsf{Succ}}(\operatorname{\mathsf{Zero}}))$$
 (1)

$$\mathsf{ack}^\sharp(\mathsf{Succ}(x),\mathsf{Succ}(y))\to \mathsf{ack}^\sharp(x,\mathsf{ack}(\mathsf{Succ}(x),y)) \tag{2}$$

$$\operatorname{ack}^{\sharp}(\operatorname{Succ}(x),\operatorname{Succ}(y)) \to \operatorname{ack}^{\sharp}(\operatorname{Succ}(x),y)$$
 (3)

$$\mathsf{minus}^{\sharp}(\mathsf{Succ}(x),\mathsf{Succ}(y)) \to \mathsf{minus}^{\sharp}(x,y) \tag{4}$$

$$\mathsf{div}^{\sharp}(\mathsf{Succ}(x),\mathsf{Succ}(y)) \to \mathsf{div}^{\sharp}(\mathsf{minus}(x,y),\mathsf{Succ}(y)) \tag{5}$$

$$\mathsf{plus}^{\sharp}(\mathsf{Succ}(x), y) \to \mathsf{plus}^{\sharp}(y, x) \tag{6}$$

- it is easy to remove (4) by choosing any argument of minus#
- we can remove (1) and (2) by choosing argument 1 of ack[‡]
- afterwards we can remove (3) by choosing argument 2 of ack[‡]
- it is not possible to remove any of the remaining dependency pairs (5) and (6) by the subterm criterion

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

65/100

Subterm Criterion - Soundness Proof

- ullet assume the chosen parameters in the subterm criterion are f^{\sharp} and i
- it suffices to prove that there is no infinite chain

$$s_1\sigma_1 \to t_1\sigma_1 \stackrel{\hookrightarrow}{\hookrightarrow}^* s_2\sigma_2 \to t_2\sigma_2 \stackrel{\hookrightarrow}{\hookrightarrow}^* s_3\sigma_3 \to t_3\sigma_3 \stackrel{\hookrightarrow}{\hookrightarrow}^* \dots$$

such that all $s_j \to t_j \in P$, all s_j and t_j have f^{\sharp} as root and there are infinitely many $s_j \to t_j \in P_{\triangleright}$; perform proof by contradiction

- hence all $s_j \to t_j$ are of the form $f^\sharp(s_{j,1},\ldots,s_{j,n}) \to f^\sharp(t_{j,1},\ldots,t_{j,n})$
- from condition $s_{j,i} \ge t_{j,i}$ of criterion conclude $s_{j,i}\sigma_j \ge t_{j,i}\sigma_j$ and if $s_j \to t_j \in P_{\triangleright}$ then $s_{j,i} \rhd t_{j,i}$ and thus $s_{j,i}\sigma_j \rhd t_{j,i}\sigma_j$
- we further know $t_{j,i}\sigma_j \stackrel{\cdot}{\hookrightarrow}^* s_{j+1,i}\sigma_{j+1}$ since f^{\sharp} is a constructor
- this implies $t_{j,i}\sigma_j = s_{j+1,i}\sigma_{j+1}$ since $t_{j,i}\sigma_j \in NF(\hookrightarrow)$ as $t_{j,i}\sigma_j \leq s_{j,i}\sigma_j \leq f^\sharp(s_{j,1}\sigma_j,\ldots,s_{j,n}\sigma_j) = s_j\sigma_j \in NF(\hookrightarrow)$
- obtain an infinite sequence with infinitely many \triangleright ; this is a contradiction to $SN(\triangleright)$

$$s_{1,i}\sigma_1 \trianglerighteq t_{1,i}\sigma_1 = s_{2,i}\sigma_2 \trianglerighteq t_{2,i}\sigma_2 = s_{3,i}\sigma_3 \trianglerighteq t_{3,i}\sigma_3 = \dots$$

RT (DCS @ UIBK)

Part 4 – Checking Well-Definedness of Functional Programs

Termination – Size-Change Principle

66/100

The Size-Change Principle

- the size-change principle abstracts decreases of arguments into size-change graphs
- size-change graph
 - let f^{\sharp} be a symbol of arity n
 - a size-change graph for f^{\sharp} is a bipartite graph G = (V, W, E)
 - the nodes are $V = \{1_{in}, \dots, n_{in}\}$ and $W = \{1_{out}, \dots, n_{out}\}$
 - E is a set of directed edges between in- and out-nodes labelled with \succ or \succeq
 - the size-change graph G of a dependency pair $f^\sharp(s_1,\ldots,s_n)\to f^\sharp(t_1,\ldots,t_n)$ defines E as follows
 - $i_{in} \stackrel{\succ}{\rightarrow} j_{out} \in E$ whenever $s_i \triangleright t_j$

(strict decrease)

• $i_{in} \stackrel{\succsim}{\Rightarrow} j_{out} \in E$ whenever $s_i = t_j$

(weak decrease)

 in representation, in-nodes are on the left, out-nodes are on the right, and subscripts are omitted

Termination – Size-Change Principle

Example – Size-Change Graphs

 consider the following dependency pairs; they include permutations that cannot be solved by the subterm criterion

$$f^{\sharp}(\operatorname{Succ}(x), y) \to f^{\sharp}(x, \operatorname{Succ}(x))$$
 (7)

$$f^{\sharp}(x, \mathsf{Succ}(y)) \to f^{\sharp}(y, x)$$
 (8)

• obtain size-change graphs that contain more information than just the size-decrease in one argument, as we had in subterm criterion

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

RT (DCS @ UIBK) 69/100

Part 4 - Checking Well-Definedness of Functional Programs

70/100

Example – Multigraphs

consider size-change graphs

$$G_{(7)}: 1 \xrightarrow{\succ} 1$$

• this leads to three maximal multigraphs

$$G_{(7)} \cdot G_{(8)} : 1 \xrightarrow{\succ} 1$$
 $G_{(8)} \cdot G_{(7)} : 1 \qquad G_{(8)} \cdot G_{(8)} : 1 \xrightarrow{\succ} 1$ $2 \xrightarrow{\succ} 2$ $2 \xrightarrow{\succ} 2$

and a non-maximal multigraph

$$G_{(8)} ullet G_{(8)} ullet G_{(8)}: 1 1$$

Termination - Size-Change Principle

Size-Change Termination

- instead of multigraphs, one can also glue two graphs G_1 and G_2 by just identifying the out-nodes of G_1 with the in-nodes of G_2 , defined as $G_1 \circ G_2$; in this way it is also possible to consider an infinite sequence of graphs $G_1 \circ G_2 \circ G_3 \circ \dots$
- example:

$$G_{(7)}\circ G_{(8)}\circ G_{(8)}\circ G_{(7)}: \qquad 1 \stackrel{\succ}{\Longrightarrow} 1 \stackrel{}{\succsim} 1 \stackrel{\succ}{\Longrightarrow} 1 \stackrel{\succ}{\Longrightarrow} 1 \stackrel{}{\succsim} 1 \stackrel{}{\smile} 1 \stackrel{}{\succsim} 1 \stackrel{}{\smile} 1 \stackrel{}{\succsim} 1 \stackrel{}$$

- definition: a set \mathcal{G} of size-change graph is size-change terminating iff for every infinite concatenation of graphs of \mathcal{G} there is a path with infinitely many $\xrightarrow{\succ}$ -edges
- theorem: let P be a set of dependency pairs for symbol f^{\sharp} and \mathcal{G} be the corresponding size-change graphs; if \mathcal{G} is size-change terminating, then there is no infinite P-chain
- the proof is mostly identical to the one of the subterm criterion

Multigraphs and Concatenation

• graphs can be glued together, tracing size-changes in chains, i.e., subsequent dependency pairs

- definition: let \mathcal{G} be a set of size-change graphs for the same symbol f^{\sharp} ; then the set of multigraphs for f^{\sharp} is defined as follows
 - every $G \in \mathcal{G}$ is a multigraph
 - whenever there are multigraphs G_1 and G_2 with edges E_1 and E_2 then also the concatenated graph $G = G_1 \cdot G_2$ is a multigraph; here, the edges of E of G are defined as
 - if $i \to j \in E_1$ and $j \to k \in E_2$, then $i \to k \in E$
 - if at least one of the edges $i \to j$ and $j \to k$ is labeled with \succ then $i \to k$ is labeled with \succ , otherwise with \succeq
 - if the previous rules would produce two edges $i \stackrel{\succ}{\to} k$ and $i \stackrel{\succeq}{\to} k$, then only the former is added
- a multigraph G is maximal if $G = G \cdot G$
- since there are only finitely many possible sets of edges, the set of multigraphs is finite and can easily be computed

Termination - Size-Change Principle

71/100

Deciding Size-Change Termination

- definition: a set \mathcal{G} of size-change graph is size-change terminating iff for every infinite concatenation of graphs of \mathcal{G} there is a path with infinitely many $\xrightarrow{\succ}$ -edges
- checking size-change termination directly is not possible
- still, size-change termination is decidable
- theorem: let \mathcal{G} be a set of size-change graphs; the following two properties are equivalent
 - 1. \mathcal{G} is size-change terminating
 - 2. every maximal multigraph of \mathcal{G} contains an edge $i \stackrel{\succ}{\rightarrow} i$
- although the above theorem only gives rise to an EXPSPACE-algorithm, size-change termination is in PSPACE;
 in fact, size-change termination is PSPACE-complete
- despite the high theoretical complexity class, for sets of size-change graphs arising from usual algorithms, the number of multigraphs is rather low

Proof of Theorem

- the direction that size-change termination implies the property on maximal multigraphs can be done in a straight-forward way
- the other direction is much more advanced and relies upon Ramsey's theorem in its infinite version

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

RT (DCS @ UIBK)

73/100

Part 4 - Checking Well-Definedness of Functional Programs

74/100

Termination - Size-Change Principle

Termination - Size-Change Principle

Proof of Theorem: Easy Direction (1. implies 2.)

- ullet assume that ${\mathcal G}$ is size-change terminating, and consider any maximal graph G
- ullet since G is a multigraph, it can be written as $G=G_1ullet\dotsullet G_n$ with each $G_i\in\mathcal G$
- consider infinite graph $G_1 \circ \ldots \circ G_n \circ G_1 \circ \ldots \circ G_n \circ \ldots$
- because of size-change termination, this graph contains path with infinitely many
 →-edges
- hence $G \circ G \circ \ldots$ also has a path with infinitely many $\stackrel{\succ}{\rightarrow}$ -edges
- \bullet on this path some index i must be visited infinitely often
- hence there is a path of length k such that $G \circ G \circ \ldots \circ G$ (k-times) contains a path from the leftmost argument i to the rightmost argument i with at least one $\xrightarrow{\succ}$ -edge
- consequently $G \cdot G \cdot \ldots \cdot G$ (k-times) contains an edge $i \stackrel{\succ}{\to} i$
- by maximality, $G = G \cdot G \cdot \ldots \cdot G$, and thus G contains an edge $i \stackrel{\succ}{\to} i$

Ramsey's Theorem

• definition: given set X and $n \in \mathbb{N}$, we define $X^{(n)}$ as the set of all subsets of X of size n; formally:

$$X^{(n)} = \{ Z \mid Z \subseteq X \land |Z| = n \}$$

- Ramsey's Theorem Infinite Version
 - let $n \in \mathbb{N}$
 - let C be a finite set of colors
 - let X be an infinite set
 - let c be a coloring of the size n sets of X, i.e., $c:X^{(n)}\to C$
 - ullet theorem: there exists an infinite subset $Y\subseteq X$ such that all size n sets of Y have the same color

Proof of Theorem: Hard Direction (2. implies 1.)

- consider some arbitrary infinite graph $G_0 \circ G_1 \circ G_2 \circ \dots$
- for n < m define $G_{n,m} = G_n \cdot \ldots \cdot G_{m-1}$
- by Ramsey's theorem there is an infinite set $I \subseteq \mathbb{N}$ such that $G_{n,m}$ is always the same graph G for all $n, m \in I$ with n < m

$$(n=2,\,C={
m multigraphs},\,X={\mathbb N},\,c(\{n,m\})=G_{\min\{n,m\},\max\{n,m\}})$$

- G is maximal: for $n_1 < n_2 < n_3$ with $\{n_1, n_2, n_3\} \subseteq I$, we have $G_{n_1,n_3}=G_{n_1}\boldsymbol{\cdot}\ldots\boldsymbol{\cdot}G_{n_2-1}\boldsymbol{\cdot}G_{n_2}\boldsymbol{\cdot}\ldots\boldsymbol{\cdot}G_{n_3-1}=G_{n_1,n_2}\boldsymbol{\cdot}G_{n_2,n_3}$, and thus $G=G\boldsymbol{\cdot}G$
- by assumption, G contains edge $i \stackrel{\succ}{\rightarrow} i$
- let $I = \{n_1, n_2, \ldots\}$ with $n_1 < n_2 < \ldots$ and obtain

$$G_0 \circ G_1 \circ \dots$$

$$= G_0 \circ \dots \circ G_{n_1 - 1} \circ G_{n_1} \circ \dots \circ G_{n_2 - 1} \circ G_{n_2} \circ \dots \circ G_{n_3 - 1} \circ \dots$$

$$\sim G_0 \circ \dots \circ G_{n_1 - 1} \circ G \qquad \circ G \qquad \circ \dots$$

so that edge $i \stackrel{\succ}{\to} i$ of G delivers path with infinitely many $\stackrel{\succ}{\to}$ -edges

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

RT (DCS @ UIBK) 77/100

79/100

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

78/100

Termination - Size-Change Principle **Proof of Ramsey's Theorem – Step Case** n = m + 1

- define $X_0 = X$
- pick an arbitrary element a_0 of X_0
- define $Y_0 = X_0 \setminus \{a_0\}$; define coloring $c': Y_0^{(m)} \to C$ as $c'(Z) = c(Z \cup \{a_0\})$
- IH yields infinite subset $X_1 \subseteq Y_0$ such that all size m sets of X_1 have the same color c_0 w.r.t. c'
- hence, $c(\{a_0\} \cup Z) = c_0$ for all $Z \in X_1^{(m)}$
- next pick an arbitrary element a_1 of X_1 to obtain infinite set $X_2 \subseteq X_1 \setminus \{a_1\}$ such that $c(\{a_1\} \cup Z) = c_1 \text{ for all } Z \in X_2^{(m)}$
- by iterating this obtain elements a_0, a_1, a_2, \ldots , colors $c_0, c_1, c_2 \ldots$ and sets X_0, X_1, X_2, \dots satisfying the above properties
- since C is finite there must be some color d in the infinite list c_0, c_1, \ldots that occurs infinitely often; define $Y = \{a_i \mid c_i = d\}$
- Y has desired properties since all size n sets of Y have color d: if $Z \in Y^{(n)}$ then Z can be written as $\{a_{i_1}, \ldots, a_{i_n}\}$ with $i_1 < \ldots < i_n$; hence, $Z = \{a_{i_1}\} \cup Z'$ with $Z' \in X_{i_1+1}^{(m)}$, i.e., $c(Z) = c_{i_1} = d$

Proof of Ramsev's Theorem

- Ramsey's Theorem Infinite Version
 - let $n \in \mathbb{N}$
 - let C be a finite set of colors
 - let X be an infinite set
 - let c be a coloring of the size n sets of X, i.e., $c: X^{(n)} \to C$
 - theorem: there exists an infinite subset $Y \subseteq X$ such that all size n sets of Y have the same color
- proof of Ramsey's theorem is interesting
 - \bullet it is simple, in that it only uses standard induction on n with arbitrary c and X
 - it is complex, in that it uses a non-trivial construction in the step-case, in particular applying the IH infinitely often
- base case n=0 is trivial, since there is only one size-0 set: the empty set

Termination - Size-Change Principle

Summary of Size-Change Principle

- size-change principle abstracts dependency pairs into set of size-change graphs
- if no critical graph exists (multigraph without edge $i \stackrel{\succ}{\to} i$), termination is proven
- soundness relies upon Ramsey's theorem
- subsumes subterm criterion in the following sense: if all DPs can be deleted by subterm criterion, then also size-change principle is successful
- still no handling of defined symbols in dependency pairs as in

$$\operatorname{\mathsf{div}}^\sharp(\operatorname{\mathsf{Succ}}(x),\operatorname{\mathsf{Succ}}(y)) \to \operatorname{\mathsf{div}}^\sharp(\operatorname{\mathsf{minus}}(x,y),\operatorname{\mathsf{Succ}}(y))$$

Termination – Reduction Pairs

Termination - Reduction Pairs

Applying Reduction Pairs

• recall definition: P-chain is sequence

$$s_1\sigma_1 \to t_1\sigma_1 \stackrel{i}{\hookrightarrow} s_2\sigma_2 \to t_2\sigma_2 \stackrel{i}{\hookrightarrow} s_3\sigma_3 \to t_3\sigma_3 \stackrel{i}{\hookrightarrow} \dots$$

such that all $s_i \to t_i \in P$ and all $s_i \sigma \in NF(\hookrightarrow)$

- demand $s \succsim t$ for all $s \to t \in P$ to ensure $s_i \sigma_i \succsim t_i \sigma_i$
- demand $\ell \succsim r$ for all equations to ensure $t_i \sigma_i \succsim s_{i+1} \sigma_{i+1}$
- $\bullet \ \ \mathrm{define} \ P_{\succ} = \{s \rightarrow t \in P \mid s \succ t\}$
- ullet effect: pairs in P_\succ cannot be applied infinitely often and can therefore be removed
- ullet theorem: if there is an infinite P-chain, then there also is an infinite $P\setminus P_\succ$ -chain

Reduction Pairs

• recall definition: *P*-chain is sequence

$$s_1\sigma_1 \to t_1\sigma_1 \stackrel{\cdot}{\hookrightarrow}^* s_2\sigma_2 \to t_2\sigma_2 \stackrel{\cdot}{\hookrightarrow}^* s_3\sigma_3 \to t_3\sigma_3 \stackrel{\cdot}{\hookrightarrow}^* \dots$$

such that all $s_i \to t_i \in P$ and all $s_i \sigma_i \in NF(\hookrightarrow)$

- previously we used \triangleright on $s_i \rightarrow t_i$ to ensure decrease $s_i \sigma_i \triangleright t_i \sigma_i$
- previously we used $s_i \sigma \in NF(\hookrightarrow)$ and \succeq to turn $\stackrel{:}{\hookrightarrow}^*$ into =
- now generalize > to strongly normalizing relation >
- now demand $\ell \succsim r$ for equations to ensure decrease $t_i \sigma_i \succsim s_{i+1} \sigma_{i+1}$
- definition: reduction pair (≻, ≿) is pair of relations such that
 - $SN(\succ)$
 - ≿ is transitive
 - \succ and \succsim are compatible: $\succ \circ \succsim \subseteq \succ$
 - both \succ and \succsim are closed under substitutions: $s (\succsim) t \longrightarrow s\sigma(\succsim) t\sigma$
 - \succsim is closed under contexts: $s \succsim t \longrightarrow F(\ldots,s,\ldots) \succsim F(\ldots,t,\ldots)$

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

Termination - Reduction Pairs

82/100

Termination - Reduction Pairs

Example

• remaining termination problem

$$\begin{aligned} & \mathsf{minus}(x,\mathsf{Zero}) = x \\ & \mathsf{minus}(\mathsf{Succ}(x),\mathsf{Succ}(y)) = \mathsf{minus}(x,y) \\ & \mathsf{div}(\mathsf{Zero},\mathsf{Succ}(y)) = \mathsf{Zero} \\ & \mathsf{div}(\mathsf{Succ}(x),\mathsf{Succ}(y)) = \mathsf{Succ}(\mathsf{div}(\mathsf{minus}(x,y),\mathsf{Succ}(y))) \\ & \mathsf{div}^\sharp(\mathsf{Succ}(x),\mathsf{Succ}(y)) \to \mathsf{div}^\sharp(\mathsf{minus}(x,y),\mathsf{Succ}(y)) \end{aligned}$$

constraints

$$\begin{aligned} & \operatorname{minus}(x, \operatorname{\sf Zero}) \succsim x \\ & \operatorname{minus}(\operatorname{\sf Succ}(x), \operatorname{\sf Succ}(y)) \succsim \operatorname{minus}(x,y) \\ & \operatorname{\sf div}(\operatorname{\sf Zero}, \operatorname{\sf Succ}(y)) \succsim \operatorname{\sf Zero} \\ & \operatorname{\sf div}(\operatorname{\sf Succ}(x), \operatorname{\sf Succ}(y)) \succsim \operatorname{\sf Succ}(\operatorname{\sf div}(\operatorname{\sf minus}(x,y), \operatorname{\sf Succ}(y))) \\ & \operatorname{\sf div}^\sharp(\operatorname{\sf Succ}(x), \operatorname{\sf Succ}(y)) \succ \operatorname{\sf div}^\sharp(\operatorname{\sf minus}(x,y), \operatorname{\sf Succ}(y)) \\ & \operatorname{\sf Part} 4 - \operatorname{\sf Checking Well-Definedness of Functional Programs} \end{aligned}$$

83/100

Termination - Reduction Pairs Termination - Reduction Pairs Usable Equations

$$\operatorname{div}^{\sharp}(\operatorname{Succ}(x),\operatorname{Succ}(y)) \to \operatorname{div}^{\sharp}(\operatorname{minus}(x,y),\operatorname{Succ}(y))$$

- requiring $\ell \succeq r$ for all program equations $\ell = r$ is quite demanding
 - not incremental, i.e., adding other functions later will invalidate proof
 - not necessary, i.e., argument evaluation in example only requires minus
- definition: the usable equations \mathcal{U} w.r.t. a set P are program equations of those symbols that occur in P or that are invoked by (other) usable equations; formally, let \mathcal{E} be set of equations of program, let root (f(...)) = f; then \mathcal{U} is defined as

$$s \to t \in P \quad t \trianglerighteq u \quad \ell = r \in \mathcal{E} \quad root \ u = root \ \ell$$

$$\ell = r \in \mathcal{U}$$

$$\ell' = r' \in \mathcal{U} \quad r' \trianglerighteq u \quad \ell = r \in \mathcal{E} \quad root \ u = root \ \ell$$

$$\ell = r \in \mathcal{U}$$

• observation whenever $t_i \sigma_i \stackrel{\cdot}{\hookrightarrow}^* s_{i+1} \sigma_{i+1}$ in chain, then only usable equations of $\{s_i \rightarrow t_i\}$ can be used 85/100

Part 4 - Checking Well-Definedness of Functional Programs

Termination - Reduction Pairs

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs 86/100

Example with Usable Equations

remaining termination problem

$$\begin{aligned} & \mathsf{minus}(x, \mathsf{Zero}) = x \\ & \mathsf{minus}(\mathsf{Succ}(x), \mathsf{Succ}(y)) = \mathsf{minus}(x, y) \\ & \mathsf{div}(\mathsf{Zero}, \mathsf{Succ}(y)) = \mathsf{Zero} \\ & \mathsf{div}(\mathsf{Succ}(x), \mathsf{Succ}(y)) = \mathsf{Succ}(\mathsf{div}(\mathsf{minus}(x, y), \mathsf{Succ}(y))) \\ & \mathsf{div}^\sharp(\mathsf{Succ}(x), \mathsf{Succ}(y)) \to \mathsf{div}^\sharp(\mathsf{minus}(x, y), \mathsf{Succ}(y)) \end{aligned}$$

constraints

$$\begin{aligned} & \mathsf{minus}(x,\mathsf{Zero}) \succsim x \\ & \mathsf{minus}(\mathsf{Succ}(x),\mathsf{Succ}(y)) \succsim \mathsf{minus}(x,y) \\ & \mathsf{div}^\sharp(\mathsf{Succ}(x),\mathsf{Succ}(y)) \succ \mathsf{div}^\sharp(\mathsf{minus}(x,y),\mathsf{Succ}(y)) \end{aligned}$$

 because of usable equations, applying reduction pairs becomes incremental: new function definitions won't increase usable equations of DPs of previously defined equations

Remaining Problem

given constraints

$$\begin{aligned} & \mathsf{minus}(x,\mathsf{Zero}) \succsim x \\ & \mathsf{minus}(\mathsf{Succ}(x),\mathsf{Succ}(y)) \succsim \mathsf{minus}(x,y) \\ & \mathsf{div}^\sharp(\mathsf{Succ}(x),\mathsf{Succ}(y)) \succ \mathsf{div}^\sharp(\mathsf{minus}(x,y),\mathsf{Succ}(y)) \end{aligned}$$

 $s_1\sigma_1 \rightarrow t_1\sigma_1 \stackrel{i}{\hookrightarrow}^* s_2\sigma_2 \rightarrow t_2\sigma_2 \stackrel{i}{\hookrightarrow}^* s_3\sigma_3 \rightarrow t_3\sigma_3 \stackrel{i}{\hookrightarrow}^* \dots$

find a suitable reduction pair such that these constraints are satisfied

- many such reduction pairs are available (cf. term rewriting lecture)
 - Knuth-Bendix order (constraint solving is in P)

Applying Reduction Pairs with Usable Equations

such that all $s_i \to t_i \in P$ and all $s_i \sigma \in NF(\hookrightarrow)$

• choose a symbol f^{\sharp} and define $P_{f\sharp} = \{s \to t \in P \mid root \ s = f^{\sharp}\}$

• demand $\ell \succsim r$ for all $l=r \in \mathcal{U}$ where \mathcal{U} are usable equations w.r.t. P_{f^\sharp}

• effect: pairs in P_{\succ} cannot be applied infinitely often and can therefore be removed

• theorem: if there is an infinite P-chain, then there also is an infinite $P \setminus P_{\succ}$ -chain

• recall definition: P-chain is sequence

• demand $s \succeq t$ for all $s \to t \in P_{f\sharp}$

• define $P_{\succ} = \{s \rightarrow t \in P_{f^{\sharp}} \mid s \succ t\}$

- recursive path order (NP-complete)
- polynomial interpretations (undecidable)
 - powerful
 - intuitive
 - automatable
- matrix interpretations (undecidable)
- weighted path order (undecidable)

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

87/100

88/100

Termination - Reduction Pairs

Polynomial Interpretation

- interpret each n-ary symbol F as polynomial $p_F(x_1,\ldots,x_n)$
- ullet variables in polynomials range over ${\mathbb N}$ and polynomials have to be weakly monotone

$$x_i \ge y_i \longrightarrow p_F(x_1, \dots, x_i, \dots, x_n) \ge p_F(x_1, \dots, y_i, \dots, x_n)$$

sufficient criterion: forbid subtraction and negative numbers in p_F

• interpretation is lifted to terms by composing polynomials

$$[\![x]\!] = x$$

 $[\![F(t_1, \dots, t_n)\!] = p_F([\![t_1]\!], \dots, [\![t_n]\!])$

• (\gtrsim) is defined as

$$s \underset{(\sim)}{\succsim} t \text{ iff } \forall \vec{x} \in \mathbb{N}^*. \, [\![s]\!] \underset{(\geq)}{\succeq} [\![t]\!]$$

- (\succ, \succeq) is a reduction pair, e.g.,
 - $SN(\succ)$ follows from strong-normalization of > on $\mathbb N$
 - ullet is closed under contexts since each p_F is weakly monotone

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

89/100

Termination - Reduction Pairs

Solving Polynomial Constraints

- each polynomial constraint over $\mathbb N$ can be brought into simple form " $p\geq 0$ " for some polynomial p
 - replace $p_1 > p_2$ by $p_1 \ge p_2 + 1$
 - replace $p_1 \ge p_2$ by $p_1 p_2 \ge 0$
- the question of " $p \ge 0$ " over $\mathbb N$ is undecidable (Hilbert's 10th problem)
- approximation via absolute positiveness: if all coefficients of p are non-negative, then $p \geq 0$ for all instances over $\mathbb N$
- division example has trivial constraints

original	simplified
$x \ge x$	$0 \ge 0$
$1+x \ge x$	$1 \ge 0$
4 + x + 3y > 3 + x + 3y	0 > 0

Example – Polynomial Interpretation

• given constraints

$$\begin{split} & \mathsf{minus}(x,\mathsf{Zero}) \succsim x \\ & \mathsf{minus}(\mathsf{Succ}(x),\mathsf{Succ}(y)) \succsim \mathsf{minus}(x,y) \\ & \mathsf{div}^\sharp(\mathsf{Succ}(x),\mathsf{Succ}(y)) \succ \mathsf{div}^\sharp(\mathsf{minus}(x,y),\mathsf{Succ}(y)) \end{split}$$

and polynomial interpretation

$$\begin{split} p_{\mathsf{minus}}(x_1, x_2) &= x_1 \\ p_{\mathsf{Zero}} &= 2 \\ p_{\mathsf{Succ}}(x_1) &= 1 + x_1 \\ p_{\mathsf{div}^\sharp}(x_1, x_2) &= x_1 + 3x_2 \end{split}$$

we obtain polynomial constraints

Termination – Reduction Pairs

90/100

Finding Polynomial Interpretations

- in division example, interpretation was given on slides
- aim: search for suitable interpretation
- approach: perform everything symbolically

Symbolic Polynomial Interpretations

• fix shape of polynomial, e.g., linear

$$p_F(x_1,\ldots,x_n) = F_0 + F_1x_1 + \cdots + F_nx_n$$

where the F_i are symbolic coefficients

$$\begin{split} p_{\mathsf{minus}}(x_1, x_2) &= x_1 \\ p_{\mathsf{Zero}} &= 2 \\ p_{\mathsf{Succ}}(x_1) &= 1 + x_1 \\ p_{\mathsf{div}^\sharp}(x_1, x_2) &= x_1 + 3x_2 \end{split}$$

concrete interpretation above becomes symbolic

$$\begin{split} p_{\mathsf{minus}}(x_1, x_2) &= \mathsf{m}_0 + \mathsf{m}_1 x_1 + \mathsf{m}_2 x_2 \\ p_{\mathsf{Zero}} &= \mathsf{Z}_0 \\ p_{\mathsf{Succ}}(x_1) &= \mathsf{S}_0 + \mathsf{S}_1 x_1 \\ p_{\mathsf{div}^{\sharp}}(x_1, x_2) &= \mathsf{d}_0 + \mathsf{d}_1 x_1 + \mathsf{d}_2 x_2 \end{split}$$
 Part 4 - Checking Well-Definedness of Functional Programs

Termination - Reduction Pairs

93/100

Symbolic Polynomial Constraints

given constraints

$$\begin{split} & \mathsf{minus}(x, \mathsf{Zero}) \succsim x \\ & \mathsf{minus}(\mathsf{Succ}(x), \mathsf{Succ}(y)) \succsim \mathsf{minus}(x, y) \\ & \mathsf{div}^\sharp(\mathsf{Succ}(x), \mathsf{Succ}(y)) \succ \mathsf{div}^\sharp(\mathsf{minus}(x, y), \mathsf{Succ}(y)) \end{split}$$

• obtain symbolic polynomial constraints

$$\begin{split} & \mathsf{m}_0 + \mathsf{m}_1 x + \mathsf{m}_2 \mathsf{Z}_0 \geq x \\ & \mathsf{m}_0 + \mathsf{m}_1 (\mathsf{S}_0 + \mathsf{S}_1 x) + \mathsf{m}_2 (\mathsf{S}_0 + \mathsf{S}_1 y) \geq \mathsf{m}_0 + \mathsf{m}_1 x + \mathsf{m}_2 y \\ & \mathsf{d}_0 + \mathsf{d}_1 (\mathsf{S}_0 + \mathsf{S}_1 x) + \mathsf{d}_2 (\mathsf{S}_0 + \mathsf{S}_1 y) > \mathsf{d}_0 + \mathsf{d}_1 (\mathsf{m}_0 + \mathsf{m}_1 x + \mathsf{m}_2 y) \\ & \qquad \qquad + \mathsf{d}_2 (\mathsf{S}_0 + \mathsf{S}_1 y) \end{split}$$

and simplify to

$$\begin{split} (\mathsf{m}_0 + \mathsf{m}_2 \mathsf{Z}_0) + (\mathsf{m}_1 - 1) x &\geq 0 \\ (\mathsf{m}_1 \mathsf{S}_0 + \mathsf{m}_2 \mathsf{S}_0) + (\mathsf{m}_1 \mathsf{S}_1 - \mathsf{m}_1) x + (\mathsf{m}_2 \mathsf{S}_1 - \mathsf{m}_2) y &\geq 0 \\ (\mathsf{d}_1 \mathsf{S}_0 - \mathsf{d}_1 \mathsf{m}_0 - 1) + (\mathsf{d}_1 \mathsf{S}_1 - \mathsf{d}_1 \mathsf{m}_1) x + (-\mathsf{d}_1 \mathsf{m}_2) y &\geq 0 \end{split}$$

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

RT (DCS @ UIBK)

Absolute Positiveness – Symbolic Example

on symbolic polynomial constraints

$$\begin{split} (\mathsf{m}_0+\mathsf{m}_2\mathsf{Z}_0)+(\mathsf{m}_1-1)x &\geq 0\\ (\mathsf{m}_1\mathsf{S}_0+\mathsf{m}_2\mathsf{S}_0)+(\mathsf{m}_1\mathsf{S}_1-\mathsf{m}_1)x+(\mathsf{m}_2\mathsf{S}_1-\mathsf{m}_2)y &\geq 0\\ (\mathsf{d}_1\mathsf{S}_0-\mathsf{d}_1\mathsf{m}_0-1)+(\mathsf{d}_1\mathsf{S}_1-\mathsf{d}_1\mathsf{m}_1)x+(-\mathsf{d}_1\mathsf{m}_2)y &\geq 0 \end{split}$$

absolute positiveness works as before; obtain constraints

$$\begin{split} & \mathsf{m}_0 + \mathsf{m}_2 \mathsf{Z}_0 \geq 0 & \mathsf{m}_1 - 1 \geq 0 \\ & \mathsf{m}_1 \mathsf{S}_0 + \mathsf{m}_2 \mathsf{S}_0 \geq 0 & \mathsf{m}_1 \mathsf{S}_1 - \mathsf{m}_1 \geq 0 & \mathsf{m}_2 \mathsf{S}_1 - \mathsf{m}_2 \geq 0 \\ & \mathsf{d}_1 \mathsf{S}_0 - \mathsf{d}_1 \mathsf{m}_0 - 1 \geq 0 & \mathsf{d}_1 \mathsf{S}_1 - \mathsf{d}_1 \mathsf{m}_1 \geq 0 & -\mathsf{d}_1 \mathsf{m}_2 \geq 0 \end{split}$$

- at this point, use solver for integer arithmetic to find suitable coefficients (in N)
- popular choice: SMT solver for integer arithmetic where one has to add constraints $m_0 \ge 0, m_1 \ge 0, m_2 \ge 0, S_0 \ge 0, S_1 \ge 0, Z_0 \ge 0, \dots$

Constraint Solving by Hand – Example

original constraints

$$\begin{split} & \mathsf{m}_0 + \mathsf{m}_2 \mathsf{Z}_0 \geq 0 & \mathsf{m}_1 - 1 \geq 0 \\ & \mathsf{m}_1 \mathsf{S}_0 + \mathsf{m}_2 \mathsf{S}_0 \geq 0 & \mathsf{m}_1 \mathsf{S}_1 - \mathsf{m}_1 \geq 0 & \mathsf{m}_2 \mathsf{S}_1 - \mathsf{m}_2 \geq 0 \\ & \mathsf{d}_1 \mathsf{S}_0 - \mathsf{d}_1 \mathsf{m}_0 - 1 \geq 0 & \mathsf{d}_1 \mathsf{S}_1 - \mathsf{d}_1 \mathsf{m}_1 \geq 0 & -\mathsf{d}_1 \mathsf{m}_2 \geq 0 \end{split}$$

delete trivial constraints

conclusions

$$\begin{array}{lll} \mathsf{m}_1 \geq 1 & & \mathsf{d}_1 \geq 1 \\ \mathsf{S}_0 \geq 1 & & \mathsf{S}_1 \geq 1 \\ \mathsf{m}_2 = 0 & & \mathsf{S}_1 \geq \mathsf{m}_1 & & \mathsf{m}_0 = 0 \end{array}$$

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

RT (DCS @ UIBK) 95/100

Part 4 - Checking Well-Definedness of Functional Programs

96/100

94/100

Termination - Reduction Pairs

Termination - Reduction Pairs

Termination - Reduction Pairs

Constraint Solving by SMT-Solver – Example

original constraints

$$\begin{split} & \mathsf{m}_0 + \mathsf{m}_2 \mathsf{Z}_0 \geq 0 & \mathsf{m}_1 - 1 \geq 0 \\ & \mathsf{m}_1 \mathsf{S}_0 + \mathsf{m}_2 \mathsf{S}_0 \geq 0 & \mathsf{m}_1 \mathsf{S}_1 - \mathsf{m}_1 \geq 0 & \mathsf{m}_2 \mathsf{S}_1 - \mathsf{m}_2 \geq 0 \\ & \mathsf{d}_1 \mathsf{S}_0 - \mathsf{d}_1 \mathsf{m}_0 - 1 \geq 0 & \mathsf{d}_1 \mathsf{S}_1 - \mathsf{d}_1 \mathsf{m}_1 \geq 0 & -\mathsf{d}_1 \mathsf{m}_2 \geq 0 \end{split}$$

• encode as SMT problem in file division.smt2

```
(set-logic QF_NIA)
(declare-fun m0 () Int) ... (declare-fun d2 () Int)
(assert (>= m0 0)) ... (assert (>= d2 0))
(assert (>= (+ m0 (* m2 Z0)) 0))
...
(assert (>= (* (- 1) d1 m2) 0))
(check-sat)
(get-model)
(exit)
```

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

97/100

Constraint Solving by SMT-Solver – Example Continued

• invoke SMT solver, e.g., Microsoft's open source solver Z3
cmd> z3 division.smt2
sat
(model
 (define-fun d1 () Int 8)
 (define-fun S1 () Int 15)
 (define-fun S0 () Int 8)
 (define-fun Z0 () Int 0)

(define-fun ZO () Int O) (define-fun m2 () Int O) (define-fun m1 () Int 12) (define-fun m0 () Int 4)

(define-fun d2 () Int 0) (define-fun d0 () Int 0)

• parse result to obtain polynomial interpretation

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

Termination – Reduction Pairs

98/100

Termination – Reduction Pairs

Constraint Solving by SMT-Solver – Scepticism

- polynomial interpretation found by SMT solving approach is generated by complex (potentially buggy) tool
- however, termination is essential for well-defined programs, i.e., in particular to derive correct theorems
- solution: certification
 - search for interpretation can be done in arbitrary untrusted way
 - write simple trusted checker that certifies whether concrete interpretation indeed satisfies all
 constraints
 - like solving NP-complete problem: positive answer can easily be verified
- in fact, this approach is heavily used in termination proving
 - untrusted tools: AProVE, T_TT₂, Terminator, . . .
 - trusted checker: CeTA; soundness formally proven in Isabelle/HOL

Summary

- pattern-completeness and pattern-disjointness are decidable
- termination proving can be done via
 - dependency pairs
 - subterm criterion
 - size-change termination
 - polynomial interpretation
- termination proving often performed with help of SMT solvers
- increase reliability via certification: checking of generated proofs