\square universität innsbruck

Program Verification

Part 4 - Checking Well-Definedness of Functional Programs

Department of Computer Science

René Thiemann

Overview

- recall: a functional program is well-defined if
- it is pattern disjoint,
- it is pattern complete, and
- \hookrightarrow is terminating
- well-definedness is prerequisite for standard model, for derived theorems, ...
- task: given a functional program as input, ensure well-definedness
- known: type-checking algorithm
- missing: algorithm for type-inference
- missing: algorithm for deciding pattern disjointness
- missing: algorithm for deciding pattern completeness
- missing: methods to ensure termination
- all of these missing parts will be covered in this chapter

Type-Checking with Implicit Variables

Type-Inference

- structure of functional programs
- data-type definitions
- function definitions: type of new function + defining equations
- not mentioned: type of variables
- in proseminar: work-around via fixed scheme which does not scale
- singleton characters get type Nat
- words ending in "s" get type List
- aim: infer suitable type of variables automatically
- example: given FP

$$
\begin{aligned}
& \text { append }: \text { List } \times \text { List } \rightarrow \text { List } \\
& \text { append }(\operatorname{Cons}(x, y), z)=\operatorname{Cons}(x, \text { append }(y, z)) \\
& \text { append }(\operatorname{Nil}, x)=x
\end{aligned}
$$

we should be able to infer that x : Nat, y : List and z : List in the first equation, whereas x : List in the second equation

Interlude: Maybe-Type for Errors

Type-Checking with Implicit Variables

- recall type-checking algorithm
typeCheck :: Sig -> Vars -> Term -> Maybe Type
typeCheck sigma vars ($\operatorname{Var} \mathrm{x}$) $=$ vars x
typeCheck sigma vars (Fun f ts) = do
(tysIn, tyOut) <- sigma f
tysTs <- mapM (typeCheck sigma vars) ts
if tysTs $==$ tysIn then return tyOut else Nothing
- Maybe-type is only one possibility to represent computational results with failure
- let us abstract from concrete Maybe-type:
- introduce new type Check to represent a result or failure
type Check a = Maybe a
- function return :: a -> Check a to produce successful results
- function to raise a failure
failure :: Check a
failure = Nothing
- convenience function: asserting a property assert :: Bool -> Check ()
RT (DCS © UіBK) assert $p=$ if p then return () else failure ${ }_{\text {Part }} 4$ - Checking Well-eefinednes of functional Programs

Back to Type-Checking and Type-Inference

Type-Checking with Implicit Variables

- known: type-checking algorithm
typeCheck :: Sig \rightarrow Vars \rightarrow Term \rightarrow Check Type
- type Sig = FSym \rightarrow Check ([Type], Type) $-\Sigma$
- type Vars = Var -> Check Type - V
- typeCheck takes Σ and \mathcal{V} and delivers type of term
- we want a function that works in the other direction: it gets an intended type as input, and delivers a suitable type for the variables
inferType :: Sig -> Type -> Term -> Check [(Var,Type)]
- then type-checking an equation without explicit Vars is possible
typeCheckEqn : : Sig -> (Term, Term) -> Check ()
typeCheckEqn sigma (Var $x, r)$ = failure
typeCheckEqn sigma (1 @ (Fun f _), r) = do
(_,ty) <- sigma f
vars <- inferType sigma ty l
tyR <- typeCheck sigma (assert (ty == tyR)

Making Type-Checking More Abstract

- original type-checking algorithm
typeCheck : : Sig -> Vars -> Term -> Maybe Type
typeCheck sigma vars (Var x) = vars x
typeCheck sigma vars (Fun f ts) = do
(tysIn,tyOut) <- sigma f
tysTs <- mapM (typeCheck sigma vars) ts
if tysTs == tysIn then return tyOut else Nothing
- with new abstract types and functions
typeCheck :: Sig -> Vars -> Term -> Check Type
typeCheck sigma vars (Var x) = vars x
typeCheck sigma vars (Fun f ts) $=$ do
(tysIn,tyOut) <- sigma f
tysTs <- mapM (typeCheck sigma vars) ts
assert (tysTs == tysIn)
return tyOut
- advantage: readability, change Check-type easily

Type-Inference Algorithm

- note: upcoming algorithm only infers types of variables
(in polymorphic setting often also type of function symbols is inferred)
inferType :: Sig -> Type -> Term -> Check [(Var, Type)]
inferType sigma ty (Var x) = return [(x,ty)]
inferType sigma ty (Fun f ts) $=$ do
(tysIn,tyOut) <- sigma f
assert (length tysIn == length ts)
assert (tyOut == ty)
varsL <- mapM (\backslash (ty, t) -> inferType sigma ty t) (zip tysIn ts)
let vars = nub (concat varsL) -- nub removes duplicates
assert (distinct (map fst vars))
return vars
distinct :: Eq a => [a] -> Bool
distinct $\mathrm{xs}=$ length (nub xs) $==$ length xs

Soundness of Type-Inference Algorithm

- properties
- if $t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$ then inferType $\Sigma \tau t=\operatorname{return}(\mathcal{V} \cap \mathcal{V a r s}(t))$
- if inferType $\Sigma \tau t=$ return \mathcal{V} then
- \mathcal{V} is well-defined (no conflicting variable assignments) and
- $t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$
- properties can be shown in similar way to type-checking algorithm, cf. slides 2/35-42
- note that 'if $t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$ then inferType $\Sigma \tau t \neq$ failure' is a property which is not strong enough when performing induction

Changing Implementation of Interface

- current interface for error type
- type Check a = Maybe a
- function return : : a -> Check a
- function assert : : Bool -> Check ()
- function failure : : Check a
- do-blocks, monadic-functions such as mapM, etc.
- it is actually easy to change to Either-type for errors
- type Check a = Either String a
- return, do-blocks and mapM are unchanged, since these are part of generic monad interface
- functions assert and failure need to be changed, since they now require error messages
failure :: String -> Check a
failure $=$ Left
- assert :: Bool -> String -> Check ()
assert p err $=$ if p then return () else failure err

Changing Algorithms for Checking Properties

- adapting algorithms often only requires additional error messages
- before change (type Check a = Maybe a) typeCheck : : Sig -> Vars -> Term -> Check Type typeCheck sigma vars (Var x) = vars x typeCheck sigma vars (Fun f ts) $=$ do
(tysIn,tyOut) <- sigma f
tysTs <- mapM (typeCheck sigma vars) ts
assert (tysTs == tysIn)
return tyOut
- after change (type Check a = Either String a) typeCheck :: Sig -> Vars -> Term -> Check Type typeCheck sigma vars $(\operatorname{Var} \mathrm{x})=\ldots$ typeCheck sigma vars t@(Fun f ts) $=$ do
assert (tysTs == tysIn) (show t ++ " ill-typed")

Changing Algorithms for Checking Properties, Continued

- example requiring more changes; with type Check a = Maybe a typeCheckEqn sigma ($\operatorname{Var} \mathrm{x}, \mathrm{r}$) = failure typeCheckEqn sigma (1 @ (Fun f _), r) = do
(_,ty) <- sigma f
vars <- inferType sigma ty 1
tyR <- typeCheck sigma (\x -> lookup x vars) r assert (ty == tyR)
- new version with type Check a = Either String a typeCheckEqn sigma ($\operatorname{Var} \mathrm{x}, \mathrm{r}$) = failure "var as lhs" typeCheckEqn sigma (1 @ (Fun f_), r) $=$ do
tyR <- typeCheck sigma ($\backslash \mathrm{x}$-> lookup x vars) r assert (ty $==$ tyR) "types of lhs and rhs don't match"
- problem: lookup produces Maybe, not Either String
- problem: lookup produces Maybe, not Either String
- solution: use maybeToEither : : e -> Maybe a $->$ Either e a

Fixed Type-Checking Algorithm with Error Messages

import Data.Either.Utils -- for maybeToEither
-- import requires MissingH lib; if not installed, define it yourself:
-- maybeToEither e Nothing = Left e
-- maybeToEither _ (Just x) = return x
typeCheckEqn sigma (Var $x, r)=$ failure "var as lhs"
typeCheckEqn sigma (1 @ (Fun f _), r) = do
(_,ty) <- sigma f
vars <- inferType sigma ty l
tyR <- typeCheck
sigma
(\ x -> maybeToEither
(x ++ " is unknown variable")
(lookup x vars))
r
assert (ty $==$ tyR) "types of lhs and rhs don't match"

Processing Functional Programs

- aim: write program which takes
- functional program as input (data type definitions + function definitions)
- checks the syntactic requirements
- stores the relevant information in some internal representation
- later: also checks well-definedness
- such a program is essential part of a compiler
- program should be easy to verify

Existing Encoding of Part 2: Signatures and Terms

type Check a = ... -- Maybe a or Either String a
type Type = String
type Var = String
type FSym = String
type Vars = Var -> Check Type
type FSymInfo = ([Type], Type)
type Sig = FSym $->$ Check FSymInfo
data Term $=$ Var Var | Fun FSym [Term]

Recall: Data Type Definitions

- given: set of types $\mathcal{T} y$, signature $\Sigma=\mathcal{C} \uplus \mathcal{D}$
- each data type definition has the following form

$$
\begin{aligned}
& \text { data } \tau= c_{1}: \tau_{1,1} \times \ldots \times \tau_{1, m_{1}} \rightarrow \tau \\
& \mid \ldots \\
& c_{n}: \tau_{n, 1} \times \ldots \times \tau_{n, m_{n}} \rightarrow \tau
\end{aligned}
$$

where
fresh type name

- $\tau \notin \mathcal{T} y$
and $\quad c_{i} \neq c_{j}$ for $i \neq j$
- each $\tau_{i, j} \in\{\tau\} \cup \mathcal{T} y$
- exists c_{i} such that $\tau_{i, j} \in \mathcal{T} y$ for all j
fresh and distinct constructor names
only known types
non-recursive constructor
- effect: add new type and new constructors
- $\mathcal{T} y:=\mathcal{T} y \cup\{\tau\}$
- $\mathcal{C}:=\mathcal{C} \cup\left\{c_{1}: \tau_{1,1} \times \ldots \times \tau_{1, m_{1}} \rightarrow \tau, \ldots, c_{n}: \tau_{n, 1} \times \ldots \times \tau_{n, m_{n}} \rightarrow \tau\right\}$

Encoding Functional Programs in Haskell

-- input: unchecked data-type definitions and function definitions
data DataDefinition = Data Type [(FSym, FSymInfo)]
data FunctionDefinition = ... -- later
type FunctionalProg =
([DataDefinition], [FunctionDefinition])
-- internal representation
type SigList $=[(F S y m, ~ F S y m I n f o)]--$ signatures as list
type Defs = SigList -- list of defined symbols
type Cons = SigList -- list of constructors
type Equations $=$ [(Term, Term)] -- all function equations
-- all combined in Haskell-type; it also stores known types
data ProgInfo = ProgInfo [Type] Cons Defs Equations
-- checking single data type definition
processDataDefinition : :
ProgInfo -> DataDefinition -> Check ProgInfo
RT (DCS © UIBK)

Checking a Single Data Definitions

processDataDefinition
(ProgInfo tys cons defs eqs)
(Data ty newCs)
= do
assert (not (elem ty tys))
let newTys = ty : tys
assert (distinct (map fst newCs))
assert (all ($\left(\mathrm{c}, \mathrm{H}_{\text {}}\right)$-> all (/= c) (map fst (cons ++ defs))) newCs)
assert (all (\ (_, (tysIn,tyOut)) ->
tyOut == ty \&\&
all (\backslash ty $->$ elem ty newTys) tysIn) newCs)
assert (any
($\backslash\left(\ldots,\left(t y s I n, _\right)\right)->$all (/= ty) tysIn) newCs)
return (ProgInfo newTys (newCs ++ cons) defs eqs)

Checking Function Definitions w.r.t. Slide 3/15

```
data FunctionDefinition = Function
    FSym -- name of function
    FSymInfo -- type of function
    [(Term,Term)] -- equations
processFunctionDefinition
    :: ProgInfo -> FunctionDefinition -> Check ProgInfo
processFunctionDefinition = ... -- exercise
processFunctionDefinitions ::
    ProgInfo -> [FunctionDefinition] -> Check ProgInfo
processFunctionDefinitions =
    foldM processFunctionDefinition
```


Checking Several Data Definitions

- processing many data definitions can be easily done by using foldM: predefined monadic version of foldl
foldM :: Monad m => (b -> a $->\mathrm{m}$ b) $->\mathrm{b}->[\mathrm{a}]$-> m b
foldM fer] = return e
foldM f e (x : xs) = do
d <- f e x
foldM f d xs
processDataDefinition : :
ProgInfo -> DataDefinition -> Check ProgInfo
processDataDefinition = ... -- previous slide
processDataDefinitions :
ProgInfo -> [DataDefinition] -> Check ProgInfo
processDataDefinitions $=$ foldM processDataDefinition
RT (DCS @ UIBK)
Part 4 - Checking Well-Definedness of Functional Progran

Checking Functional Programs

initialProgInfo = ProgInfo [] [] [] []
processProgram :: FunctionalProg -> Check ProgInfo processProgram (dataDefs, funDefs) = do
pi <- processDataDefinitions initialProgInfo dataDefs processFunctionDefinitions pi funDefs

Current State

- processProgram : : FunctionalProg -> Check ProgInfo is Haskell program to check user provided functional programs, whether they adhere to the specification of functional programs w.r.t. slides $3 / 4$ and $3 / 15$
- its functional style using error monads permits us to easily verify its correctness
- no induction required
- based on assumption that builtin functions behave correctly, e.g., all, any, nub, ..
- missing: checks for well-defined functional programs w.r.t. slide 3/45

Checking Pattern Disjointness

Unification Algorithm of Martelli and Montanari

- input: unification problem $U=\left\{s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}\right\}$
- question: is U solvable, i.e., does there exist a solution σ, a substitution satisfying $\forall i \in\{1, \ldots, n\} . s_{i} \sigma=t_{i} \sigma$
- two different kinds of output:
- unification problem in solved form:

$$
\left\{x_{1} \stackrel{?}{=} v_{1}, \ldots, x_{m} \stackrel{?}{=} v_{m}\right\} \text { with distinct } x_{j} \text { 's }
$$

solved forms can be interpreted as substitution

$$
\sigma(x)= \begin{cases}v_{i}, & \text { if } x=x_{i} \\ x, & \text { otherwise }\end{cases}
$$

and this σ will be solution of U

- \perp, indicating that U is not solvable
- algorithm itself is build via one-step relation \rightsquigarrow which is applied as long as possible
- input: unification problem $U=\left\{s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}\right\}$
- output: solution of U via solved form or \perp, indicating unsolvability
- algorithm applies \rightsquigarrow as long as possible; \rightsquigarrow is defined as

$$
\begin{align*}
& U \cup\{t \stackrel{?}{=} t\} \rightsquigarrow U \\
& U \cup\left\{f\left(u_{1}, \ldots, u_{k}\right) \stackrel{?}{=} f\left(v_{1}, \ldots, v_{k}\right)\right\} \rightsquigarrow U \cup\left\{u_{1} \stackrel{?}{=} v_{1}, \ldots, v_{k} \stackrel{?}{=} v_{k}\right\} \\
& U \cup\left\{f\left(u_{1}, \ldots, u_{k}\right) \stackrel{?}{=} g\left(v_{1}, \ldots, v_{\ell}\right)\right\} \rightsquigarrow \perp, \text { if } f \neq g \vee k \neq \ell \tag{clash}\\
& U \cup\{f(\ldots) \stackrel{?}{=} x\} \rightsquigarrow U \cup\{x \stackrel{?}{=} f(\ldots)\} \tag{swap}\\
& U \cup\{x \stackrel{?}{=} f(\ldots)\} \rightsquigarrow \perp, \text { if } x \in \operatorname{Vars}(f(\ldots)) \\
& U \cup\{x \stackrel{?}{=} t\} \rightsquigarrow U\{x / t\} \cup\{x \stackrel{?}{=} t\} \\
& \quad \text { if } x \notin \operatorname{Vars}(t) \text { and } x \text { occurs in } U
\end{align*}
$$

notation $U\{x / t\}$: apply substitution $\{x / t\}$ on all terms in U (lhs + rhs)
(decompose)
(occurs check)
(eliminate)

$$
0^{2}+2
$$

Correctness of an Implementation of a (Unification) Algorithm

Checking Pattern Disjointness

- any concrete implementation will make choices
- preference of rules
- selection of pairs from U
- representation of sets U
- (pivot-selection in quicksort)
- (order of edges in graph-/tree-traversals)
- ...
- task: how to ensure that implementation is sound
- solution: refinement proof
- aim: reuse correctness of abstract algorithm (\rightsquigarrow)
- define relation between representations in concrete and abstract algorithm (this was called alignment before and done informally)
- show that concrete algorithm has less behaviour, i.e., every result of concrete (deterministic) algorithm can be related to some result of (non-deterministic) abstract algorithm
- benefit: clear separation between
- soundness of abstract algorithm
(solves unification problems)
- soundness of implementation
(implements abstract algorithm)

Correctness of Unification Algorithm

- we only state properties (proofs: see term rewriting lecture)
- \rightsquigarrow terminates
- normal form of \rightsquigarrow is \perp or a solved form
- whenever $U \rightsquigarrow V$, then U and V have same solutions
- in total: to solve unification problem U
- determine some normal form V of U
- if $V=\perp$ then U is unsolvable
- otherwise, V represents a substitution that is a solution to U
- note that \rightsquigarrow is not confluent
- $\{x \stackrel{?}{=} y, y \stackrel{?}{=} x\} \stackrel{x / y}{\rightsquigarrow}\{x \stackrel{?}{=} y, y \stackrel{?}{=} y\} \rightsquigarrow\{x \stackrel{?}{=} y\}$
- $\{x \stackrel{?}{=} y, y \stackrel{?}{=} x\} \stackrel{y / x}{\rightsquigarrow}\{x \stackrel{?}{=} x, y \stackrel{?}{=} x\} \rightsquigarrow\{y \stackrel{?}{=} x\}$

A Concrete Implementing of the Unification Algorithm

subst :: Var -> Term -> Term -> Term
subst $\mathrm{x} \mathrm{t}=$ applySubst ($\backslash \mathrm{y} \rightarrow$ if $\mathrm{y}==\mathrm{x}$ then t else $\operatorname{Var} \mathrm{y}$)
unify :: [(Term, Term)] -> Check [(Var, Term)]
unify u = unifyMain u []
unifyMain :: [(Term, Term)] -> [(Var,Term)] -> Check [(Var, Term)]
unifyMain [] $\mathrm{v}=$ return v -- return solved form
unifyMain ((Fun f ts, Fun g ss) : u) v = do
assert ($f==\mathrm{g}$ \&\& length $\mathrm{ts}==$ length ss)
unifyMain (zip ts ss ++u) v
unifyMain ((Fun f ts, x) : u) $v=$
unifyMain ($(x$, Fun f ts) : u) v
-- clash
-- decompose
unifyMain ((Var x, t) : u) v =
if Var $x==t$ then unifyMain $u v$
-- swap
else do
assert (not (x `elem` varsTerm t)) -- occurs check
unifyMain -- eliminate
(map ($\backslash(\mathrm{l}, \mathrm{r})$-> (subst $\mathrm{x} t \mathrm{l}$, subst x t r)) u)
$((x, t): \operatorname{map}(\backslash(y, s) \rightarrow(y$, subst $x t s)) v)$
RT (DCS © UIBK)

Notes on Implementation

- it is non-trivial to prove soundness of implementation, since there are several differences w.r.t. \rightsquigarrow
- unifyMain takes two parameters u and v
- these represent one unification problem $u \cup v$
- rule-application is not tried on v, only on u
- we need to know that v is in normal form w.r.t. \rightsquigarrow
- in (occurs check)-rule, the algorithm has no test that rhs is function application
- we need to show that this will follow from other conditions
- in (elimination)-rule, the algorithm substitutes only in rhss of v
- we need to know that substituting in lhss of v has no effect
- in (elimination)-rule, the algorithm does not check that x occurs in remaining problem
- we need to check that consequences don't harm

Soundness via Refinement: Main Statement

- define setMaybe Nothing $=\perp$, setMaybe (Just w) $=$ set w
property: whenever $(u, v) \sim U$ and unifyMain $u v=$ res then $U \rightsquigarrow$! setMaybe res
- once property is established, we can prove that implementation solves unification problems
- assume input u, i.e., invocation of unify u which yields result res
- hence, unifyMain $u[]=$ res
- moreover, $(u,[]) \sim$ set u by definition of \sim
- via property conclude set $u \rightsquigarrow$! setMaybe res
- at this point apply correctness of \rightsquigarrow :
setMaybe res is the correct answer to the unification problem set u

Soundness via Refinement: Setting up the Relation

Checking Pattern Disjointness

- relation \sim formally aligns parameters of concrete algorithm (u and v) with parameters of abstract algorithm (U); \sim also includes invariants of implementation
- set converts list to set, we identify $s \stackrel{?}{=} t$ with (s, t)
- $(u, v) \sim U$ iff
- $U=$ set $u \cup$ set v,
- set v is in normal form w.r.t. \rightsquigarrow (notation: set $v \in N F(\rightsquigarrow)$), and
- for all $(x, t) \in$ set $v: x$ does not occur in u
- since alignment between concrete and abstract parameters is specified formally, alignment properties of auxiliary functions can also be made formal
- set $(x: x s)=\{x\} \cup$ set $x s$
set $(x s++y s)=$ set $x s \cup$ set $y s$
- set $\left(z i p\left[x_{1}, \ldots, x_{n}\right]\left[y_{1}, \ldots, y_{n}\right]\right)=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- set $\left(\operatorname{map} f\left[x_{1}, \ldots, x_{n}\right]\right)=\left\{f x_{1}, \ldots, f x_{n}\right\}$
- subst $x t s=s\{x / t\}$
- ...
these properties can be proven formally and also be applied formally
(although we don't do it in the upcoming proof)

Proving the Refinement Property

- property $P(u, v, U):(u, v) \sim U \wedge$ unifyMain $u v=$ res $\longrightarrow U \rightsquigarrow$! setMaybe res
- $(u, v) \sim U \longleftrightarrow U=$ set $u \cup$ set $v \wedge$ set $v \in N F(\rightsquigarrow) \wedge \forall(x, t) \in$ set $v . x \notin \operatorname{Vars}(u)$
- we prove the property $P(u, v, U)$ by induction on u and v w.r.t. the algorithm for arbitrary U, i.e., we consider all left-hand sides and can assume that the property holds for all recursive calls;
induction w.r.t. algorithm gives partial correctness result (assumes termination)
- in the lecture, we will cover a simple, a medium, and the hardest case
- case 1 (arguments [] and v):
- we have to prove $P([], v, U)$, so assume
(*) ([],v) $\sim U$ and
${ }^{(* *)}$ unifyMain []$v=$ res
- from $\left(^{*}\right)$ conclude $U=$ set v and set $v \in N F(\rightsquigarrow)$
- from (**) conclude res $=$ Just v and hence, setMaybe res $=$ set v
- we have to show $U \rightsquigarrow$! setMaybe res, i.e., set $v \rightsquigarrow$! set v which is satisfied since set $v \in N F(\rightsquigarrow)$
- $P(u, v, U):(u, v) \sim U \wedge$ unifyMain $u v=$ res $\longrightarrow U \rightsquigarrow$! setMaybe res
- $(u, v) \sim U \longleftrightarrow U=$ set $u \cup$ set $v \wedge$ set $v \in N F(\rightsquigarrow) \wedge \forall(x, t) \in$ set $v . x \notin \operatorname{Vars}(u)$
case 2 (arguments $(f(t s), g(s s)): u$ and v)
- we have to prove $P((f(t s), g(s s)): u, v, U)$, so assume
$\left.{ }^{*}\right)((f(t s), g(s s)): u, v) \sim U$ and
${ }^{* *}$) unifyMain $((f(t s), g(s s)): u) v=$ res
- consider sub-cases
- $\neg(f=g \wedge$ length $t s=$ length ss $)$:
- from (**) conclude setMaybe res $=\perp$
- from $\left(^{*}\right)$ conclude $f(t s) \stackrel{?}{=} g(s s) \in U$ and hence $U \rightsquigarrow \perp$ by (clash)
- consequently, $U \leadsto$! setMaybe res
- $f=g \wedge$ length ts $=$ length ss:
- from $(* *)$ conclude res $=$ unifyMain $((f(t s), g(s s)): u) v=$ unifyMain (zip ts ss $++u) v$
- from $\left(^{*}\right)$ and alignment for zip and ++ conclude $U=\{f(t s) \stackrel{?}{=} g(s s)\} \cup$ set $u \cup$ set v and hence $U \rightsquigarrow$ set (zip ts ss $++u) \cup$ set $v=: V$ by (decompose)
- we get $P(z i p$ ts ss $++u, v, V)$ as IH ; (zip ts ss $++u, v) \sim V$ follows from (*), so $U \rightsquigarrow V \rightsquigarrow!$ setMaybe res
$P(u, v, U):(u, v) \sim U \wedge$ unifyMain $u v=$ res $\longrightarrow U \rightsquigarrow!$ setMaybe res
- $(u, v) \sim U \longleftrightarrow U=$ set $u \cup$ set $v \wedge$ set $v \in N F(\rightsquigarrow) \wedge \forall(x, t) \in$ set $v . x \notin \operatorname{Vars}(u)$
case 4 (arguments $(x, t): u$ and v)
- we have to prove $P((x, t): u, v, U)$, so assume
$\left(^{*}\right)((x, t): u, v) \sim U$ and
$(* *)$ unifyMain $((x, t): u) v=r e s$
- consider sub-cases (where the red part is not triggered by structure of algorithm)
- $x \neq t \wedge x \notin \operatorname{Vars}(t) \wedge x$ occurs in set $u \cup$ set v :
- define $u^{\prime}=\operatorname{map}(\lambda(l, r)$. (subst $x t l$, subst $\left.x t r)\right) u$
- define $v^{\prime}=\operatorname{map}(\lambda(y, s) .(y$, subst $x t s)) v$
- define $V=($ set $u \cup$ set $v)\{x / t\} \cup\{x \stackrel{?}{=} t\}$
- from $(* *)$ conclude res $=$ unifyMain $((x, t): u) v=$ unifyMain $u^{\prime}\left((x, t): v^{\prime}\right)$
- from IH conclude $P\left(u^{\prime},(x, t): v^{\prime}, V\right)$ and hence, $\left(u^{\prime},(x, t): v^{\prime}\right) \sim V \longrightarrow V \rightsquigarrow$! setMaybe res
- for proving $U \rightsquigarrow$! setMaybe res it hence suffices to show $\left(u^{\prime},(x, t): v^{\prime}\right) \sim V$ and $U \rightsquigarrow V$
- $U \stackrel{(*)}{=}\{x \stackrel{?}{=} t\} \cup$ set $u \cup$ set $v \rightsquigarrow($ set $u \cup$ set $v)\{x / t\} \cup\{x / t\}=V$
by (eliminate) because of preconditions
- $(u, v) \sim U \longleftrightarrow U=$ set $u \cup$ set $v \wedge$ set $v \in N F(\rightsquigarrow) \wedge \forall(x, t) \in$ set $v . x \notin \operatorname{Vars}(u)$ case 4 (arguments $(x, t): u$ and v)
- we have to prove $P((x, t): u, v, U)$, so assume $\left(^{*}\right)((x, t): u, v) \sim U$ and
and consider sub-case $x \neq t \wedge x \notin \mathcal{V} \operatorname{ars}(t) \wedge x$ occurs in set $u \cup$ set v :
- define $u^{\prime}=\operatorname{map}(\lambda(l, r)$. (subst $x t l$, subst $\left.x t r)\right) u$
- define $v^{\prime}=\operatorname{map}(\lambda(y, s)$. $(y$, subst $x t s)) v$
- define $V=($ set $u \cup$ set $v)\{x / t\} \cup\{x \stackrel{?}{=} t\}$
we still need to show $\left(u^{\prime},(x, t): v^{\prime}\right) \sim V$
- since $\left(^{*}\right)$ holds, we know $\forall(y, s) \in$ set $v . x \neq y$
- hence, $v^{\prime}=\operatorname{map}(\lambda(y, s)$. (subst $x t y$, subst $\left.x t s)\right) v$
- so, $V=($ set $u)\{x / t\} \cup\{x \stackrel{?}{=} t\} \cup($ set $v)\{x / t\}=$ set $u^{\prime} \cup$ set $\left((x, t): v^{\prime}\right)$
- we show $\forall(y, s) \in \operatorname{set}\left((x, t): v^{\prime}\right)$. $y \notin \operatorname{Vars}\left(u^{\prime}\right)$ as follows:
$x \notin \mathcal{V a r s}\left(u^{\prime}\right)$ since $x \notin \mathcal{V} \operatorname{Vars}(t)$; and if $(y, s) \in \operatorname{set} v^{\prime}$, then $\left(y, s^{\prime}\right) \in$ set v for some s^{\prime} and by
$\left(^{*}\right)$ we conclude $y \notin \mathcal{V} \operatorname{ars}((x, t): u) ;$ thus, $y \notin \mathcal{V} \operatorname{Vars}(($ set $u)\{x / t\})=\mathcal{V a r s}\left(u^{\prime}\right)$
- we finally show set $\left((x, t): v^{\prime}\right) \in N F(\rightsquigarrow)$: so, assume to the contrary that some step is applicable; by the shape of set $\left((x, t): v^{\prime}\right)$ we know that the step can only be (eliminate), (delete) or (occurs check); all of these cases result in a contradiction by using the available facts

Proving the Refinement Property

- remaining cases: similar, cf. exercises
- summary
- non-trivial implementation of abstract unification algorithm \rightsquigarrow
- optimizations required additional invariants, encoded in refinement relation
- proof of correctness can be done formally
- induction + case analysis proof uses mostly the structure of the Haskell code; exception: case analysis on " x occurs in set $u \cup$ set v "
- most cases can easily be solved, after having identified suitable invariant
- fully reuse correctness of \rightsquigarrow
- we only proved partial correctness
- termination of implementation: consider lexicographic measure

$$
(\underbrace{\mid \operatorname{Vars}(\text { set } u) \mid}_{(\text {eliminate })}, \underbrace{|u|}_{(\text {decomp }),(\text { delete })}, \underbrace{\text { length }[x \mid(t, \operatorname{Var} x) \leftarrow u]}_{(\text {swap })})
$$

Checking Pattern Completeness

Checking Pattern Completeness

Reformulation of Pattern Completeness of Programs

- definitions of previous slide (omitting types)

- program is pattern complete iff for all $f \in \mathcal{D}$ and all $t_{i} \in \mathcal{T}(\mathcal{C})$ there is some lhs that matches $f\left(t_{1}, \ldots, t_{n}\right)$
- $P_{\text {init }}=\left\{\left\{\left\{\left(f\left(x_{1}, \ldots, x_{n}\right), \ell\right)\right\} \mid \ell\right.\right.$ is Ihs of f-equation $\left.\} \mid f \in \mathcal{D}\right\}$
- P is complete iff $\forall p p \in P . \forall \sigma: \mathcal{V} \rightarrow \mathcal{T}(\mathcal{C}) . \exists m p \in p p . \exists \gamma \cdot \forall(t, \ell) \in m p . t \sigma=\ell \gamma$
- corollary: program is pattern complete iff $P_{\text {init }}$ is complete

Task: determine completeness of pattern problems

- algorithm modifies matching problems and (sets of) pattern problems
- special problems: \perp represents a non-solvable matching problem and an incomplete set of pattern problems, and T represents a complete pattern problem
- here: only consider linear pattern problems, i.e., problems where variables in Ihss of programs occur at most once

Pattern Problems

- reminder: program is pattern complete, if for all $f: \tau_{1} \times \ldots \times \tau_{n} \rightarrow \tau \in \mathcal{D}$ and all $t_{i} \in \mathcal{T}(\mathcal{C})_{\tau_{i}}$ there is some lhs that matches $f\left(t_{1}, \ldots, t_{n}\right)$
- algorithm considers more generic shape
- matching problems $m p$ consist of pairs of terms (t, ℓ) where
- t is a term, representing the set of all its constructor ground instances, e.g., $t=f\left(x_{1}, \ldots, x_{n}\right)$
- ℓ is (a subterm of) some lhs
- semantics: find one substitution γ such that $t=\ell \gamma$ for all $(t, \ell) \in m p$
- reason: decomposition of terms
- pattern problems $p p$ consist of multiple matching problems
- semantics: disjunction, i.e., find one suitable matching problem
- reason: a term t might be matched by arbitrary lhs
- initially: $p p=\left\{\left\{\left(t, \ell_{1}\right)\right\}, \ldots,\left\{\left(t, \ell_{n}\right)\right\}\right\}$ for Ihss $\ell_{1}, \ldots, \ell_{n}$
- sets of pattern problems P consist of several pattern problems
- semantics: conjunction
- reason: consider different ground instances and different defined function symbols
- initial set of pattern problems: $P_{\text {init }}=\left\{\left\{\left\{\left(f\left(x_{1}, \ldots, x_{n}\right), \ell\right)\right\} \mid \ell\right.\right.$ is lhs of f-eqn. $\left.\} \mid f \in \mathcal{D}\right\}$
- overall semantics: P is complete iff

$$
\forall p p \in P . \forall \sigma: \mathcal{V} \rightarrow \mathcal{T}(\mathcal{C}) . \exists m p \in p p . \exists \gamma . \forall(t, \ell) \in m p . t \sigma=\ell \gamma
$$

Transforming Matching and Pattern Problems

$\left\{\left(f\left(t_{1}, \ldots, t_{n}\right), f\left(\ell_{1}, \ldots, \ell_{n}\right)\right)\right\} \uplus m p \rightharpoonup\left\{\left(t_{1}, \ell_{1}\right), \ldots,\left(t_{n}, \ell_{n}\right)\right\} \cup m p$

$$
\{(t, x)\} \uplus m p \rightharpoonup m p
$$

$\{(f(\ldots), g(\ldots))\} \uplus m p \rightharpoonup \perp \quad$ if $f \neq g$
$\{m p\} \uplus p p \rightharpoonup\left\{m p^{\prime}\right\} \cup p p \quad$ if $m p \rightharpoonup m p^{\prime}$
(remove-mp)
$\{\perp\} \uplus p p \rightharpoonup p p$
$\{\varnothing\} \uplus p p \rightharpoonup \top$
(simp-pp)
(failure)
$\{\varnothing\} \uplus P \longrightarrow \perp$
(remove-pp)
$\{丁\} \uplus P \backsim P$
$($ remove-pp)
$f(\ldots)) \in m p$
(instantiate)
where $\operatorname{Inst}(p p, x)$ contains a pattern problem $p p \sigma_{x, c}$ for each constructor c where

- $x: \tau$ and $c: \tau_{1} \times \cdots \times \tau_{n} \rightarrow \tau$ and $x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}$ are fresh, and
- $p p \sigma_{x, c}$ is obtained from $p p$ by replacing each pair (t, ℓ) by $\left(t\left\{x / c\left(x_{1}, \ldots, x_{n}\right)\right\}, \ell\right)$ RT (DCS @ UIBK)
consider
data Bool = True: Bool | False: Bool

$$
\begin{aligned}
\ell_{1}:=\operatorname{conj}(\text { True, True }) & =\ldots \\
\ell_{2}:=\operatorname{conj}(\text { False }, y) & =\ldots \\
\ell_{3}:=\operatorname{conj}(x, \text { False }) & =\ldots
\end{aligned}
$$

then we have

$$
\begin{aligned}
& P_{\text {init }}=\left\{\left\{\left\{\left(\operatorname{conj}\left(x_{1}, x_{2}\right), \ell_{1}\right)\right\},\left\{\left(\operatorname{conj}\left(x_{1}, x_{2}\right), \ell_{2}\right)\right\},\left\{\left(\operatorname{conj}\left(x_{1}, x_{2}\right), \ell_{3}\right)\right\}\right\}\right\} \\
& \left.\cdots *\left\{\left\{\left(x_{1}, \text { True }\right),\left(x_{2}, \text { True }\right)\right\},\left\{\left(x_{1} \text {, False }\right),\left(x_{2}, y\right)\right\},\left\{\left(x_{1}, x\right),\left(x_{2} \text {, False }\right)\right\}\right\}\right\} \\
& \omega^{*}\left\{\left\{\left\{\left(x_{1}, \text { True }\right),\left(x_{2}, \text { True }\right)\right\},\left\{\left(x_{1} \text {, False }\right)\right\},\left\{\left(x_{2} \text {, False }\right)\right\}\right\}\right\} \\
& \cdots\left\{\left\{\left\{(\text { True, True }),\left(x_{2}, \text { True }\right)\right\},\{(\text { True, False })\},\left\{\left(x_{2}, \text { False }\right)\right\}\right\},\right. \\
& \left.\left\{\left\{(\text { False, True }),\left(x_{2}, \text { True }\right)\right\},\{(\text { False, False })\},\left\{\left(x_{2}, \text { False }\right)\right\}\right\}\right\} \\
& \cdots *\left\{\left\{\left\{\left(x_{2}, \text { True }\right)\right\}, \perp,\left\{\left(x_{2}, \text { False }\right)\right\}\right\},\left\{\perp, \varnothing,\left\{\left(x_{2}, \text { False }\right)\right\}\right\}\right\} \\
& \omega^{*}\left\{\left\{\left\{\left(x_{2}, \text { True }\right)\right\},\left\{\left(x_{2}, \text { False }\right)\right\}\right\}\right\} \\
& \cdots\{\{\{(\text { True }, \text { True })\},\{(\text { True, False })\}\},\{\{(\text { False, True })\},\{(\text { False, False })\}\}\} w_{\text {Part 4 - Checking well-Definedness of Functional Programs }} \varnothing
\end{aligned}
$$

Example

consider
data Bool $=$ True : Bool \mid False : Bool

$$
\begin{aligned}
\ell_{1}:=\operatorname{conj}(\text { True }, \text { True }) & =\ldots \\
\ell_{2}:=\operatorname{conj}(\text { False, } y) & =\ldots
\end{aligned}
$$

then we have

$$
\begin{aligned}
P_{\text {init }}= & \left\{\left\{\left\{\left(\operatorname{conj}\left(x_{1}, x_{2}\right), \ell_{1}\right)\right\},\left\{\left(\operatorname{conj}\left(x_{1}, x_{2}\right), \ell_{2}\right)\right\}\right\}\right\} \\
\cdots * & \left\{\left\{\left\{\left(x_{1}, \text { True }\right),\left(x_{2}, \text { True }\right)\right\},\left\{\left(x_{1}, \text { False }\right)\right\}\right\}\right\} \\
w & \left\{\left\{\left\{(\text { True }, \text { True }),\left(x_{2}, \text { True }\right)\right\},\{(\text { True }, \text { False })\}\right\},\right. \\
& \left.\left\{\left\{(\text { False }, \text { True }),\left(x_{2}, \text { True }\right)\right\},\{(\text { False }, \text { False })\}\right\}\right\} \\
\cdots * & \left\{\left\{\left\{\left(x_{2}, \text { True }\right)\right\}, \perp\right\},\{\perp, \varnothing\}\right\} \\
\cdots * & \left\{\left\{\left\{\left(x_{2}, \text { True }\right)\right\}\right\}\right\} \\
\cdots & \{\{\{(\text { True }, \text { True })\}\},\{\{(\text { False }, \text { True })\}\}\} \omega^{*}\{丁, \varnothing\} \omega \perp
\end{aligned}
$$

Partial Correctness of - -

- theorem: whenever $P \rightsquigarrow Q$, then P is complete iff Q is complete
- corollary: if $P \longrightarrow * \varnothing$ then P is complete
and if $P w^{*} \perp$ then P is not complete
- definition: P is complete iff
$\forall p p \in P . \forall \sigma: \mathcal{V} \rightarrow \mathcal{T}(\mathcal{C}) . \underbrace{\exists m p \in p p . \exists \gamma . \forall(t, \ell) \in m p . t \sigma=\ell \gamma}$
- proof of theorem by case analysis on the various rules
- (clash): first inline rule to $\{\{\{(f(\ldots), g(\ldots))\} \uplus m p\} \uplus p p\} \uplus P \backsim\{p p\} \cup P$, if $f \neq g$
- by definition of completeness and structure of rule it suffices to show that completeness is preserved by rule

$$
\underbrace{\{\{(f(\ldots), g(\ldots))\} \uplus m p\}}_{=: m p^{\prime}} \uplus p p \rightharpoonup p p
$$

- hence, it suffices to show that ψ is not satisfied when choosing $m p^{\prime}$ in the existential quantifier $\exists m p \in p p \ldots$
- but this property is easy to see, since $t \sigma=\ell \gamma$ is never satisfied if (t, ℓ) is $(f(\ldots), g(\ldots))$
- many other rules are similar, exceptions are (match) and (instantiate)

Partial Correctness of - , continued

- definition: P is complete iff
$\forall p p \in P . \forall \sigma: \mathcal{V} \rightarrow \mathcal{T}(\mathcal{C}) . \exists m p \in p p . \exists \gamma . \forall(t, \ell) \in m p . t \sigma=\ell \gamma$
- proof continued
- (instantiate): $\{p p\} \uplus P \rightharpoonup \operatorname{Inst}(p p, x) \cup P$, where $x: \tau, \tau$ has constructors c_{1}, \ldots, c_{n}, and $\sigma_{i}=\left\{x / c_{i}\left(x_{1}, \ldots, x_{k}\right)\right\}$ for fresh x_{i}, and $\operatorname{Inst}(p p, x)=\left\{p p \sigma_{i} \mid 1 \leq i \leq n\right\}$
- we only consider one direction of the proof: we assume that $\operatorname{Inst}(p p, x)$ is complete and prove that $p p$ is complete
- to this end, consider an arbitrary constructor ground substitution σ
- since σ is constructor ground, we know $\sigma(x)=c_{i}\left(t_{1}, \ldots, t_{k}\right)$ for some constructor c_{i} and constructor ground terms t_{1}, \ldots, t_{k}
- define $\sigma^{\prime}(y)= \begin{cases}t_{j}, & \text { if } y=x_{j} \\ \sigma(y), & \text { otherwise }\end{cases}$
- σ^{\prime} is well-defined since the x_{j} 's are distinct, and σ^{\prime} is a constructor ground substitution
- note that $t \sigma=t \sigma_{i} \sigma^{\prime}$ for all terms t that occur in $p p$ since the x_{j} 's are fresh
- by completeness of $\operatorname{Inst}(p p, x)$ there must be some $m p \in p p \sigma_{i}$ and γ such that $\forall(t, \ell) \in m p . t \sigma^{\prime}=\ell \gamma$
- hence, there is some $m p \in p p$ and γ such that $\forall(t, \ell) \in m p$. $t \sigma_{i} \sigma^{\prime}=\ell \gamma$
- together with $t \sigma=t \sigma_{i} \sigma^{\prime}$ we conclude that $p p$ is complete

Correctness of $-\infty$, Missing Parts

- already proven
- if P ๗* \varnothing then P is complete
- if $P \omega * \perp$ then P is not complete
- open: termination of $-\infty$
- open: can w get stuck?

Termination of -
$\{p p\} \uplus P \rightharpoonup\left\{p p^{\prime}\right\} \cup P \quad$ if $p p \rightharpoonup p p^{\prime}$
$\{\varnothing\} \uplus P \rightarrow \perp$
$\{\top\} \uplus P \rightarrow P$
$\{p p\} \uplus P\lrcorner \operatorname{Inst}(p p, x) \cup P \quad$ if $m p \in p p$ and $(x, f(\ldots)) \in m p$
(simp-pp)
(failure)
(remove-pp)
(instantiate)

- define $|\ell-t|$ as a measure of difference of ℓ and t
- $|\ell-x|=$ number of function symbols in ℓ
- $\left|f\left(\ell_{1}, \ldots, \ell_{n}\right)-f\left(t_{1}, \ldots, t_{n}\right)\right|=\sum_{i}\left|\ell_{i}-t_{i}\right|$
- $|\ell-t|=0$, in all other cases
- map each pattern problem $p p$ to number $|p p|=\sum_{m p \in p p,(t, \ell) \in m p}|\ell-t|$
- map each set of pattern problem P to multiset $\{|p p| \mid p p \in P\}$
- this multiset decreases in (instantiate) and is not increased in the other - -rules (multiset decrease: $M \cup N>^{m u l} M \cup N^{\prime}$ if $N \neq \varnothing$ and $\forall y \in N^{\prime} . \exists x \in N . x>y$)
- hence (instantiate) cannot be applied infinitely often
- since the remaining rules also terminate, \rightarrow must terminate

$$
\left\{\left(f\left(t_{1}, \ldots, t_{n}\right), f\left(\ell_{1}, \ldots, \ell_{n}\right)\right)\right\} \uplus m p \rightharpoonup\left\{\left(t_{1}, \ell_{1}\right), \ldots,\left(t_{n}, \ell_{n}\right)\right\} \cup m p
$$

(decompose)

$$
\{(t, x)\} \uplus m p \rightharpoonup m p
$$

$\{(f(\ldots), g(\ldots))\} \uplus m p \rightharpoonup \perp \quad$ if $f \neq g$
(clash)
$\{m p\} \uplus p p \rightharpoonup\left\{m p^{\prime}\right\} \cup p p \quad$ if $m p \rightharpoonup m p^{\prime} \quad$ (simp-mp)
$\{\perp\} \uplus p p \rightharpoonup p p$
(remove-mp)
$\{\varnothing\} \uplus p p \rightharpoonup \top$
$\{p p\} \uplus P \rightharpoonup\left\{p p^{\prime}\right\} \cup P \quad$ if $p p \rightharpoonup p p^{\prime}$
$\{\varnothing\} \uplus P \rightarrow \perp$
(failure)
$\{丁\} \uplus P \rightarrow P$
(remove-pp)
$\{p p\} \uplus P \leadsto \operatorname{Inst}(p p, x) \cup P \quad$ if $m p \in p p$ and $(x, f(\ldots)) \in m p$
(instantiate)

- lemma: whenever P is well-typed and in normal form w.r.t. - , then $P \in\{\varnothing, \perp\}$
- proof: by a large case-analysis

Summary on Pattern Completeness

- pattern completeness of functional programs is decidable:

$$
\text { program is pattern complete iff } P_{\text {init }}-\infty!\varnothing
$$

- two possible extensions
- generation of counter-examples
- handling of non-linear pattern problems
- partial correctness was proven via invariant of -
- termination of \rightarrow was shown via multisets and a dedicated measure
- termination proof was tricky, definitely required human interaction
- in contrast: upcoming part is on automated termination proving

Termination of Programs

- the question of termination is a famous problem
- Turing showed that "halting problem" is undecidable
- halting problem
- question: does program (Turing machine) terminate on given input
- problem is semi-decidable: positive instances can always be identified
- algorithm: just simulate the program and then say "yes, terminates"
- we here consider universal termination, i.e., termination on all inputs
- universal termination is not even semi-decidable
- despite theoretical limits: often termination can be proven automatically

Subterm Relation and Innermost Evaluation

- define \triangleright as the strict subterm relation and \unrhd as its reflexive closure

$$
\overline{F\left(t_{1}, \ldots, t_{n}\right) \triangleright t_{i}} \quad \frac{t_{i} \triangleright s}{F\left(t_{1}, \ldots, t_{n}\right) \triangleright s}
$$

- innermost evaluation \hookrightarrow is defined similar to one-step evaluation \hookrightarrow

$$
\begin{aligned}
& \frac{s_{i} \hookrightarrow t_{i}}{F\left(s_{1}, \ldots, s_{i}, \ldots, s_{n}\right) \stackrel{\text { i }}{\hookrightarrow} F\left(s_{1}, \ldots, t_{i}, \ldots, s_{n}\right)} \text { rewrite in context } \\
& \frac{\ell=r \text { is equation in program } \forall s \triangleleft \ell \sigma . s \in N F(\hookrightarrow)}{\ell \sigma \stackrel{\hookrightarrow}{\hookrightarrow} r \sigma} \text { root step }
\end{aligned}
$$

- example
f (True, False, coin) $\nLeftarrow \mathrm{f}$ (coin, coin, coin)
since coin $\triangleleft \mathrm{f}$ (True, False, coin) and coin $\notin N F(\hookrightarrow)$

Termination Analysis with Dependency Pairs

- aim: prove $S N(\stackrel{i}{\hookrightarrow})$
- only reason for potential non-termination: recursive calls
- for each recursive call of equation $f\left(t_{1}, \ldots, t_{n}\right)=\ell=r \unrhd f\left(s_{1}, \ldots, s_{n}\right)$ build one dependency pair with fresh (constructor) symbol f^{\sharp} :

$$
f^{\sharp}\left(t_{1}, \ldots, t_{n}\right) \rightarrow f^{\sharp}\left(s_{1}, \ldots, s_{n}\right)
$$

define $D P$ as the set of all dependency pairs

- example program for Ackermann function has three dependency pairs

$$
\begin{aligned}
\operatorname{ack}(\text { Zero }, y) & =\operatorname{Succ}(y) \\
\operatorname{ack}(\operatorname{Succ}(x), \text { Zero }) & =\operatorname{ack}(x, \operatorname{Succ}(\text { Zero })) \\
\operatorname{ack}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & =\operatorname{ack}(x, \operatorname{ack}(\operatorname{Succ}(x), y)) \\
\operatorname{ack}^{\sharp}(\operatorname{Succ}(x), \text { Zero }) & \rightarrow \operatorname{ack}^{\sharp}(x, \operatorname{Succ}(\text { Zero })) \\
\operatorname{ack}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \rightarrow \operatorname{ack}^{\sharp}(x, \operatorname{ack}(\operatorname{Succ}(x), y)) \\
\operatorname{ack}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \rightarrow \operatorname{ack}^{\sharp}(\operatorname{Succ}(x), y)
\end{aligned}
$$

Strong Normalization

- relation \succ is strongly normalizing, written $S N(\succ)$, if there is no infinite sequence

$$
a_{1} \succ a_{2} \succ a_{3} \succ \ldots
$$

- strong normalization is other notion for termination
- strong normalization of a relation is equivalent to soundness of induction principle w.r.t. that relation;
the following two conditions are equivalent
- $S N(\succ)$
- $\forall P .(\forall x .(\forall y . x \succ y \longrightarrow P y) \longrightarrow P x) \longrightarrow(\forall x . P x)$
- equivalence shows why it is possible to perform induction w.r.t. algorithm for terminating programs

Termination Analysis with Dependency Pairs, continued

- dependency pairs provide characterization of termination
- definition: let $P \subseteq D P$; a P-chain is a possible infinite sequence

$$
s_{1} \sigma_{1} \rightarrow t_{1} \sigma_{1} \stackrel{i}{\hookrightarrow}^{*} s_{2} \sigma_{2} \rightarrow t_{2} \sigma_{2} \stackrel{i}{\hookrightarrow}^{*} s_{3} \sigma_{3} \rightarrow t_{3} \sigma_{3} \stackrel{i}{\hookrightarrow}^{*} \ldots
$$

such that all $s_{i} \rightarrow t_{i} \in P$ and all $s_{i} \sigma_{i} \in N F(\hookrightarrow)$

- $s_{i} \sigma_{i} \rightarrow t_{i} \sigma_{i}$ represent the "main" recursive calls that may lead to non-termination
- $t_{i} \sigma_{i} \stackrel{\hookrightarrow}{\hookrightarrow}^{*} s_{i+1} \sigma_{i+1}$ corresponds to evaluation of arguments of recursive calls
- theorem: $S N(\stackrel{i}{\hookrightarrow})$ iff there is no infinite $D P$-chain
- advantage of dependency pairs
- in infinite chain, non-terminating recursive calls are always applied at the root
- simplifies termination analysis

$$
\begin{aligned}
\operatorname{minus}(x, \operatorname{Zero}) & =x \\
\operatorname{minus}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & =\operatorname{minus}(x, y) \\
\operatorname{div}(\operatorname{Zero}, \operatorname{Succ}(y)) & =\operatorname{Zero} \\
\operatorname{div}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & =\operatorname{Succ}(\operatorname{div}(\operatorname{minus}(x, y), \operatorname{Succ}(y))) \\
\operatorname{minus}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \rightarrow \operatorname{minus}^{\sharp}(x, y) \\
\operatorname{div}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \rightarrow \operatorname{div}^{\sharp}(\operatorname{minus}(x, y), \operatorname{Succ}(y))
\end{aligned}
$$

- example innermost evaluation

$$
\begin{aligned}
& \operatorname{div}(\text { Succ (Zero), Succ(Zero)) } \\
& \stackrel{i}{\hookrightarrow} \text { Succ(div(minus(Zero, Zero), Succ(Zero))) } \\
& \stackrel{i}{\hookrightarrow} \operatorname{Succ}(\operatorname{div}(\text { Zero, Succ(Zero))) } \\
& \stackrel{i}{\hookrightarrow} \text { Succ (Zero) }
\end{aligned}
$$

and its (partial) representation as $D P$-chain

$$
\begin{aligned}
& \left.\operatorname{div}^{\sharp}(\text { Succ (Zero }), \operatorname{Succ}(\text { Zero })\right) \\
& \left.\rightarrow \operatorname{div}^{\sharp}(\text { minus (Zero, Zero }), \operatorname{Succ}(\text { Zero })\right) \\
& \hookrightarrow^{*} \operatorname{div}^{\sharp}(\text { Zero, } \operatorname{Succ}(\text { Zero }))
\end{aligned}
$$

Proving Termination

- global approaches
- try to find one termination argument that no infinite chain exists
- iterative approaches
- identify dependency pairs that are harmless, i.e., cannot be used infinitely often in a chain
- remove harmless dependency pairs from set of dependency pairs
- until no dependency pairs are left
- we focus on iterative approaches, in particular those that are incrementa
- incremental: a termination proof of some function stays valid
if later on other functions are added to the program
- incremental termination proving is not possible in general case (for non-confluent programs), consider coin-example on slide 56

A First Termination Technique - The Subterm Criterion

- the subterm criterion works as follows
- let $P \subseteq D P$
- choose $f^{\#}$, a symbol of arity n
- choose some argument position $i \in\{1, \ldots, n\}$
- demand $s_{i} \unrhd t_{i}$ for all $f^{\sharp}\left(s_{1}, \ldots, s_{n}\right) \rightarrow f^{\sharp}\left(t_{1}, \ldots, t_{n}\right) \in P$
- define $P_{\triangleright}=\left\{f^{\sharp}\left(s_{1}, \ldots, s_{n}\right) \rightarrow f^{\sharp}\left(t_{1}, \ldots, t_{n}\right) \in P \mid s_{i} \triangleright t_{i}\right\}$
- then for proving absence of infinite P-chains it suffices to prove absence of infinite $P \backslash P_{\triangleright}$-chains, i.e., one can remove all pairs in P_{\triangleright}
- observations
- easy to test: just find argument position i such that each i-th argument of all
f^{\sharp}-dependency pairs decreases w.r.t. \unrhd and then remove all strictly decreasing pairs
- incremental method: adding other dependency pairs for g^{\sharp} later on will have no impact
- can be applied iteratively
- fast, but limited power

Subterm Criterion - Example

- consider a program with the following set of dependency pairs

$$
\begin{align*}
\operatorname{ack}^{\sharp}(\operatorname{Succ}(x), \operatorname{Zero}) & \rightarrow \operatorname{ack}^{\sharp}(x, \operatorname{Succ}(\operatorname{Zero})) \\
\operatorname{ack}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \rightarrow \operatorname{ack}^{\sharp}(x, \operatorname{ack}(\operatorname{Succ}(x), y)) \tag{2}\\
\operatorname{ack}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \rightarrow \operatorname{ack}^{\sharp}(\operatorname{Succ}(x), y) \tag{3}\\
\operatorname{minus}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \rightarrow \operatorname{minus}^{\sharp}(x, y) \tag{4}\\
\operatorname{div}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \rightarrow \operatorname{div}^{\sharp}(\operatorname{minus}(x, y), \operatorname{Succ}(y)) \tag{5}\\
\operatorname{plus}^{\sharp}(\operatorname{Succ}(x), y) & \rightarrow \operatorname{plus}^{\sharp}(y, x) \tag{6}
\end{align*}
$$

- it is easy to remove (4) by choosing any argument of minus ${ }^{\sharp}$
- we can remove (1) and (2) by choosing argument 1 of ack ${ }^{\sharp}$
- afterwards we can remove (3) by choosing argument 2 of ack ${ }^{\#}$
- it is not possible to remove any of the remaining dependency pairs (5) and (6) by the subterm criterion

The Size-Change Principle

- the size-change principle abstracts decreases of arguments into size-change graphs
- size-change graph
- let f^{\sharp} be a symbol of arity n
- a size-change graph for f^{\sharp} is a bipartite graph $G=(V, W, E)$
- the nodes are $V=\left\{1_{\text {in }}, \ldots, n_{\text {in }}\right\}$ and $W=\left\{1_{\text {out }}, \ldots, n_{\text {out }}\right\}$
- E is a set of directed edges between in- and out-nodes labelled with \succ or \succsim
- the size-change graph G of a dependency pair $f^{\sharp}\left(s_{1}, \ldots, s_{n}\right) \rightarrow f^{\sharp}\left(t_{1}, \ldots, t_{n}\right)$ defines E as follows

$$
\begin{array}{ll}
\text { - } i_{\text {in }} \leftrightarrows j_{\text {out }} \in E \text { whenever } s_{i} \triangleright t_{j} & \text { (strict decrease) } \\
\text { - } i_{\text {in }} \rightrightarrows j_{\text {out }} \in E \text { whenever } s_{i}=t_{j} & \text { (weak decrease) }
\end{array}
$$

- in representation, in-nodes are on the left, out-nodes are on the right, and subscripts are omitted

Example - Size-Change Graphs

- consider the following dependency pairs; they include permutations that cannot be solved by the subterm criterion

$$
\begin{align*}
\mathfrak{f}^{\sharp}(\operatorname{Succ}(x), y) & \rightarrow \mathfrak{f}^{\sharp}(x, \operatorname{Succ}(x)) \tag{7}\\
\mathfrak{f}^{\sharp}(x, \operatorname{Succ}(y)) & \rightarrow \mathfrak{f}^{\sharp}(y, x) \tag{8}
\end{align*}
$$

- obtain size-change graphs that contain more information than just the size-decrease in one argument, as we had in subterm criterion

Example - Multigraphs

- consider size-change graphs
$G_{(7)}: \quad \underset{2}{\stackrel{\succ}{\leftrightarrows} 1}$

- this leads to three maximal multigraphs

$G_{(7)} \cdot G_{(8)}: 1 \xrightarrow{\succ} 1$	$G_{(8)} \cdot G_{(7)}: 1_{\succ}{ }^{1}$	$G_{(8)} \cdot G_{(8)}: 1 \xrightarrow{\succ}$
${ }_{2} \stackrel{V}{2}_{2}$	$2 \xrightarrow{\longrightarrow} 2$	$2 \xrightarrow{\succ} 2$

- and a non-maximal multigraph

Deciding Size-Change Termination

- definition: a set \mathcal{G} of size-change graph is size-change terminating iff for every infinite concatenation of graphs of \mathcal{G} there is a path with infinitely many $\xrightarrow{\succ}$-edges
- checking size-change termination directly is not possible
- still, size-change termination is decidable
- theorem: let \mathcal{G} be a set of size-change graphs; the following two properties are equivalent

1. \mathcal{G} is size-change terminating
2. every maximal multigraph of \mathcal{G} contains an edge $i \hookrightarrow i$

- although the above theorem only gives rise to an EXPSPACE-algorithm, size-change termination is in PSPACE;
in fact, size-change termination is PSPACE-complete
- despite the high theoretical complexity class, for sets of size-change graphs arising from usual algorithms, the number of multigraphs is rather low

Proof of Theorem: Easy Direction (1. implies 2.)

- assume that \mathcal{G} is size-change terminating, and consider any maximal graph G
- since G is a multigraph, it can be written as $G=G_{1} \cdot \ldots \cdot G_{n}$ with each $G_{i} \in \mathcal{G}$
- consider infinite graph $G_{1} \circ \ldots \circ G_{n} \circ G_{1} \circ \ldots \circ G_{n} \circ \ldots$
- because of size-change termination, this graph contains path with infinitely many \rightarrow-edges
- hence $G \circ G \circ \ldots$ also has a path with infinitely many $\xrightarrow{\succ}$-edges
- on this path some index i must be visited infinitely often
- hence there is a path of length k such that $G \circ G \circ \ldots \circ G$ (k-times) contains a path from the leftmost argument i to the rightmost argument i with at least one ζ-edge
- consequently $G \cdot G \cdot \ldots \cdot G(k$-times $)$ contains an edge $i \overleftrightarrow{\longrightarrow} i$
- by maximality, $G=G \cdot G \cdot \ldots \cdot G$, and thus G contains an edge $i \xrightarrow{\succ} i$
- consider some arbitrary infinite graph $G_{0} \circ G_{1} \circ G_{2} \circ \ldots$
- for $n<m$ define $G_{n, m}=G_{n} \cdot \ldots \cdot G_{m-1}$
- by Ramsey's theorem there is an infinite set $I \subseteq \mathbb{N}$ such that $G_{n, m}$ is always the same graph G for all $n, m \in I$ with $n<m$ $\left(n=2, C=\right.$ multigraphs, $\left.X=\mathbb{N}, c(\{n, m\})=G_{\min \{n, m\}, \max \{n, m\}}\right)$
- G is maximal: for $n_{1}<n_{2}<n_{3}$ with $\left\{n_{1}, n_{2}, n_{3}\right\} \subseteq I$, we have $G_{n_{1}, n_{3}}=G_{n_{1}} \cdot \ldots \cdot G_{n_{2}-1} \cdot G_{n_{2}} \cdot \ldots \cdot G_{n_{3}-1}=G_{n_{1}, n_{2}} \cdot G_{n_{2}, n_{3}}$, and thus $G=G \cdot G$
- by assumption, G contains edge $i \xrightarrow{\succ} i$
- let $I=\left\{n_{1}, n_{2}, \ldots\right\}$ with $n_{1}<n_{2}<\ldots$ and obtain

$$
\begin{aligned}
& G_{0} \circ G_{1} \circ \ldots \\
= & G_{0} \circ \ldots \circ G_{n_{1}-1} \circ G_{n_{1}} \circ \ldots \circ G_{n_{2}-1} \circ G_{n_{2}} \circ \ldots \circ G_{n_{3}-1} \circ \ldots \\
\sim & G_{0} \circ \ldots \circ G_{n_{1}-1} \circ G \quad \circ G
\end{aligned}
$$

so that edge $i \breve{\zeta} i$ of G delivers path with infinitely many $\breve{\zeta}$-edges

Proof of Ramsey's Theorem

- Ramsey's Theorem - Infinite Version
- let $n \in \mathbb{N}$
- let C be a finite set of colors
- let X be an infinite set
- let c be a coloring of the size n sets of X, i.e., $c: X^{(n)} \rightarrow C$
- theorem: there exists an infinite subset $Y \subseteq X$ such that all size n sets of Y have the same color
- proof of Ramsey's theorem is interesting
- it is simple, in that it only uses standard induction on n with arbitrary c and X
- it is complex, in that it uses a non-trivial construction in the step-case, in particular applying the IH infinitely often
- base case $n=0$ is trivial, since there is only one size- 0 set: the empty set

Proof of Ramsey's Theorem - Step Case $n=m+1$
Termination - Size-Change Principle

- define $X_{0}=X$
- pick an arbitrary element a_{0} of X_{0}
- define $Y_{0}=X_{0} \backslash\left\{a_{0}\right\}$; define coloring $c^{\prime}: Y_{0}^{(m)} \rightarrow C$ as $c^{\prime}(Z)=c\left(Z \cup\left\{a_{0}\right\}\right)$
- IH yields infinite subset $X_{1} \subseteq Y_{0}$ such that all size m sets of X_{1} have the same color c_{0} w.r.t. c^{\prime}
- hence, $c\left(\left\{a_{0}\right\} \cup Z\right)=c_{0}$ for all $Z \in X_{1}^{(m)}$
- next pick an arbitrary element a_{1} of X_{1} to obtain infinite set $X_{2} \subseteq X_{1} \backslash\left\{a_{1}\right\}$ such that $c\left(\left\{a_{1}\right\} \cup Z\right)=c_{1}$ for all $Z \in X_{2}^{(m)}$
- by iterating this obtain elements $a_{0}, a_{1}, a_{2}, \ldots$, colors $c_{0}, c_{1}, c_{2} \ldots$ and sets $X_{0}, X_{1}, X_{2}, \ldots$ satisfying the above properties
- since C is finite there must be some color d in the infinite list c_{0}, c_{1}, \ldots that occurs infinitely often; define $Y=\left\{a_{i} \mid c_{i}=d\right\}$
- Y has desired properties since all size n sets of Y have color $d:$ if $Z \in Y^{(n)}$ then Z can be written as $\left\{a_{i_{1}}, \ldots, a_{i_{n}}\right\}$ with $i_{1}<\ldots<i_{n}$; hence, $Z=\left\{a_{i_{1}}\right\} \cup Z^{\prime}$ with $Z^{\prime} \in X_{i_{1}+1}^{(m)}$,
$\underset{\text { RT (DCS @ UIBK) }}{\text { i.e., } c(Z)=c_{i_{1}}=d}$

Termination - Reduction Pairs

Termination - Reduction Pairs

Applying Reduction Pairs

- recall definition: P-chain is sequence

$$
s_{1} \sigma_{1} \rightarrow t_{1} \sigma_{1} \stackrel{i}{\hookrightarrow}^{*} s_{2} \sigma_{2} \rightarrow t_{2} \sigma_{2} \stackrel{i}{4}^{*} s_{3} \sigma_{3} \rightarrow t_{3} \sigma_{3} \stackrel{i}{\hookrightarrow}^{*} \ldots
$$

such that all $s_{i} \rightarrow t_{i} \in P$ and all $s_{i} \sigma \in N F(\hookrightarrow)$

- demand $s \succsim t$ for all $s \rightarrow t \in P$ to ensure $s_{i} \sigma_{i} \succsim t_{i} \sigma_{i}$
- demand $\ell \succsim r$ for all equations to ensure $t_{i} \sigma_{i} \succsim s_{i+1} \sigma_{i+1}$
- define $P_{\succ}=\{s \rightarrow t \in P \mid s \succ t\}$
- effect: pairs in P_{\succ} cannot be applied infinitely often and can therefore be removed
- theorem: if there is an infinite P-chain, then there also is an infinite $P \backslash P_{\succ}$-chain

Example

- remaining termination problem

$$
\begin{aligned}
\operatorname{minus}(x, \operatorname{Zero}) & =x \\
\operatorname{minus}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & =\operatorname{minus}(x, y) \\
\operatorname{div}(\operatorname{Zero}, \operatorname{Succ}(y)) & =\operatorname{Zero} \\
\operatorname{div}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & =\operatorname{Succ}(\operatorname{div}(\operatorname{minus}(x, y), \operatorname{Succ}(y))) \\
\operatorname{div}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \rightarrow \operatorname{div}^{\sharp}(\operatorname{minus}(x, y), \operatorname{Succ}(y))
\end{aligned}
$$

- constraints

$$
\begin{aligned}
\operatorname{minus}(x, \text { Zero }) & \succsim x \\
\operatorname{minus}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \succsim \operatorname{minus}(x, y) \\
\operatorname{div}(\operatorname{Zero}, \operatorname{Succ}(y)) & \succsim \operatorname{Zero} \\
\operatorname{div}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \succsim \operatorname{Succ}(\operatorname{div}(\operatorname{minus}(x, y), \operatorname{Succ}(y))) \\
\operatorname{div}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \succ \operatorname{div}^{\sharp}(\operatorname{minus}(x, y), \operatorname{Succ}(y))
\end{aligned}
$$

$$
\text { Part } 4 \text { - Checking Well-Definedness of Functional Programs }
$$

Usable Equations

$$
\operatorname{div}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) \rightarrow \operatorname{div}^{\sharp}(\operatorname{minus}(x, y), \operatorname{Succ}(y))
$$

- requiring $\ell \succsim r$ for all program equations $\ell=r$ is quite demanding
- not incremental, i.e., adding other functions later will invalidate proof
- not necessary, i.e., argument evaluation in example only requires minus
- definition: the usable equations \mathcal{U} w.r.t. a set P are program equations of those symbols that occur in P or that are invoked by (other) usable equations; formally, let \mathcal{E} be set of equations of program, let $\operatorname{root}(f(\ldots))=f$; then \mathcal{U} is defined as

$$
\begin{array}{rr}
\frac{s \rightarrow t \in P}{} \quad t \unrhd u \quad \ell=r \in \mathcal{E} \quad \text { root } u=\operatorname{root} \ell \\
\ell=r \in \mathcal{U} \\
\frac{\ell^{\prime}=r^{\prime} \in \mathcal{U} \quad r^{\prime} \unrhd u \quad \ell=r \in \mathcal{E} \quad \text { root } u=\operatorname{root} \ell}{\ell=r \in \mathcal{U}}
\end{array}
$$

- observation whenever $t_{i} \sigma_{i} \stackrel{\text { i }}{ }^{*} s_{i+1} \sigma_{i+1}$ in chain, then only usable equations of $\left\{s_{i} \rightarrow t_{i}\right\}$ RT (DCS © Can be used \qquad

Example with Usable Equations

- remaining termination problem

$$
\begin{aligned}
\operatorname{minus}(x, \operatorname{Zero}) & =x \\
\operatorname{minus}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & =\operatorname{minus}(x, y) \\
\operatorname{div}(\operatorname{Zero}, \operatorname{Succ}(y)) & =\operatorname{Zero} \\
\operatorname{div}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & =\operatorname{Succ}(\operatorname{div}(\operatorname{minus}(x, y), \operatorname{Succ}(y))) \\
\operatorname{div}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \rightarrow \operatorname{div}^{\sharp}(\operatorname{minus}(x, y), \operatorname{Succ}(y))
\end{aligned}
$$

- constraints

$$
\begin{aligned}
\operatorname{minus}(x, \operatorname{Zero}) & \succsim x \\
\operatorname{minus}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \succsim \operatorname{minus}(x, y) \\
\operatorname{div}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \succ \operatorname{div}^{\sharp}(\operatorname{minus}(x, y), \operatorname{Succ}(y))
\end{aligned}
$$

- because of usable equations, applying reduction pairs becomes incremental: new function definitions won't increase usable equations of DPs of previously defined equations RT (DCS @ UIBK)

Remaining Problem

- given constraints

$$
\begin{aligned}
\operatorname{minus}(x, \operatorname{Zero}) & \succsim x \\
\operatorname{minus}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \succsim \operatorname{minus}(x, y) \\
\operatorname{div}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \succ \operatorname{div}^{\sharp}(\operatorname{minus}(x, y), \operatorname{Succ}(y))
\end{aligned}
$$

find a suitable reduction pair such that these constraints are satisfied

- many such reduction pairs are available (cf. term rewriting lecture)
- Knuth-Bendix order (constraint solving is in P)
- recursive path order (NP-complete)
- polynomial interpretations (undecidable)
- powerful
intuitive
- automatable
- matrix interpretations (undecidable)
- weighted path order (undecidable)

Polynomial Interpretation

Termination - Reduction Pairs

- interpret each n-ary symbol F as polynomial $p_{F}\left(x_{1}, \ldots, x_{n}\right)$
- variables in polynomials range over \mathbb{N} and polynomials have to be weakly monotone

$$
x_{i} \geq y_{i} \longrightarrow p_{F}\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right) \geq p_{F}\left(x_{1}, \ldots, y_{i}, \ldots, x_{n}\right)
$$

sufficient criterion: forbid subtraction and negative numbers in p_{F}

- interpretation is lifted to terms by composing polynomials

$$
\begin{aligned}
\llbracket x \rrbracket & =x \\
\llbracket F\left(t_{1}, \ldots, t_{n}\right) \rrbracket & =p_{F}\left(\llbracket t_{1} \rrbracket, \ldots, \llbracket t_{n} \rrbracket\right)
\end{aligned}
$$

- $\quad(\underset{)}{ }$ is defined as

$$
s_{(} \succsim t \text { iff } \forall \vec{x} \in \mathbb{N}^{*} . \llbracket s \rrbracket_{(\geq)} \llbracket t \rrbracket
$$

- (\succ, \succsim) is a reduction pair, e.g.,
- $S N(\succ)$ follows from strong-normalization of $>$ on \mathbb{N}
- \succsim is closed under contexts since each p_{F} is weakly monotone

Solving Polynomial Constraints

- each polynomial constraint over \mathbb{N} can be brought into simple form " $p \geq 0$ " for some polynomial p
- replace $p_{1}>p_{2}$ by $p_{1} \geq p_{2}+1$
- replace $p_{1} \geq p_{2}$ by $p_{1}-p_{2} \geq 0$
- the question of " $p \geq 0$ " over \mathbb{N} is undecidable
(Hilbert's 10th problem)
- approximation via absolute positiveness: if all coefficients of p are non-negative, then $p \geq 0$ for all instances over \mathbb{N}
- division example has trivial constraints

original	simplified
$x \geq x$	0
$1+x \geq 0$	
$4+x+3 y>3+x+3 y$	1

Symbolic Polynomial Interpretations

- fix shape of polynomial, e.g., linear

$$
p_{F}\left(x_{1}, \ldots, x_{n}\right)=F_{0}+F_{1} x_{1}+\cdots+F_{n} x_{n}
$$

where the F_{i} are symbolic coefficients

- $\quad p_{\text {minus }}\left(x_{1}, x_{2}\right)=x_{1}$

$$
\begin{aligned}
p_{\text {Zero }} & =2 \\
p_{\text {Succ }}\left(x_{1}\right) & =1+x_{1} \\
p_{\text {div }}\left(x_{1}, x_{2}\right) & =x_{1}+3 x_{2}
\end{aligned}
$$

concrete interpretation above becomes symbolic

$$
\begin{aligned}
& p_{\text {minus }}\left(x_{1}, x_{2}\right)=\mathrm{m}_{0}+\mathrm{m}_{1} x_{1}+\mathrm{m}_{2} x_{2} \\
& p_{\text {Zero }}=\mathrm{Z}_{0} \\
& p_{\text {Succ }}\left(x_{1}\right)=\mathrm{S}_{0}+\mathrm{S}_{1} x_{1} \\
& p_{\text {div }}\left(x_{1}, x_{2}\right)=\mathrm{d}_{0}+\mathrm{d}_{1} x_{1}+\mathrm{d}_{2} x_{2} \\
& \text { Part 4 - Checking Well-Definedness of Functional Programs }
\end{aligned}
$$

Absolute Positiveness - Symbolic Example

- on symbolic polynomial constraints

$$
\begin{aligned}
\left(\mathrm{m}_{0}+\mathrm{m}_{2} \mathrm{Z}_{0}\right)+\left(\mathrm{m}_{1}-1\right) x & \geq 0 \\
\left(\mathrm{~m}_{1} \mathrm{~S}_{0}+\mathrm{m}_{2} \mathrm{~S}_{0}\right)+\left(\mathrm{m}_{1} \mathrm{~S}_{1}-\mathrm{m}_{1}\right) x+\left(\mathrm{m}_{2} \mathrm{~S}_{1}-\mathrm{m}_{2}\right) y & \geq 0 \\
\left(\mathrm{~d}_{1} \mathrm{~S}_{0}-\mathrm{d}_{1} \mathrm{~m}_{0}-1\right)+\left(\mathrm{d}_{1} \mathrm{~S}_{1}-\mathrm{d}_{1} \mathrm{~m}_{1}\right) x+\left(-\mathrm{d}_{1} \mathrm{~m}_{2}\right) y & \geq 0
\end{aligned}
$$

absolute positiveness works as before; obtain constraints

$$
\begin{aligned}
m_{0}+m_{2} Z_{0} & \geq 0 & m_{1}-1 & \geq 0 \\
m_{1} S_{0}+m_{2} S_{0} & \geq 0 & m_{1} S_{1}-m_{1} & \geq 0 \\
d_{1} S_{0}-d_{1} m_{0}-1 & \geq 0 & d_{1} S_{1}-d_{1} m_{1} & \geq 0
\end{aligned}
$$

- at this point, use solver for integer arithmetic to find suitable coefficients (in \mathbb{N})
- popular choice: SMT solver for integer arithmetic where one has to add constraints $m_{0} \geq 0, m_{1} \geq 0, m_{2} \geq 0, S_{0} \geq 0, S_{1} \geq 0, Z_{0} \geq 0, \ldots$
RT (DCS © UIBK)

$$
\text { Part } 4 \text { - Checking Well-Definedness of Functional Programs }
$$

$$
\mathrm{m}_{1}-1 \geq 0
$$

$\mathrm{m}_{1} \mathrm{~S}_{1}-\mathrm{m}_{1} \geq 0$
$\mathrm{d}_{1} \mathrm{~S}_{1}-\mathrm{d}_{1} \mathrm{~m}_{1} \geq 0$

- delete trivial constraints

$$
\begin{aligned}
m_{1}-1 & \geq 0 \\
m_{1} S_{1}-m_{1} & \geq 0
\end{aligned}
$$

$$
\mathrm{m}_{2} \mathrm{~S}_{1}-\mathrm{m}_{2} \geq 0
$$

$$
\mathrm{d}_{1} \mathrm{~S}_{0}-\mathrm{d}_{1} \mathrm{~m}_{0}-1 \geq 0
$$

$$
\mathrm{d}_{1} \mathrm{~S}_{1}-\mathrm{d}_{1} \mathrm{~m}_{1} \geq 0
$$

$$
-\mathrm{d}_{1} \mathrm{~m}_{2} \geq 0
$$

- conclusions
$\mathrm{m}_{1} \geq 1$
$\mathrm{d}_{1} \geq 1$
$S_{0} \geq 1$
$S_{1} \geq 1$
$\mathrm{m}_{2}=0$
$\mathrm{S}_{1} \geq \mathrm{m}_{1}$
$\mathrm{m}_{0}=0$

Constraint Solving by SMT-Solver - Example

- original constraints

$$
\begin{aligned}
m_{0}+m_{2} z_{0} & \geq 0 & m_{1}-1 & \geq 0 \\
m_{1} S_{0}+m_{2} S_{0} & \geq 0 & m_{1} S_{1}-m_{1} & \geq 0 \\
d_{1} S_{0}-d_{1} m_{0}-1 & \geq 0 & d_{1} S_{1}-d_{1} m_{1} & \geq 0
\end{aligned} m_{2} S_{1}-m_{2} \geq 0, ~-d_{1} m_{2} \geq 0
$$

- encode as SMT problem in file division.smt2
(set-logic QF_NIA)
(declare-fun m0 () Int) ... (declare-fun d2 () Int)
(assert (>= m0 0)) ... (assert (>= d2 0))
(assert (>= (+ m0 (* m2 Z0)) 0))
...
(assert (>= (* (-1) d1 m2) 0))
(check-sat)
(get-model)
(exit)
RT (DCS @ UIBK)

Constraint Solving by SMT-Solver - Scepticism

- polynomial interpretation found by SMT solving approach is generated by complex (potentially buggy) tool
- however, termination is essential for well-defined programs, i.e., in particular to derive correct theorems
- solution: certification
- search for interpretation can be done in arbitrary untrusted way
- write simple trusted checker that certifies whether concrete interpretation indeed satisfies all constraints
- like solving NP-complete problem: positive answer can easily be verified
- in fact, this approach is heavily used in termination proving
- untrusted tools: AProVE, $\mathrm{T}_{\mathrm{T}} \mathrm{T}_{2}$, Terminator, .
- trusted checker: CeTA; soundness formally proven in Isabelle/HOL

Constraint Solving by SMT-Solver - Example Continued

- invoke SMT solver, e.g., Microsoft's open source solver Z3 cmd> z3 division.smt2
sat
(model
(define-fun d1 () Int 8)
(define-fun S1 () Int 15)
(define-fun S0 () Int 8)
(define-fun Z0 () Int 0)
(define-fun m2 () Int 0)
(define-fun m1 () Int 12)
(define-fun m0 () Int 4)
(define-fun d2 () Int 0)
(define-fun dO () Int O)
)
- parse result to obtain polynomial interpretation

