M universitat
™ innsbruck

Program Verification
Part 4 — Checking Well-Definedness of Functional Programs

René Thiemann

Department of Computer Science

Type-Checking with Implicit Variables

Summer Term 2024

Overview

® recall: a functional program is well-defined if
® it is pattern disjoint,
® it is pattern complete, and
® < is terminating
o well-definedness is prerequisite for standard model, for derived theorems, ...
® task: given a functional program as input, ensure well-definedness
known: type-checking algorithm
missing: algorithm for type-inference
missing: algorithm for deciding pattern disjointness
missing: algorithm for deciding pattern completeness
missing: methods to ensure termination

® all of these missing parts will be covered in this chapter

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 2/100

Type-Checking with Implicit Variables
Type-Inference

® structure of functional programs

® data-type definitions
® function definitions: type of new function + defining equations
® not mentioned: type of variables

® in proseminar: work-around via fixed scheme which does not scale
® singleton characters get type Nat

w_n

® words ending in “s” get type List
® aim: infer suitable type of variables automatically

® example: given FP

append : List x List — List
append(Cons(z, y), z) = Cons(z, append(y, z))
append(Nil,z) =z

we should be able to infer that x : Nat, y : List and z : List in the first equation,
whereas x : List in the second equation

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 4/100

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Type-Checking with Implicit Variables

Interlude: Maybe-Type for Errors
® recall type-checking algorithm

typeCheck :: Sig -> Vars -> Term -> Maybe Type

typeCheck sigma vars (Var x) = vars x

typeCheck sigma vars (Fun f ts) = do
(tysIn,tyOut) <- sigma f
tysTs <- mapM (typeCheck sigma vars) ts
if tysTs == tysln then return tyOut else Nothing

® Maybe-type is only one possibility to represent computational results with failure

® let us abstract from concrete Maybe-type:
® introduce new type Check to represent a result or failure
type Check a = Maybe a
® function return :: a -> Check a to produce successful results
® function to raise a failure
failure :: Check a
failure = Nothing
® convenience function: asserting a property
assert :: Bool -> Check ()

assert p = if p then return () else failure

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 5/100

Type-Checking with Implicit Variables

Back to Type-Checking and Type-Inference
® known: type-checking algorithm
typeCheck :: Sig -> Vars -> Term -> Check Type
® type Sig = FSym -> Check ([Typel], Type) — X
® type Vars = Var -> Check Type — V
® typeCheck takes 3 and V and delivers type of term
® we want a function that works in the other direction: it gets an intended type as input,
and delivers a suitable type for the variables

inferType Sig -> Type -> Term -> Check [(Var,Type)]

® then type-checking an equation without explicit Vars is possible

typeCheckEqn Sig -> (Term, Term) -> Check ()
typeCheckEqn sigma (Var x, r) = failure
typeCheckEqn sigma (1 @ (Fun f _), r) = do

(_,ty) <- sigma f

vars <- inferType sigma ty 1

tyR <- typeCheck sigma (\ x -> lookup x vars) r

assert (ty == tyR)

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 7/100

Making Type-Checking More Abstract frpehectie v implet Yarsbie
® original type-checking algorithm
typeCheck :: Sig -> Vars -> Term -> Maybe Type
typeCheck sigma vars (Var x) = vars x
typeCheck sigma vars (Fun f ts) = do
(tysIn,tyOut) <- sigma f
tysTs <- mapM (typeCheck sigma vars) ts
if tysTs == tysln then return tylut else Nothing
® with new abstract types and functions
typeCheck :: Sig -> Vars -> Term -> Check Type
typeCheck sigma vars (Var x) = vars x
typeCheck sigma vars (Fun f ts) = do
(tysIn,tyOut) <- sigma f
tysTs <- mapM (typeCheck sigma vars) ts
assert (tysTs == tysIn)
return tyOut
® advantage: readability, change Check-type easily

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 6/100

Type-Checking with Implicit Variables

Type-Inference Algorithm

® note: upcoming algorithm only infers types of variables
(in polymorphic setting often also type of function symbols is inferred)

inferType Sig -> Type -> Term -> Check [(Var,Type)]
inferType sigma ty (Var x) = return [(x,ty)]
inferType sigma ty (Fun f ts) = do
(tysIn,tyOut) <- sigma f
assert (length tysIn == length ts)
assert (tyOut == ty)
varsL <- mapM (\ (ty, t) -> inferType sigma ty t) (zip tysIn ts)
let vars = nub (concat varsL) -- nub removes duplicates
assert (distinct (map fst vars))
return vars

distinct :: Eq a => [a] -> Bool
distinct xs = length (nub xs) == length xs

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 8/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Type-Checking with Implicit Variables

Soundness of Type-Inference Algorithm

® properties

e ift € T(X,V), then inferType ¥ 7 t = return (V N Vars(t))
e if inferType ¥ 7 t = return V then

® V is well-defined (no conflicting variable assignments) and
°teT(X, V),

® properties can be shown in similar way to type-checking algorithm, cf. slides 2/35-42

® note that ‘if t € T(3, V), then inferType > 7 t # failure' is a property which is not
strong enough when performing induction

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 9/100

Changing the Error Monad

Weakness of Maybe-Type for Errors

® situation: several functions for checking properties of terms, equations, which can be
assembled to check functional programs w.r.t. slides 3/4 (data-type definitions), 3/15
(function definitions) and partly 3/45 (well-definedness)
® inferType Sig -> Type -> Term -> Check [(Var,Type)]
® typeCheck :: Sig -> Vars -> Term -> Check Type
® typeCheckEqn :: Sig -> (Term, Term) -> Check ()
® problem: if checks are not successful, we just get result Nothing
® desired: informative error message why a functional program is refused

® possible solution: use more verbose error type than Maybe
type Check a = Either String a

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 11/100

Changing the Error Monad

Changing the Error Monad

Changing Implementation of Interface

® current interface for error type
® type Check a = Maybe a
function return :: a -> Check a
function assert :: Bool -> Check ()
function failure :: Check a
do-blocks, monadic-functions such as mapl, etc.

® it is actually easy to change to Either-type for errors
® type Check a = Either String a
® return, do-blocks and mapM are unchanged, since these are part of generic monad interface
® functions assert and failure need to be changed, since they now require error messages
o failure :: String -> Check a
failure = Left
assert :: Bool -> String -> Check ()
assert p err = if p then return () else failure err

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 12/100

http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/02x1.pdf#page=35
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/03x1.pdf#page=4
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/03x1.pdf#page=15
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/03x1.pdf#page=45
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Changing the Error Monad

Changing Algorithms for Checking Properties
® adapting algorithms often only requires additional error messages

® before change (type Check a = Maybe a)
typeCheck :: Sig -> Vars -> Term -> Check Type
typeCheck sigma vars (Var x) = vars x
typeCheck sigma vars (Fun f ts) = do
(tysIn,tyOut) <- sigma f
tysTs <- mapM (typeCheck sigma vars) ts
assert (tysTs == tysIn)
return tyOut

e after change (type Check a = Either String a)
typeCheck :: Sig -> Vars —-> Term —-> Check Type
typeCheck sigma vars (Var x) = ...
typeCheck sigma vars t@(Fun f ts) = do

assert (tysTs == tysIn) (show t ++ " ill-typed")

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 13/100

Changing the Error Monad

Fixed Type-Checking Algorithm with Error Messages

import Data.Either.Utils -- for maybeToEither
-- import requires MissingH 1lib; if not installed, define it yourself:
-- maybeToEither e Nothing = Left e

-- maybeToEither (Just x) = return x

typeCheckEgqn sigma (Var x, r) = failure "var as lhs"
typeCheckEqn sigma (1 @ (Fun f _), r) = do
(_,ty) <- sigma f
vars <- inferType sigma ty 1
tyR <- typeCheck
sigma
(\ x -> maybeToEither
(x ++ " is unknown variable")
(lookup x vars))
r
assert (ty == tyR) "types of lhs and rhs don't match"

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 15/100

Changing Algorithms for Checking Properties, Continued

® example requiring more changes; with type Check a = Maybe a
typeCheckEgn sigma (Var x, r) = failure
typeCheckEqn sigma (1 @ (Fun f _), r) = do
(_,ty) <- sigma f
vars <- inferType sigma ty 1
tyR <- typeCheck sigma (\ x -> lookup x vars) r
assert (ty == tyR)

® new version with type Check a = Either String a
typeCheckEqn sigma (Var x, r) = failure "var as lhs"
typeCheckEgn sigma (1 @ (Fun f _), r) = do

tyR <- typeCheck sigma (\ x -> lookup x vars) r
assert (ty == tyR) "types of lhs and rhs don't match"
® problem: lookup produces Maybe, not Either String

® solution: use maybeToEither :: e -> Maybe a -> Either e a

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs

Processing Functional Programs

Changing the Error Monad

14/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Processing Functional Programs

® aim: write program which takes

® functional program as input (data type definitions + function definitions)
® checks the syntactic requirements

® stores the relevant information in some internal representation

® |ater: also checks well-definedness

® such a program is essential part of a compiler

® program should be easy to verify

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs

Existing Encoding of Part 2: Signatures and Terms

type Check a = -- Maybe a or Either String a

type Type = String

type Var = String
type FSym = String
type Vars = Var -> Check Type

type FSymInfo = ([Typel, Type)
type Sig = FSym -> Check FSymInfo

data Term = Var Var | Fun FSym [Term]

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs

Processing Functional Programs

17/100

Processing Functional Programs

19/100

Processing Functional Programs

Recall: Data Type Definitions

® given: set of types Ty, signature ¥ =C WD
® each data type definition has the following form
dataT=c1 71 X ... X Tim — 7T
| ... where
| en Tt X ..o X Tom, =T
*T¢Ty
ClyeoeyCn &% and

fresh type name

ciF#cjfori#j
fresh and distinct constructor names
only known types
non-recursive constructor

each 7, ; € {T}UTy
® exists ¢; such that 7; ; € Ty for all j

o effect: add new type and new constructors
© 7= Ty U {r}

® C:=CU{e1: 1 X oo X Timy —>TyeeesCn i T X oo X Trm,, —> T}

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 18/100

Processing Functional Programs

Encoding Functional Programs in Haskell

—-- input: unchecked data-type definitions and function definitions
data DataDefinition = Data Type [(FSym, FSymInfo)]

data FunctionDefinition = ... -- later

type FunctionalProg =

([DataDefinition], [FunctionDefinition])

-- internal representation

type SigList = [(FSym, FSymInfo)] -- signatures as list

type Defs = SiglList -- list of defined symbols
type Cons = Siglist

type Equations = [(Term, Term)]
-- all combined in Haskell-type; it also stores known types
data ProgInfo = ProgInfo [Typel Cons Defs Equations

-- list of comstructors
-- all function equations

—-- checking single data type definition
processDataDefinition ::

ProgInfo -> DataDefinition -> Check ProgInfo
Part 4 — Checking Well-Definedness of Functional Programs

RT (DCS @ UIBK) 20/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Processing Functional Programs Processing Functional Programs

Checking a Single Data Definitions Checking Several Data Definitions

® processing many data definitions can be easily done by using foldM: predefined monadic
version of foldl
foldM :: Monad m => (b => a =>m b) => b -> [a] -=>m b
foldM f e [] = return e
foldM f e (x : xs) = do
d <-fex
foldM f d xs

processDataDefinition
(ProgInfo tys cons defs eqs)
(Data ty newCs)
= do
assert (not (elem ty tys))
let newTys = ty : tys
assert (distinct (map fst newCs))
assert (all (\ (c,_) -> all (/= c) (map fst (cons ++ defs))) newCs)
assert (all (\ (_,(tysIn,tyOut)) ->
tyOut == ty &&
all (\ ty -> elem ty newTys) tysIn) newCs)
assert (any
(\ (_,(tysIn,_)) -> all (/= ty) tysIn) newCs)
return (ProgInfo newTys (newCs ++ cons) defs egs)

processDataDefinition ::
ProgInfo -> DataDefinition -> Check ProgInfo
processDataDefinition = ... —-- previous slide

processDataDefinitions
ProgInfo -> [DataDefinition] -> Check ProgInfo
processDataDefinitions = foldM processDataDefinition

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 21/100 RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 22/100

Processing Functional Programs Processing Functional Programs

Checking Function Definitions w.r.t. Slide 3/15

data FunctionDefinition = Function

FSym - nmame of function Checking Functional Programs
FSymInfo -- type of function
[(Term,Term)] -- equations initialProgInfo = ProgInfo []1 [1 [I [

processProgram :: FunctionalProg -> Check ProgInfo
processProgram (dataDefs, funDefs) = do
pi <- processDataDefinitions initialProgInfo dataDefs
processFunctionDefinitions pi funDefs

processFunctionDefinition
:: ProgInfo -> FunctionDefinition -> Check ProgInfo
processFunctionDefinition = ... -- exercise

processFunctionDefinitions

ProgInfo -> [FunctionDefinition] -> Check ProgInfo
processFunctionDefinitions =

foldM processFunctionDefinition

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 23/100 RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 24/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/03x1.pdf#page=15
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Processing Functional Programs

Current State

® processProgram :: FunctionalProg -> Check ProgInfo is Haskell program to
check user provided functional programs, whether they adhere to the specification of
functional programs w.r.t. slides 3/4 and 3/15

® its functional style using error monads permits us to easily verify its correctness

® no induction required
® based on assumption that builtin functions behave correctly, e.g., all, any, nub, ...

® missing: checks for well-defined functional programs w.r.t. slide 3/45

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 25/100

Checking Pattern Disjointness

Deciding Pattern Disjointness

® program is pattern disjoint if for all f: 7 x---x7, =7 €Dandallt; € T(C)r, ...,
tn € T(C),, there is at most one equation ¢ = r in the program, such that ¢ matches
f(tl, ... ,tn)

® in proseminar it was proven that pattern disjointness is equivalent to the following
condition: for each pair of distinct equations ¢; =y and #o = 19, £1 and a variable
renamed variant of /3 do not unify

® key missing part for checking pattern disjointness is an algorithm for unification:

given two terms s and ¢, decide Jo.so = to

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 27/100

Checking Pattern Disjointness

Checking Pattern Disjointness

Unification Algorithm of Martelli and Montanari

® input: unification problem U = {s; L t1,..., 5, L tn}
® question: is U solvable, i.e., does there exist a solution o,
a substitution satisfying Vi € {1,...,n}. sj0c = t;jo
® two different kinds of output:
® unification problem in solved form:
{z1 z Vi, ey T z U, } with distinct z;'s
solved forms can be interpreted as substitution

o(x) = {vi7 if v =x;

x, otherwise

and this o will be solution of U
® 1, indicating that U is not solvable

® algorithm itself is build via one-step relation ~» which is applied as long as possible

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs

28/100

http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/03x1.pdf#page=4
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/03x1.pdf#page=15
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/03x1.pdf#page=45
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Unification Algorithm of Martelli and Montanari, continued

" ? ?
® input: unification problem U = {s; =t1,...,8, =t}

® output: solution of U via solved form or L, indicating unsolvability

® algorithm applies ~» as long as possible; ~~ is defined as

(eliminate)
if z ¢ Vars(t) and x occurs in U
notation U{x/t}: apply substitution {x/t} on all terms in U (lhs + rhs)
Part 4 — Checking Well-Definedness of Functional Programs 29/100

RT (DCS @ UIBK)

Correctness of an Implementation of a (Unification) Algorithm

® any

UU{tZt)~U (delete)
UU{f(ut,...,ue) = fr,.. . o)}~ UU{us = v1,...,00 =vp} (decompose)
UU{f(ut,...,up) = gvr,... v}t~ L, if f£gVEk#£L (clash)
UU{f(.)Za}~UUu{z = f(.)} (swap)

UU{z = f(.)}~ L, if o € Vars(£(...))
UU{z =t} ~ Ufz/t}U{z =t}

(occurs check)

concrete implementation will make choices

® preference of rules

selection of pairs from U

representation of sets U

(pivot-selection in quicksort)

(order of edges in graph-/tree-traversals)

® task: how to ensure that implementation is sound

® solution: refinement proof

RT (DCS @ UIBK)

aim: reuse correctness of abstract algorithm (~)

define relation between representations in concrete and abstract algorithm (this was called

alignment before and done informally)

show that concrete algorithm has less behaviour, i.e., every result of concrete (deterministic)

algorithm can be related to some result of (non-deterministic) abstract algorithm

benefit: clear separation between
® soundness of abstract algorithm
® soundness of implementation

(solves unification problems)
(implements abstract algorithm)

Checking Pattern Disjointness

Checking Pattern Disjointness

Part 4 — Checking Well-Definedness of Functional Programs 31/100

Correctness of Unification Algorithm

® we only state properties (proofs: see term rewriting lecture)
~~ terminates
normal form of ~ is L or a solved form
whenever U ~ V, then U and V have same solutions
in total: to solve unification problem U
® determine some normal form V of U
® if V = 1 then U is unsolvable
® otherwise, V represents a substitution that is a solution to U

® note that ~~ is not confluent

? ? z/y ? ? ?

* {z=yy=z} > {z=yy=y} ~{r=y}
? ? y/x ? ? ?

* {z=yy=z} >~ {z=ny=1}~{y=1}

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs

A Concrete Implementing of the Unification Algorithm

subst :: Var -> Term -> Term -> Term

subst x t = applySubst (\ y -> if y == x then t else Var y)

unify :: [(Term, Term)] -> Check [(Var, Term)]
unify u = unifyMain u []

unifyMain :: [(Term, Term)] -> [(Var,Term)] -> Check [(Var, Term)]
unifyMain [] v = return v -- return solved form
unifyMain ((Fun f ts, Fun g ss) : u) v = do
assert (f == g && length ts == length ss) -- clash
unifyMain (zip ts ss ++ u) v -- decompose
unifyMain ((Fun f ts, x) : u) v =
unifyMain ((x, Fun f ts) : u) v -- swap
unifyMain ((Var x, t) : u) v =
if Var x == t then unifyMain u v -- delete
else do
assert (not (x “elem” varsTerm t)) -- occurs check
unifyMain -- eliminate

(map (\ (1,r) -> (subst x t 1, subst x t r)) u
((x,t) : map (\ (y, s) => (y, subst x t s)) v)

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs

Checking Pattern Disjointness

30/100

Checking Pattern Disjointness

32/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Disjointness

Notes on Implementation

® it is non-trivial to prove soundness of implementation, since there are several differences
w.r.t. ~

® unifyMain takes two parameters u and v
® these represent one unification problem u U v

® rule-application is not tried on v, only on u
® we need to know that v is in normal form w.r.t. ~

® in (occurs check)-rule, the algorithm has no test that rhs is function application
® we need to show that this will follow from other conditions

® in (elimination)-rule, the algorithm substitutes only in rhss of v
® we need to know that substituting in lhss of v has no effect

® in (elimination)-rule, the algorithm does not check that = occurs in remaining problem
® we need to check that consequences don't harm

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 33/100

Checking Pattern Disjointness

Soundness via Refinement: Main Statement
e define setMaybe Nothing = L, setMaybe (Just w) = set w

® property: whenever (u,v) ~ U and unifyMain u v = res then U ' setMaybe res

® once property is established, we can prove that implementation solves unification
problems
® assume input u, i.e., invocation of unify u which yields result res
® hence, unifyMain u [| = res
® moreover, (u,[]) ~ set u by definition of ~
® via property conclude set u ~+' setMaybe res
® at this point apply correctness of ~:
setMaybe res is the correct answer to the unification problem set u

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 35/100

Checking Pattern Disjointness

Soundness via Refinement: Setting up the Relation

e relation ~ formally aligns parameters of concrete algorithm (u and v) with
parameters of abstract algorithm (U); ~ also includes invariants of implementation

® set converts list to set, we identify s Z ¢ with (s,1)
® (u,v) ~ U iff
® [J = set uU set v,
® set v is in normal form w.r.t. ~» (notation: set v € NF(~)), and
® for all (z,t) € set v: = does not occur in u
® since alignment between concrete and abstract parameters is specified formally,
alignment properties of auxiliary functions can also be made formal
® set (z:xs) ={x}Uset zs
set (zs ++4 ys) = set xs U set ys
sel (Zip [zlv cee 7‘T7L] [yla s 7yn]) = {(5517y1), R (xmyn)}
set (map f [z1,...,2n)) ={f z1,..., [Tn}
subst x t s = s{x/t}

these properties can be proven formally and also be applied formally
(although we don't do it in the upcoming proof)

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 34/100

Checking Pattern Disjointness

Proving the Refinement Property

e property P(u,v,U): (u,v) ~ U A unifyMain u v = res — U ~' setMaybe res
® (u,v) ~U +— U = set uU set v A set v € NF(~) AV(x,t) € set v. x ¢ Vars(u)

® we prove the property P(u,v,U) by induction on w and v w.r.t. the algorithm for
arbitrary U, i.e., we consider all left-hand sides and can assume that the property holds
for all recursive calls;
induction w.r.t. algorithm gives partial correctness result (assumes termination)
® in the lecture, we will cover a simple, a medium, and the hardest case
e case 1 (arguments [| and v):
® we have to prove P([],v,U), so assume
(*) (fl,v) ~U and
(**) unifyMain [v = res
e from (*) conclude U = set v and set v € NF(~)
® from (**) conclude res = Just v and hence, setMaybe res = set v

® we have to show U ~' setMaybe res, i.e., set v ~! set v which is satisfied since
set v € NF(~)

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 36/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Disjointness
o Plu,v,U): (u,v) ~ U A unifyMain u v = res — U ~' setMaybe res
® (u,v) ~U +— U = set uUset vAset ve NF(~)AY(z,t) € set v. v ¢ Vars(u)

case 2 (arguments (f(¢s),g(ss)) : u and v)

® we have to prove P((f(ts),g(ss)) : u,v,U), so assume

(*) ((f(ts),g(ss)) : u,v) ~ U and
(**) unifyMain ((f(ts), g(ss)) : u) v = res

® consider sub-cases
® —(f =g A length ts = length ss):
® from (**) conclude setMaybe res = L

® from (*) conclude f(ts) = g(ss) € U and hence U ~» L by (clash)
® consequently, U ~' setMaybe res
® f=gAlength ts = length ss:

® from (**) conclude res = unifyMain ((f(ts), g(ss)) : u) v = unifyMain (zip ts ss ++ u) v

® from (*) and alignment for zip and ++ conclude U = {f(¢s) < g(ss)} U set wU set v and
hence U ~ set (zip ts ss ++ u) U set v =: V by (decompose)

® we get P(zip ts ss ++ u,v,V) as IH; (zip ts ss ++ u,v) ~ V follows from (*), so
U~V ~' setMaybe res

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 37/100

Checking Pattern Disiointness
® (u,v) ~U +— U = set uU set v A set v € NF(~) AV(z,t) € set v. x ¢ Vars(u)
case 4 (arguments (z,t) : u and v)
® we have to prove P((x,t) : u,v,U), so assume (*) ((z,t) : u,v) ~U and ...
and consider sub-case x # t A x ¢ Vars(t) A occurs in set u U set v:

® define v’ = map (A(l,r). (subst x t I, subst x t r)) u
® define v/ = map (\(y, s). (y, subst z ¢ s)) v

® define V = (set uU set v){z/t} U {z < t}

® we still need to show (u/, (x,t) : v') ~V

® since (*) holds, we know V (y,s) € set v. x #y

® hence, v' = map (\(y, s). (subst z t y, subst x t s)) v

® so, V = (set u){z/t} U{x L t} U (set v){z/t} = set v Uset ((z,t):)
°

we show V(y, s) € set ((z,t) : v'). y ¢ Vars(u') as follows:

x & Vars(u') since x ¢ Vars(t); and if (y,s) € set v/, then (y,s") € set v for some s’ and by
(*) we conclude y ¢ Vars((x,t) : u); thus, y & Vars((set w){z/t}) = Vars(u')

® we finally show set ((z,t) : v') € NF(~): so, assume to the contrary that some step is
applicable; by the shape of set ((z,t) : v") we know that the step can only be (eliminate),
(delete) or (occurs check); all of these cases result in a contradiction by using the available
facts

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 39/100

Checking Pattern Disjointness

o Plu,v,U): (u,v) ~ U A unifyMain u v = res — U ~' setMaybe res
® (u,v) ~U +— U = set uUset vAset ve NF(~)AY(z,t) € set v. v ¢ Vars(u)
case 4 (arguments (z,t) : u and v)

® we have to prove P((z,t) : u,v,U), so assume
*) ((z,t) : u,v) ~U and
(**) unifyMain ((z,t) : u) v =res
® consider sub-cases (where the red part is not triggered by structure of algorithm)
® z#tAx ¢ Vars(t) A x occurs in set wU set v

® define u' = map (A(I,r). (subst x t I, subst x t 1)) u
® define v' = map (A\(y, s). (y, subst x t s)) v

define V = (set uw U set v){z/t} U{z < t}
from (**) conclude res = unifyMain ((z,t) : u) v = unifyMain v’ ((x,t) : V")

for proving U ~' setMaybe res it hence suffices to show (u', (2,t) : v') ~V and U ~ V

v {z < t}Uset uU set v~ (set uU set v){x/t} U{z/t} =V
by (eliminate) because of preconditions

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs

from IH conclude P(u/, (z,t) : v', V) and hence, (u/, (,t) : v') ~ V — V ~' setMaybe res

38/100

Checking Pattern Disjointness

Proving the Refinement Property
® remaining cases: similar, cf. exercises
® summary

® non-trivial implementation of abstract unification algorithm ~~
® optimizations required additional invariants, encoded in refinement relation
proof of correctness can be done formally

® induction + case analysis proof uses mostly the structure of the Haskell code;
exception: case analysis on “z occurs in set u U set v"

® most cases can easily be solved, after having identified suitable invariants

® fully reuse correctness of ~

we only proved partial correctness
termination of implementation: consider lexicographic measure

,length [z | (t, Var x) + u))

(|[Vars(set u)|,]
— ~

(eliminate) (decomp),(delete) (swap)

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs

40/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Completeness

Checking Pattern Completeness

Reformulation of Pattern Completeness of Programs

® definitions of previous slide (omitting types)
® program is pattern complete iff for all f € D and all ¢; € T(C) there is some |hs that
matches f(t1,...,t,)
® Pt ={{{(f(x1,...,2,),0)} | £ is |hs of f-equation} | f € D}
® P is complete iff Vpp € P.¥o : V — T(C). Imp € pp. Iv.Y(t,£) € mp.to = by

® corollary: program is pattern complete iff P;,;; is complete

Task: determine completeness of pattern problems

® algorithm modifies matching problems and (sets of) pattern problems

® special problems: L represents a non-solvable matching problem and an incomplete set
of pattern problems, and T represents a complete pattern problem

® here: only consider linear pattern problems, i.e., problems where variables in lhss of
programs occur at most once

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 43/100

Checking Pattern Completeness

Pattern Problems

® reminder: program is pattern complete, if for all f: 7 x ... x 7, = 7 € D and all
t; € T(C)s there is some |hs that matches f(t1,...,t,)

® algorithm considers more generic shape
® matching problems mp consist of pairs of terms (¢, £) where
® ¢ is a term, representing the set of all its constructor ground instances, e.g., t = f(z1,...,Zn)
® (is (a subterm of) some |hs
® semantics: find one substitution « such that ¢ = ¢y for all (t,£) € mp
® reason: decomposition of terms
® pattern problems pp consist of multiple matching problems
® semantics: disjunction, i.e., find one suitable matching problem
® reason: a term ¢ might be matched by arbitrary |hs
e initially: pp = {{(t,41)},...,{(t,€n)}} for lhss £y, ..., £y
® sets of pattern problems P consist of several pattern problems
® semantics: conjunction
® reason: consider different ground instances and different defined function symbols
® initial set of pattern problems: Pin;: = {{{(f(z1,...,2n),£)} | £ is lhs of f-eqn.} | f € D}
® overall semantics: P is complete iff
Vpp € P.No :V — T(C).Imp € pp. F7.Y(t, L) € mp. to = Ly

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 42/100

Checking Pattern Completeness

Transforming Matching and Pattern Problems

{(ft1y e stn), f(lr, o) W mp = {(t1, 1), - .., (tn, bn) } Ump (decompose)
{(t, =)} ¥mp — mp (match)

{(fC.) 9.)} wmp — L iff#g (clash)

{mp} & pp — {mp'} Upp if mp — mp’ (simp-mp)

{L}wpp—pp (remove-mp)

{gtypp =T (success)
{pp} & P — {pp'UP if pp— pp/ (simp-pp)
{GYP — | (failure)
{T}ygP—~P (remove-pp)

{pp} W P — Inst(pp,z) UP if mp € pp and (z, f(...)) € mp
(instantiate)

where Inst(pp,) contains a pattern problem ppo, . for each constructor ¢ where
e y:7andc:7m X - X7, >7Tand x1: 71, ..., Tn : Ty are fresh, and

® ppog.c is obtained from pp by replacing each pair (¢,) by (t{z/c(x1,...

RT (DCS @ UIBK)

120)}, f)

Part 4 — Checking Well-Definedness of Functional Programs 44/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Completeness

Example
consider
data Bool = True : Bool | False : Bool
£y := conj(True, True) = ...
Uy := conj(False,y) = ...
U3 := conj(x, False) = ...
then we have
Pinit = {{{(conj(z1, x2),41)}, {(conj(z1, x2), €2) }, {(conj(z1, x2), £3)} } }
—* L (21, True), (ze, True)}, {(z1, False), (x2,y) }, {(x1, z), (x2, False) } } }
—* ffl(x1, True), (z2, True)}, {(z1, False) }, {(x2, False) } } }
— {{{(True, True), (x2, True)}, {(True, False)}, {(z2, False)}},
{{(False, True), (z2, True)}, { (False, False) }, { (z2, False) } } }
—* L (2o, True) b, L, {(xo, False)}}, {L,d,{(x2, False)}}}
=" {{{(z2, True)}, {(z2, False) } } }
— {{{(True, True)}, {(True, False)}}, {{(False, True)},{(False, False)}}} —* &

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 45/100

Checking Pattern Completeness

Partial Correctness of —

® theorem: whenever P — (), then P is complete iff () is complete
® corollary: if P —* & then P is complete,

and if P —* | then P is not complete
® definition: P is complete iff

Vpp € P.No : ¥V — T(C). 3mp € pp. Iv.V(t,£) € mp.to = by

=)
® proof of theorem by case analysis on the various rules
® (clash): first inline rule to {{{(f(...),g(...))} Wmp}WpptW P — {pp} UP,if f#g

® by definition of completeness and structure of rule it suffices to show that completeness is
preserved by rule

H{C-2)9(--))} wmp} wpp — pp

=:mp’

® hence, it suffices to show that v is not satisfied when choosing mp’ in the existential
quantifier Imp € pp. ...
® but this property is easy to see, since to = (v is never satisfied if (¢,£) is (f(...),g(...))

® many other rules are similar, exceptions are (match) and (instantiate)

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 47/100

Checking Pattern Completeness

Example

consider
data Bool = True : Bool | False : Bool
£y := conj(True, True) = ...
Ly := conj(False,y) = ...
then we have

Pinit = {{{(conj(z1,22), £1)}, {(conj(z1, 22), £2)} } }
—s* (21, True), (x2, True) }, {(z1, False) } } }
—s L{{(True, True), (z2, True)}, {(True, False) } },

{{(False, True), (w2, True)}, { (False, False)} } }
=" {{{(z2, True)}, L}, {L,}}
=" {{{(z2, True)} }}
— {{{(True, True)}}, {{(False, True)}}} —=* {7,200} — L

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 46/100

Checking Pattern Completeness

Partial Correctness of —, continued

e definition: P is complete iff
Vpp € P.No : V — T(C). 3mp € pp. Iy.V(t, L) € mp.to = Ly
® proof continued

® (instantiate): {pp} W P — Inst(pp,x)U P, where = : 7, 7 has constructors ¢y, ..., c,, and
o; ={x/ci(x1,...,x)} for fresh x;, and Inst(pp,x) = {ppo; | 1 <i <n}
® we only consider one direction of the proof: we assume that Inst(pp,x) is complete and prove
that pp is complete
® to this end, consider an arbitrary constructor ground substitution o
® since o is constructor ground, we know o(z) = ¢;(t1,...,tx) for some constructor ¢; and
constructor ground terms t1,...,tk
® define o'(y) = b, ify = .IJ
o(y), otherwise
® o’ is well-defined since the z;'s are distinct, and o’ is a constructor ground substitution
® note that to = to;0’ for all terms ¢ that occur in pp since the z;'s are fresh
® by completeness of Inst(pp,x) there must be some mp € ppo; and ~ such that
V(t,£) € mp. to’ = Ly
® hence, there is some mp € pp and ~ such that V(¢,€) € mp. toio’ = by
® together with to = to;0’ we conclude that pp is complete

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 48/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Completeness

Correctness of —, Missing Parts

® already proven

® if P —* & then P is complete
e if P —* | then P is not complete

® open: termination of —»

® open: can — get stuck?

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 49/100

Checking Pattern Completeness

Termination of —

{pp} & P — {pp'tUP if pp— pp/ (simp-pp)
{BtwP— 1 (failure)
{T}yP—~P (remove-pp)

{pp} W P — Inst(pp,x) UP if mp € pp and (z, f(...)) € mp

e define |¢ — t| as a measure of difference of £ and ¢
® | — x| = number of function symbols in ¢

® |¢ —t| =0, in all other cases

(instantiate)

® map each pattern problem pp to number |pp| =3 [¢ —t|

mp€Epp,(t,£)Emp
® map each set of pattern problem P to multiset {|pp| | pp € P}

e this multiset decreases in (instantiate) and is not increased in the other —s-rules
(multiset decrease: M UN >™ M UN'if N # @ andVy € N'. 3z € N.x > y)

® hence (instantiate) cannot be applied infinitely often
® since the remaining rules also terminate, — must terminate

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 51/100

Checking Pattern Completeness

— Cannot Get Stuck

{(f(1y e stn), f(lr, o) FWmp = {(t1, 1), - .., (tn, bn) } Ump (decompose)
{(t,z)} Wmp — mp (match)

{(fC.) 9.)} wmp — L iff#g (clash)

{mp} & pp — {mp'} Upp if mp — myp’ (simp-mp)

{L}wpp — pp (remove-mp)

{8}ypp —~T (success)
{pp}w P — {pp'y UP if pp— pp' (simp-pp)
{GtwP — 1 (failure)
{TlwP—~P (remove-pp)

{pp} W P — Inst(pp,x) UP if mp € pp and (z, f(...)) € mp

(instantiate)

® lemma: whenever P is well-typed and in normal form w.r.t. =, then P € {&, L}

® proof: by a large case-analysis

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 50/100

Checking Pattern Completeness

Implementation and Complexity of —

® clearly, — is formulated abstractly

® a concrete implementation has to use a concrete representation for matching- and
pattern problems; it has to resolve non-determinism, e.g., order of rules, selection of
instantiation variables, etc.

® theorem: deciding pattern completeness is co-NP-hard

® consequence: worst-case complexity on required number of —s-steps unlikely to be
sub-exponential

e fully verified implementation exists

® currently fastest known algorithm for pattern completeness, developed for this lecture

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 52/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Pattern Completeness

Summary on Pattern Completeness

® pattern completeness of functional programs is decidable:
program is pattern complete iff P, —sl g
® two possible extensions

® generation of counter-examples
® handling of non-linear pattern problems

® partial correctness was proven via invariant of —
® termination of — was shown via multisets and a dedicated measure
® termination proof was tricky, definitely required human interaction

® in contrast: upcoming part is on automated termination proving

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 53/100

Termination — Dependency Pairs

Termination of Programs

® the question of termination is a famous problem

® Turing showed that “halting problem” is undecidable
® halting problem

® question: does program (Turing machine) terminate on given input
® problem is semi-decidable: positive instances can always be identified
® algorithm: just simulate the program and then say ‘“yes, terminates”

® we here consider universal termination, i.e., termination on all inputs
® universal termination is not even semi-decidable

® despite theoretical limits: often termination can be proven automatically

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 55/100

Termination — Dependency Pairs

Termination — Dependency Pairs

Termination of Functional Programs

e for termination, we mainly consider functional programs which are pattern-disjoint;
hence, < is confluent

® consequence: it suffices to prove innermost termination, i.e., the restriction of < such
that arguments ¢; will be fully evaluated before evaluating a function invocation

fltr, .o tn)

® example without confluence

f(True, False, z) = f(z, z, z)
flo.oy.,x)=2

coin = True

(all other cases)

coin = False

® both f and coin terminate if seen as separate programs
® program is innermost terminating, but not terminating in general

f(True, False, coin) < f(coin, coin, coin) <2 f(True, False, coin) < ...

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 56/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Dependency Pairs
Subterm Relation and Innermost Evaluation

e define > as the strict subterm relation and > as its reflexive closure

t;>s
F(tl,...,tn)bti F(tl,...,tn)l>$

® innermost evaluation < is defined similar to one-step evaluation <

s h ite in context
. rewrite in contex
F(81,..y8iy.eey8n) > F(s1,. . tiy. ., 8n)
¢ =r is equation in program Vs <lo. s € NF(—)
i root step
lo 5 ro
® example
f(True, False, coin) <% f(coin, coin, coin)
since coin < f(True, False, coin) and coin ¢ NF(—)
RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 57/100

Termination — Dependency Pairs

Termination Analysis with Dependency Pairs
® aim: prove SN (<)
® only reason for potential non-termination: recursive calls

e for each recursive call of equation f(t1,...,tn) =€ =11 f(s1,...
dependency pair with fresh (constructor) symbol f*:

- tn) = fH(s1, o sn)

define DP as the set of all dependency pairs

, Sn) build one

® example program for Ackermann function has three dependency pairs
ack(Zero, y) = Succ(y)
ack(Succ(z), Zero) = ack(z, Succ(Zero))
ack(Succ(z), Succ(y)) = ack(z, ack(Succ(z),y))
ack?(Succ(x), Zero) — ackF(z, Succ(Zero))
ack®(Succ(z), Succ(y)) — ack?(z, ack(Succ(z),)
ack®(Succ(z), Succ(y)) — ack?(Succ(z), y)

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 59/100

Termination — Dependency Pairs

Strong Normalization

e relation > is strongly normalizing, written SN (), if there is no infinite sequence
ap > az > ag > ...

® strong normalization is other notion for termination

® strong normalization of a relation is equivalent to soundness of induction principle w.r.t.

that relation;
the following two conditions are equivalent

® SN(>-)
°® VYP. (Vo. (Vy. 2=y — Py) — Px)— (Va. P x)

® equivalence shows why it is possible to perform induction w.r.t. algorithm for terminating
programs

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 58/100

Termination — Dependency Pairs

Termination Analysis with Dependency Pairs, continued

® dependency pairs provide characterization of termination

® definition: let P C DP; a P-chain is a possible infinite sequence
s101 — t10q ¥ So09 — to09 ¥ S303 — t303 Ay

such that all s; — ¢; € P and all s;0; € NF(—)
® s,0;, — t;0; represent the “main” recursive calls that may lead to non-termination
® t,0; “>* s;410;41 corresponds to evaluation of arguments of recursive calls
e theorem: SN (<) iff there is no infinite DP-chain
® advantage of dependency pairs

® in infinite chain, non-terminating recursive calls are always applied at the root
® simplifies termination analysis

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 60/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Dependency Pairs

Example of Evaluation and Chain
minus(z, Zero) = z
minus(Succ(z), Succ(y)) = minus(x, y)
div(Zero, Succ(y)) = Zero
) — minus®(z,)

minusf (Succ(z), Suce

(v)
div(Succ(z), Succ(y)) = Succ(div(minus(z, y), Succ(y)))
(v)
div*(Succ(z), Succ(y)) — div¥(minus(z,), Succ(y))

® example innermost evaluation
div(Succ(Zero), Succ(Zero))
< Succ(div(minus(Zero, Zero), Succ(Zero)))
<5 Succ(div(Zero, Succ(Zero)))
<5 Succ(Zero)

and its (partial) representation as DP-chain

div¥(Succ(Zero), Succ(Zero))
— div#(minus(Zero, Zero), Succ(Zero))
<s* divf(Zero, Succ(Zero))

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 61/100

Termination — Subterm Criterion

Termination — Dependency Pairs

Proving Termination

® global approaches
® try to find one termination argument that no infinite chain exists
® jterative approaches

® identify dependency pairs that are harmless, i.e., cannot be used infinitely often in a chain
® remove harmless dependency pairs from set of dependency pairs
® until no dependency pairs are left

® we focus on iterative approaches, in particular those that are incremental

® incremental: a termination proof of some function stays valid
if later on other functions are added to the program

® incremental termination proving is not possible in general case (for non-confluent programs),
consider coin-example on slide 56

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 62/100

Termination — Subterm Criterion

A First Termination Technique — The Subterm Criterion

® the subterm criterion works as follows

® let PC DP

® choose f*, a symbol of arity n

® choose some argument position i € {1,...,n}

® demand s; > t; for all f¥(sy,...,8,) — fi(t1,...,t,) €P
® define P = {fﬁ(sl, .. .,Sn) — fu(tl, ce ,tn) epP | S; > t,‘}
[]

then for proving absence of infinite P-chains it suffices to prove absence of infinite
P\ P.-chains, i.e., one can remove all pairs in P

® observations

® easy to test: just find argument position ¢ such that each i-th argument of all
ft-dependency pairs decreases w.r.t. > and then remove all strictly decreasing pairs

® incremental method: adding other dependency pairs for g# later on will have no impact

® can be applied iteratively

® fast, but limited power

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 64/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Subterm Criterion

Subterm Criterion — Example

® consider a program with the following set of dependency pairs

ack®(Succ(z), Zero) — ack®(z, Succ(Zero)) (1)
ack?(Succ(), Succ(y)) — ack(z, ack(Succ(z),y)) (2)
ack?(Succ(x), Succ(y)) — ack®(Succ(z), y) (3)

minus?(Succ(z), Succ(y)) — minust(z, y) (4
div¥(Succ(z), Succ(y)) — div¥(minus(z,y), Succ(y)) (5)
plus*(Succ(x), y) — plus*(y, x) (6)

® it is easy to remove (4) by choosing any argument of minus?
® we can remove (1) and (2) by choosing argument 1 of ack?
e afterwards we can remove (3) by choosing argument 2 of ack®

® it is not possible to remove any of the remaining dependency pairs (5) and (6) by the
subterm criterion

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 65/100

Termination — Size-Change Principle

Termination — Subterm Criterion

Subterm Criterion — Soundness Proof
® assume the chosen parameters in the subterm criterion are f* and i

® it suffices to prove that there is no infinite chain
5101 — t10] F 8909 = taog BF 5303 — tzog < ...

such that all s; — ¢; € P, all s; and t; have f¥ as root and there are infinitely many
sj = t; € B; perform proof by contradiction
® hence all s; — t; are of the form f¥(sj1,...,8jn) — fH(tj1,- - tjn)
® from condition s;; > t;; of criterion conclude s;;0; > t;;0;
and if s; =~ t; € P then Sji D> and thus 84,105 B> 15,05
* we further know ¢;;0; <+* 841,041 since f* is a constructor
® this implies tj,io'j = 5j4+1,i0j+1 since t]"iaj S NF(;)) as
tii0; <5505 < f4(sj104,...,8.0,0;) = sj0; € NF(—)
3195 = 85,10 31035+ -5 8j;n0j 30
® obtain an infinite sequence with infinitely many t>; this is a contradiction to SN (1>)

81,401 B 1,01 = 89,409 B tg;09 = 83,03 B> 13,03 = ...

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 66/100

Termination — Size-Change Principle

The Size-Change Principle

® the size-change principle abstracts decreases of arguments into size-change graphs
® size-change graph
® let f% be a symbol of arity n

a size-change graph for f* is a bipartite graph G = (V, W, E)
the nodes are V.= {1;,,...,nin} and W = {lout, - - -, Nout }
E is a set of directed edges between in- and out-nodes labelled with > or =~
the size-change graph G of a dependency pair f(s1,...,s,) — fH(t1,...,t,) defines E as
follows

° iin > Jout € E whenever s; > t; (strict decrease)

-
® iin = jout € E whenever s; =t; (weak decrease)
® in representation, in-nodes are on the left, out-nodes are on the right, and subscripts are

omitted

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 68/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Size-Change Principle

Example — Size-Change Graphs

® consider the following dependency pairs; they include permutations that cannot be solved
by the subterm criterion

f#(Succ(z), y)

f#(x, Succ(y))

f*(z, Succ(z)) (7)
f(y, z) (8)

® obtain size-change graphs that contain more information than just the size-decrease in
one argument, as we had in subterm criterion

—
%

-
G(7) . 1->1 G(g) : 1 - 1
N X
2 2 2 2
RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 69/100

Termination — Size-Change Principle

Example — Multigraphs
® consider size-change graphs

G(7) : 1 i> 1 G(g) . 1 -
X X
2 2 2 2

® this leads to three maximal multigraphs

Gy G 1 1 Giy*Gey: 1 1 S D15

N 4

2 2 2—>2 252
-

® and a non-maximal multigraph

SONEOMEORIEE RS

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Funct%nal Programs 71/100

Termination — Size-Change Principle

Multigraphs and Concatenation

® graphs can be glued together, tracing size-changes in chains, i.e., subsequent dependency
pairs

e definition: let G be a set of size-change graphs for the same symbol f¥; then the set of
multigraphs for f% is defined as follows

® every G € G is a multigraph
® whenever there are multigraphs G; and G with edges Fy and Fs then also the
concatenated graph G = G1+G> is a multigraph; here, the edges of E of G are defined as

® ifi>jeFiandj— ke FEsy theni ke FE
® if at least one of the edges i« — j and j — k is labeled with > then i — k is labeled with >,
otherwise with

-
® if the previous rules would produce two edges i = k and i = k, then only the former is added
to

® a multigraph G is maximal if G = G-G

® since there are only finitely many possible sets of edges,
the set of multigraphs is finite and can easily be computed

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 70/100

Termination — Size-Change Principle

Size-Change Termination

® instead of multigraphs, one can also glue two graphs GG; and G by just identifying the
out-nodes of G1 with the in-nodes of G, defined as GG1 o Gia; in this way it is also
possible to consider an infinite sequence of graphs G; c Gao Gz o...

® example:

151, 1, 151
- -
XX XX
2 2 2 2 2
e definition: a set G of size-change graph is size-change terminating iff for every infinite
concatenation of graphs of G there is a path with infinitely many i>—edges

G(7) o G(g) e} G(g) o G(7) H

o theorem: let P be a set of dependency pairs for symbol f* and G be the corresponding
size-change graphs; if G is size-change terminating, then there is no infinite P-chain

® the proof is mostly identical to the one of the subterm criterion

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 72/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Size-Change Principle

Deciding Size-Change Termination
e definition: a set G of size-change graph is size-change terminating iff for every infinite
concatenation of graphs of G there is a path with infinitely many i>—edges
® checking size-change termination directly is not possible
® still, size-change termination is decidable
® theorem: let G be a set of size-change graphs; the following two properties are equivalent

1. G is size-change terminating
2. every maximal multigraph of G contains an edge i 5

® although the above theorem only gives rise to an EXPSPACE-algorithm, size-change
termination is in PSPACE;
in fact, size-change termination is PSPACE-complete

® despite the high theoretical complexity class, for sets of size-change graphs arising from
usual algorithms, the number of multigraphs is rather low

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 73/100

Termination — Size-Change Principle

Proof of Theorem: Easy Direction (1. implies 2.)
® assume that G is size-change terminating, and consider any maximal graph G
® since GG is a multigraph, it can be written as G = Gy ... *G,, with each G; € G

® consider infinite graph G1o...0G,0G10...0G,0...

® because of size-change termination, this graph contains path with infinitely many
i>—edges

® hence GoGo... also has a path with infinitely many z>—edges

® on this path some index i must be visited infinitely often

® hence there is a path of length & such that Go G o... o G (k-times) contains a path
from the leftmost argument ¢ to the rightmost argument ¢ with at least one Q-edge

e consequently G+G- ... +G (k-times) contains an edge i gy

® by maximality, G = G+G- ... G, and thus G contains an edge i 5

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 75/100

Termination — Size-Change Principle

Proof of Theorem

® the direction that size-change termination implies the property on maximal multigraphs
can be done in a straight-forward way

® the other direction is much more advanced and relies upon Ramsey’s theorem in its
infinite version

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 74/100

Termination — Size-Change Principle

Ramsey’s Theorem

® definition: given set X and n € N, we define X (™) 35 the set of all subsets of X of
size n; formally:
XMW ={Z|ZCXN|Z|=n}
® Ramsey's Theorem — Infinite Version
let n € N
let C' be a finite set of colors
let X be an infinite set
let ¢ be a coloring of the size n sets of X, ie, ¢c: X" — C

theorem: there exists an infinite subset Y C X such that all size n sets of Y have the same
color

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 76/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Proof of Theorem: Hard Direction (2. implies 1.)

RT (DCS @ UIBK)

Proof of Ramsey’s Theorem — Step Case n = m + 1

RT (DCS @ UIBK)

Termination — Size-Change Principle

consider some arbitrary infinite graph Goo G1 0 Gy o0...

for n < m define Gy = Gp* ... * G-

by Ramsey's theorem there is an infinite set I C N such that G,, ,, is always the same
graph G for all n,m € I with n <m

(n =2, C = multigraphs, X =N, c({n,m}) = Gpin{nm} maz{nm})

G is maximal: for ny < ng < ng with {n1,nq,n3} C I, we have

Gring =Gnio oo *Gry—1°Gpy® ... *Gpy—1 = Gpy g * Gy g, and thus G =G+ G
by assumption, G contains edge 4 5

let I = {ni,n9,...} with n; < ng < ... and obtain

G()OGlO...
=Gpo...0Gp 100G, 0...0Gp,_10Gp,0...0Gp,_10...
~Gpo...oGp, 100G oG o...

so that edge i Z i of G delivers path with infinitely many i>—edges

Part 4 — Checking Well-Definedness of Functional Programs 77/100

Termination — Size-Change Principle
define Xg = X

pick an arbitrary element ag of X

define Y = X0 \ {ao}; define coloring ¢ : Y™ — C as ¢(Z) = ¢(Z U {ao})

IH yields infinite subset X1 C Y{ such that all size m sets of X; have the same color ¢
w.r.t. ¢

hence, ¢({ag} U Z) = cq for all Z € X\™

next pick an arbitrary element a; of X to obtain infinite set X5 C X; \ {a1} such that
c{a1}U Z) = ¢ forall Z € X{™

by iterating this obtain elements ag, a1, az, ..
){—07)(17 XQ, ..
since C'is finite there must be some color d in the infinite list cg, ¢y, . .
infinitely often; define Y = {a; | ¢; = d}

., colors ¢g, c1,¢o ... and sets
. satisfying the above properties

. that occurs

Y has desired properties since all size n sets of Y have color d: if Z € Y™ then Z can
be written as {a;,,...,a;,} with iy < ... <ip; hence, Z = {a;,} UZ' with Z' € Xi(ﬁ)l,
ie, c(Z)=c¢y=d

Part 4 — Checking Well-Definedness of Functional Programs 79/100

Termination — Size-Change Principle

Proof of Ramsey’s Theorem

[

RT (DCS @ UIBK)

Ramsey’s Theorem — Infinite Version

let n € N

let C be a finite set of colors

let X be an infinite set

let ¢ be a coloring of the size n sets of X, ie, ¢c: X" — C

theorem: there exists an infinite subset Y C X such that all size n sets of Y have the same
color

proof of Ramsey’s theorem is interesting

® it is simple, in that it only uses standard induction on n with arbitrary ¢ and X
® it is complex, in that it uses a non-trivial construction in the step-case, in particular applying
the IH infinitely often

base case n = 0 is trivial, since there is only one size-0 set: the empty set

Part 4 — Checking Well-Definedness of Functional Programs 78/100

Termination — Size-Change Principle

Summary of Size-Change Principle

RT (DCS @ UIBK)

size-change principle abstracts dependency pairs into set of size-change graphs
if no critical graph exists (multigraph without edge i 5 i), termination is proven
soundness relies upon Ramsey's theorem

subsumes subterm criterion in the following sense:
if all DPs can be deleted by subterm criterion, then also size-change principle is successful

still no handling of defined symbols in dependency pairs as in

divf(Succ(z), Succ(y)) — div¥(minus(z, y), Succ(y))

Part 4 — Checking Well-Definedness of Functional Programs 80/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Reduction Pairs

Termination — Reduction Pairs

Applying Reduction Pairs

® recall definition: P-chain is sequence

s1o01 — t10q ¥ S909 — 1202 oy S303 — t303 ¥

such that all s; — ¢; € P and all s;0 € NF(—)

® demand s
® demand ¢ 7
e define P. =

o effect: pairs

t for all s — t € P to ensure s;0; 7= t;0;
r for all equations to ensure t;0; 7 $;110i+1
{s—>teP|s~t}

in P_ cannot be applied infinitely often and can therefore be removed

® theorem: if there is an infinite P-chain, then there also is an infinite P\ P._-chain

RT (DCS @ UIBK)

Part 4 — Checking Well-Definedness of Functional Programs

83/100

Termination — Reduction Pairs

Reduction Pairs

® recall definition: P-chain is sequence
5101 = t101 95F s909 = taoy B 5303 — tzog <

such that all s; — t; € P and all s;0; € NF(—)
® previously we used > on s; — t; to ensure decrease s;0; > t;0;
® previously we used s;0 € NF (<) and > to turn <5* into =
® now generalize > to strongly normalizing relation >
® now demand ¢ 77 r for equations to ensure decrease ;0 77 S;+104+1
e definition: reduction pair (=,) is pair of relations such that
® SN(>-)
® > is transitive
>~ and 7 are compatible: > o C >
both > and >~ are closed under substitutions: s =t — so 7. to

(~) <~>
7 is closed under contexts: s Zt— F(...,8...) s F(...,t...)
note: > does not have to be closed under contexts

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs

Example
® remaining termination problem

minus(z, Zero

minus(Succ(z), Succ(y nus(x Y)

)

) =
div(Zero, Succ(y)) = Zero

div(Succ(z), Succ(y))

(¥))

)
)
)) = Succ(div(minus(x, y), Succ(y)))
)

divf(Succ(z), Succ(y)) — div¥(minus(z, y), Succ(y))

® constraints

minus(z, Zero) 2

minus(Succ(z), Suce(y)) = mlnus(x y)

div(Zero, Succ(y)) 7z Zero

div(Succ(z), Succ(y)) 7 Succ(div(minus(z, y), Succ(y)))
)

div¥(Succ(z), Succ(y)) > div¥(minus(z,y), Succ(y))

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs

82/100

Termination — Reduction Pairs

84/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Reduction Pairs

Usable Equations

div¥(Succ(z), Succ(y)) — divf(minus(z,y), Succ(y))

® requiring £ 77 r for all program equations ¢ = r is quite demanding
® not incremental, i.e., adding other functions later will invalidate proof
® not necessary, i.e., argument evaluation in example only requires minus
® definition: the usable equations U/ w.r.t. a set P are program equations of those symbols
that occur in P or that are invoked by (other) usable equations; formally, let £ be set of
equations of program, let root (f(...)) = f; then U is defined as

s—teP tbu L=re& rootu=root/l

{=recld
V=r'eld v>u =re& rootu=root/l
l=recl

e observation whenever t;0; <5* s;11011 in chain, then only usable equations of {s; — ¢;}

can be used

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 85/100

Termination — Reduction Pairs

Example with Usable Equations
® remaining termination problem

minus(z, Zero) = x

)
minus(Succ(x), Succ(y)) = minus(z, y)
div(Zero, Succ(y)) = Zero
)

)

)

(v)

div(Succ(z), Succ(y)) = Succ(div(minus(z, y), Succ(y)))
(v)

divf(Succ(z), Succ(y)) — div¥(minus(z, y), Succ(y))

® constraints
minus(z, Zero) - x
minus(Succ(z), Succ(y)) Z minus(z, y)
divf(Succ(z), Succ(y)) = div¥(minus(z,), Succ(y))

® because of usable equations, applying reduction pairs becomes incremental: new function

definitions won't increase usable equations of DPs of previously defined equations
RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 87/100

Termination — Reduction Pairs

Applying Reduction Pairs with Usable Equations

® recall definition: P-chain is sequence
5101 — t10] F 8909 = taog BF 5303 — tzog < ...

such that all s; — t; € P and all s;,0 € NF(—)
® choose a symbol f* and define Pr:={s—te€P|root s= %}
® demand s ¢ forall s — 1 € Py
® demand ¢ = r for all [= r € U where U are usable equations w.r.t. Py
e define P = {s =t € Pp | s~ 1t}
o effect: pairs in P.. cannot be applied infinitely often and can therefore be removed

® theorem: if there is an infinite P-chain, then there also is an infinite P\ P._-chain

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 86/100

Termination — Reduction Pairs

Remaining Problem

® given constraints

minus(z, Zero) - x
minus(Succ(z), Succ(y)) Z minus(z, y)
div¥(Succ(z), Succ(y)) > divf(minus(z, y), Succ(y))

find a suitable reduction pair such that these constraints are satisfied
® many such reduction pairs are available (cf. term rewriting lecture)

® Knuth-Bendix order (constraint solving is in P)
® recursive path order (NP-complete)
® polynomial interpretations (undecidable)
® powerful
® intuitive
® automatable
® matrix interpretations (undecidable)
weighted path order (undecidable)

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 88/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Reduction Pairs

Polynomial Interpretation

® interpret each n-ary symbol F' as polynomial pp(z1,...,2y,)

® variables in polynomials range over N and polynomials have to be weakly monotone

xiZyinF(l‘h"wziw'w‘rn)ZpF(xla"':yiv"'vl‘n)

sufficient criterion: forbid subtraction and negative numbers in pp
® interpretation is lifted to terms by composing polynomials

[z] =«
[F(t1,...,tn)] = pr([ti], - - -, [ta])

o >) is defined as

(~ . o
s 7t iff V& € N [s] > [¢]
® (=, =) is a reduction pair, e.g.,
® SN (>) follows from strong-normalization of > on N
® > is closed under contexts since each pr is weakly monotone

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 89/100

Termination — Reduction Pairs

Solving Polynomial Constraints
® each polynomial constraint over N can be brought into simple form “p > 0" for some
polynomial p
® replace p1 > pa by p1 > p2 +1
¢ replace p1 > p2 by p1 —p2 >0
® the question of “p > 0" over N is undecidable
(Hilbert's 10th problem)
® approximation via absolute positiveness: if all coefficients of p are non-negative, then
p > 0 for all instances over N

® division example has trivial constraints

original simplified
> 0>0
l1+ax>2 1>0
4+2x+3y>3+x+3y 0>0
RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 91/100

Termination — Reduction Pairs

Example — Polynomial Interpretation
® given constraints
minus(x, Zero) = x
minus(Succ(z), Succ(y)) 7 minus(z, y)
div(Succ(z), Succ(y)) > div¥(minus(z,y), Succ(y))

and polynomial interpretation

Prinus(21, T2) = 21
DZero = 2
Psucc(71) =1+ 21
Daivt (T1, T2) = 1 + 322

we obtain polynomial constraints

[minus(z, Zero)] = = > = = [x]
[minus(Succ(z), Succ(y))] = 1 + = > = = [minus(z, y)]
[divé(Succ...)] =4+ 24 3y > 3+ + 3y = [divi(minus...)]

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 90/100

Termination — Reduction Pairs

Finding Polynomial Interpretations
® in division example, interpretation was given on slides
® aim: search for suitable interpretation

® approach: perform everything symbolically

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 92/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Reduction Pairs

Symbolic Polynomial Interpretations
® fix shape of polynomial, e.g., linear

pp(xl,...,xn) = F0+F1$1 =+ +Fn$n
where the F; are symbolic coefficients

Pminus(T1, T2) = 71
DZero = 2
Psucc(®1) = 14+ 21
Paivi (1, T2) = o1 + 322

concrete interpretation above becomes symbolic

Pminus(Z1, T2) = Mo + M1z + Mazy
Pzero = Lo
Psucc(z1) = So + S121
Paivt (%1, T2) = do + d121 + dazo

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 93/100

Termination — Reduction Pairs

Absolute Positiveness — Symbolic Example
® on symbolic polynomial constraints

(mo =+ mQZO) =+ (m1 — 1)$ >0
(m1So + m2Sp) + (M1S1 — my)x 4+ (MaS; —ma)y >0
(d1Sg —dimg — 1) + (d1S1 —dimy)z + (—dima)y >0

absolute positiveness works as before; obtain constraints

mo + moZy >0 m—1>0
m1So + m2Sp > 0 miSy —m; >0 m2S; —mg >0
dlsg—dlmo—lzo d151—d1m1 ZO —dlmQZO

® at this point, use solver for integer arithmetic to find suitable coefficients (in N)

® popular choice: SMT solver for integer arithmetic where one has to add constraints
mo > 07m1 > 07m2 > 0750 > Oasl > O:ZO Zoa

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 95/100

Symbolic Polynomial Constraints

® given constraints

minus(x, Zero) = x

minus(Succ(z), Succ(y)) 7 minus(z,y)
divF(Succ(z), Succ(y)) = div¥(minus(z, y), Succ(y))

® obtain symbolic polynomial constraints

mo + mMix + moZg > x

Termination — Reduction Pairs

mo + m1(So + S12) + m2(So + S1y) > mo + miz + may
do + dl(SO + Slas) + dQ(So + Sly) >dg + dl(mo + mix + mgy)
+d2(So + S19)

® and simplify to

RT (DCS @ UIBK)

(mo +maoZo) + (my — 1)z >0
(m150 + mQSo) + (m151 — ml)x + (m2$1 — mg)y >0
(d150 —dimg — 1) + (d1$1 — dlml)x + (—dlmg)y >0

Part 4 — Checking Well-Definedness of Functional Programs

Constraint Solving by Hand — Example
® original constraints

mg + maZg >0 m —1>0
m1Sg + mySy > 0 miS;—my >0
d1507d1m07120 d1517d1m120

® delete trivial constraints

mlflz()
m151—m120

dlsofdlmoflzo d1517d1m120

® conclusions

RT (DCS @ UIBK)

mp > 1
So>1

m2=()

d >1
S;>1
Si1>m

Part 4 — Checking Well-Definedness of Functional Programs

94/100

Termination — Reduction Pairs

m2S; —mg >0
7d1m2 Z 0

mS1 —mgy >0
7d1m2 > 0

96/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination — Reduction Pairs

Constraint Solving by SMT-Solver — Example

® original constraints

mo + moZy >0
m1Sg + mySg > 0

m17120

m1S1 —m; >0 moS1 —mgy >0

dlsofdlmoflzo dlsl—dlml 20 7d1m220
® encode as SMT problem in file division.smt2
(set-logic QF_NIA)
(declare-fun m0 () Int) (declare-fun d2 () Int)
(assert (>= m0 0)) (assert (>= d2 0))
(assert (>= (+ m0 (* m2 Z0)) 0))
(assert (>= (x (- 1) d1 m2) 0))
(check-sat)
(get-model)
(exit)
RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 97/100

Termination — Reduction Pairs

Constraint Solving by SMT-Solver — Scepticism

® polynomial interpretation found by SMT solving approach is generated by complex
(potentially buggy) tool

® however, termination is essential for well-defined programs, i.e., in particular to derive
correct theorems
® solution: certification

® search for interpretation can be done in arbitrary untrusted way

® write simple trusted checker that certifies whether concrete interpretation indeed satisfies all
constraints

® |ike solving NP-complete problem: positive answer can easily be verified

® in fact, this approach is heavily used in termination proving

® untrusted tools: AProVE, T1Tp, Terminator, ...
® trusted checker: CeTA; soundness formally proven in Isabelle/HOL

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 99/100

Termination — Reduction Pairs
Constraint Solving by SMT-Solver — Example Continued

® invoke SMT solver, e.g., Microsoft's open source solver Z3

cmd> z3 division.smt2

sat

(model
(define-fun d1 () Int 8)
(define-fun S1 () Int 15)
(define-fun SO () Int 8)
(define-fun Z0 () Int 0)
(define-fun m2 () Int 0)
(define-fun m1 () Int 12)
(define-fun m0 () Int 4)
(define-fun d2 () Int 0)
(define-fun d0 () Int 0)

)

® parse result to obtain polynomial interpretation

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 98/100

Termination — Reduction Pairs

Summary

® pattern-completeness and pattern-disjointness are decidable
® termination proving can be done via

dependency pairs

subterm criterion

size-change termination

polynomial interpretation

® termination proving often performed with help of SMT solvers

® increase reliability via certification: checking of generated proofs

RT (DCS @ UIBK) Part 4 — Checking Well-Definedness of Functional Programs 100/100

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Type-Checking with Implicit Variables
	Changing the Error Monad
	Processing Functional Programs
	Checking Pattern Disjointness
	Checking Pattern Completeness
	Termination – Dependency Pairs
	Termination – Subterm Criterion
	Termination – Size-Change Principle
	Termination – Reduction Pairs

