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Inference Rules for the Standard Model



Inference Rules for the Standard Model

Plan
¢ only consider well-defined functional programs, so that standard model is well-defined
® aim
® derive theorems and inference rules
which are valid in the standard model

® these can be used to formally reason about functional programs
as on slide 1/18 where associativity of append was proven

® examples
® reasoning about constructors
® Vz,y. Succ(z) =nat Succ(y) — T =nat ¥
® V. = Succ(z) =nat Zero
® getting defining equations of functional programs as theorems
® Vz,xs,ys.append(Cons(z, xs), ys) =List Cons(x,append(zs, ys))

® induction schemes
p(Zero) Vz.p(x) — ©(Succ(z))

° V. o(x)
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Inference Rules for the Standard Model

Notation — The Normal Form

® when speaking about <, we always consider some fixed well-defined functional program

® since every term has a unique normal form w.r.t. <, we can define a function
LT, V) = T(X,V), which returns this normal form and write it in postfix notation:

t [ := the unique normal of ¢t w.r.t. —
® using [, the meaning of symbols in the standard model can concisely be written as
FM(ty, .. ty) = F(tr,...,tn) ]

® proof
® universe of type 7 is T(C),, so t € T(C), implies t € NF(—)
o if F eC, then FM(ty,... tn) & F(ty,...,tn) = F(t1, ... ,tn) ]
o if FeD,then FM(ty, ... t,) @ F(ty,... . t0) ]
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. . Inference Rules for the Standard Model
The Substitution Lemma

® there are two possibilities to plug in objects into variables
® as assignment: a: V, — A,
result of [t], is an element of A
® as substitution: o : V; — T(X,V),
result of to is an element of T(X,V),

® substitution lemma: substitutions can be moved into assignment:

[to]o = [tls

where ((x) = [o(x)]a
® proof by structural induction on ¢

* [zo]a = [o(x)]a = B(z) = [z]s
[F(t1,...,th)o)a = [F(t10,...,t00)]a
= FM([[tlo]]a, oo [tnola)

= FM([[tl]]ﬂv ceey [[tnﬂﬁ)
= [F(ts,... )]
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Inference Rules for the Standard Model

Reverse Substitution Lemma in the Standard Model
® the substitution lemma holds independently of the model

® in case of the standard model, we have the special condition that A, = 7 (C)., so

® the universes consist of terms
® hence, each assignment a : V. — T (C). is a special kind of substitution
(constructor ground substitution)

® consequence: possibility to encode assignment as substitution

® reverse substitution lemma:
[t]a = tal
e proof by structural induction on ¢
* [z]a = a(x) © a(z) [ = xa [ where (x) holds, since a(z) € T(C)
) [Pt )l = P ([l Tall)
T pMtal,. .. thal) = Fitial, ... taal) ]

(cogﬂ.) F(tla, e ,tnOé)L = F(tlv s 7tn)05£
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L. . . Inference Rules for the Standard Model
Defining Equations are Theorems in Standard Model
® notation: 990 means that universal quantification ranges over all free variables that occur
in
example: if ¢ is append(Cons(z, zs), ys) =List Cons(z, append(zs, ys)) then V ¢ is

Vi, xs, ys. append(Cons(z, zs), ys) =|ist Cons(x, append(zs, ys))
e theorem: if £ = r is defining equation of program (of type 7), then
MEVE=,7

® consequence: conversion of well-defined functional programs into equations is now
possible, cf. previous problem on slide 1/20

proof of theorem

® by definition of = and = we have to show [(], = [r]. for all «
® via reverse substitution lemma this is equivalent to o[ = ra.f
® easily follows from confluence, since fa — ra

RT (DCS @ UIBK) Part 5 — Reasoning about Functional Programs 7/68


http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/01x1.pdf#page=20
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Inference Rules for the Standard Model

Axiomatic Reasoning

previous slide already provides us with some theorems that are satisfied in standard model

axiomatic reasoning:
take those theorems as axioms to show property ¢

added axioms are theorems of standard model, so they are consistent

example AX = {V/ =, r | { =ris def. eqn.}

show AX = ¢ using first-order reasoning in order to prove M |= ¢

(and forget standard model M during the reasoning!)

question: is it possible to prove every property ¢ in this way for which M |= ¢ holds?

answer for above example is “no”
® reason: there are models different than the standard model in which all axioms of AX are
satisfied, but where ¢ does not hold!
® example on next slide
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Inference Rules for the Standard Model

Axiomatic Reasoning — Problematic Model
® consider addition program, then example AX consists of two axioms

Vy. plus(Zero, y) =nat ¥
Vx,y. plus(Succ(x), y) =nat Succ(plus(z,y))

® we want to prove associativity of plus, so let ¢ be

Va,y, z. plus(plus(z,y), z) =Nat plus(z, plus(y, z))

e consider the following model M’

* AN =NU{z+1i|zez}={.. 14 -30,3 1.1

o ZeroM =0

® SuccM'(n) =n+1
n+m, ifneNormeN
n—m-+ %, otherwise
o =M ={(n,n) | n € Anat}
* M' = NAX, but M’ £ ¢: consider a(z) = 2 a(y) = §,a(z) = %

2
® problem: values in a do not correspond to constructor ground terms
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Inference Rules for the Standard Model

Godel’s Incompleteness Theorem

e taking AX as set of defining equations does not suffice to deduce all valid theorems of
standard model

® obvious approach: add more theorems to axioms AX
(theorems about =, induction rules, ...)

® question: is it then possible to deduce all valid theorems of standard model?
® negative answer by Godel's First Incompleteness Theorem

® theorem: consider a well-defined functional program that includes addition and
multiplication of natural numbers;
let AX be a decidable set of valid theorems in the standard model:
then there is a formula ¢ such that M |= ¢, but AX (£ ¢

® note: adding ¢ to AX does not fix the problem, since then there is another formula ¢’
such that M = ¢ and AX U {p} [~ ¢

® consequence: “proving ¢ via AX = ¢" is sound, but never complete

® upcoming: add more axioms than just defining equations,
so that still several proofs are possible
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Inference Rules for the Standard Model

Axioms about Equality

¢ we define decomposition theorems and disjointness theorems in the form of logical
equivalences

e foreachc: 71 X ... X7, = 7 € C we define its decomposition theorem as
V(5(7517 . 73Un,> =T C(’!/l, cee :l/'rz,) X1 =n Y1 N NTp =1, Un

and for all d: 7 x ... x 7, — 7 € C with ¢ # d we define the disjointness theorem as

—

Ve(xy, ..o, xn) = dyi, ..., yg) < false

e proof of validity of decomposition theorem:
MEq (T, yxn) =1 (Y1, Yn)
iff c(a(zr),...,a(x,)) =cla(yr),...,a(yn))
iff a(z1) =a(yr) and ...and a(z,) = a(y,)
iff MEq 21 =7, y1and...and M =, 2, =1, Un
iff MEqx1=r Y1 A...ANZp =7, Yn
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Inference Rules for the Standard Model

Axioms about Equality — Example

e for the datatypes of natural numbers and lists we get the following axioms

Zero =pNat Zero <— true
V,y.Succ(x) =Nat Succ(y) «— & =Nat ¥
Nil =[;st Nil <— true
Ve, xs,y, ys. Cons(x, zs) =List Cons(y, ys) «— & =Nat Y A TS =List YS

Vy. Zero =pat Succ(y) «— false
Va.Succ(x) =nat Zero <— false
Yy, ys. Nil =&t Cons(y, ys) «— false
Va, zs. Cons(z, zs) =List Nil <— false
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Inference Rules for the Standard Model

Induction Theorems
® current axioms are not even strong enough to prove simple theorems, e.g.,
V. plus(z, Zero) =nat ©
® problem: proofs by induction are not yet covered in axioms

® since the principle of induction cannot be defined in general in a single first-order formula,
we will add infinitely many induction theorems to the set of axioms, one for each property

® not a problem, since set of axioms stays decidable, i.e., one can see whether some
tentative formula is an element of the axiom set or not

® example: induction over natural numbers

® formula below is general, but not first-order as it quantifies over ¢

Vo(x : Nat). p(Zero) — (Vx. p(z) — ¢(Succ(z))) — V. p(z)

® quantification can be done on meta-level instead:
let  be an arbitrary formula with a free variable of type Nat; then
p(Zero) — (Yx. p(x) — ¢(Succ(z))) — V. p(x)

is a valid theorem; quantifying over ¢ results in induction scheme
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Inference Rules for the Standard Model

Induction Theorems — Example Instances

® induction scheme

w(Zero) — (Vx. p(z) — @(Succ(z))) — V. p(z)

® example: right-neutral element: p(z) := plus(x, Zero) =nat

plus(Zero, Zero) =gt Zero
— (V. plus(x, Zero) =Nat © — plus(Succ(x), Zero) =nat Succ(x))
— V. plus(x, Zero) =Nat ©

® example with quantifiers and free variables:
o(z) := Vy. plus(plus(z, y), ) =nat plus(z, plus(y, 2))

Vy. plus(plus(Zero, y), z) =Nat plus(Zero, plus(y, z))
— (V. (Vy. plus(plus(z, y), z) =nat plus(z, plus(y, 2)))

— (Vy. plus(plus(Succ(z), ), z) =nat plus(Succ(z), plus(y, 2))))
— V. Vy. plus(plus(z, y), 2) =nat plus(z, plus(y, z))
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Inference Rules for the Standard Model

Preparing Induction Theorems — Substitutions in Formulas

® current situation
® substitutions are functions of type ¥V — T(%,V)
® |lifted to functions of type 7(X,V) — T (%, V), cf. slide 3/22
® substitution of variables of formulas is not yet defined, but is required for induction formulas,
cf. notation ¢(z) — ¢ (Succ(z)) on previous slide
e formal definition of applying a substitution o to formulas
® trueo = true
* (mp)o ==(po)
* (P Ao =gpo Ao
® P(ty,...,tn)o = P(tio,...,t,0)
if  does not occur in o, i.e., o(x) = x and z ¢ Vars(o(y))

° (Vz.p)o = V. (po) for all y £
o (Vx.p)o = (Vy. olx/y])o if © occurs in o where
® yis a fresh variable, i.e., o(y) =y, y ¢ Vars(c(z)) for all z # y, and y is not a free variable of

P
® [z/y] is the substitution which just replaces = by y

® effect is a-renaming: just rename universally quantified variable before substitution to avoid
variable capture
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Inference Rules for the Standard Model

Examples
® substitution of formulas
e (Vz.p)o = V. (o) if z does not occur in o
o (Vx.p)o = (Vy. olx/y])o if © occurs in o where y is fresh

® example substitution applications
® p:=Vr.mx =Nty

® o[y/Zero] = Va. -z =Nat Zero no renaming required

® o[y/Succ(z)] = V.~ =Nar Succ(z) no renaming required

® o[y/Succ(x)] = Vz. - 2 =pat Succ(z) renaming [z/z] required
without renaming meaning will change: Va. —x =pat Succ(z)

® o[z/Succ(y)] =Vz. 2z =nat ¥ renaming [z/z] required

without renaming meaning will change: Vz. = Succ(y) =nat ¥

® example theorems involving substitutions

pla/Zero] — (Vy. plz/y] — plz/Succ(y)]) — V. ¢

RT (DCS @ UIBK) Part 5 — Reasoning about Functional Programs 16/68


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Inference Rules for the Standard Model

Substitution Lemma for Formulas

® example induction formula
plz/Zero] — (Vy. ¢lz/y] — ¢lz/Succ(y)]) — V. ¢

® proving validity of this formula (in standard model) requires another substitution lemma

about substitutions in formulas
® lemma: M =, po iff M =5 ¢ where B(z) := [o(2)]a
® proof by structural induction on ¢ for arbitrary e and o
M }:a P(tla”'atn)a
iff M =, P(t1o,...,t,0)
iff ([t10]as-- -, [tno]a) € PM
iff ([t1ls, - - -, [tnls) € PM
iff M ):5 P(ty,...,tn)
where we use the substitution lemma of slide 5 to conclude [t;0] = [t;] 5
* M =a (mp)o iff M=o =(po) iff M e, @o
iff M g o (by IH) iff M =5 ¢

® cases “true” and conjunction are proved in same way as negation
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Inference Rules for the Standard Model

Substitution Lemma for Formulas — Proof Continued

°* lemma: M =, po iff M =3 ¢ where f(z) = [o(2)]a
® proof by structural induction on ¢ for arbitrary o and o
® for quantification we here only consider the more complex case where renaming is required
* Mz, (Vo )0
iff M =, (Vy. plx/y])o for fresh y
iff M=o Vy. (¢lz/ylo)
iff M =apyi—a) @lz/ylo forallac A

iff M [=g: ¢ for all a € A where 3'(2) := [([z/y]o)(2)]afy:=a] (by IH)
iff M [=gipi=q) ¢ forall a € A only non-automatic step
iff M |=p V. ¢

® equivalence of 8’ and SB[z := a] on variables of ¢
* B'(z) = [([z/ylo)(@)]apy:=a) = [0(W)]aty:=a) = [Ylay:=a) = a and B[z := a](z) = a
® 2z is variable of ¢, z # x:
by freshness condition conclude z # y and y ¢ Vars(o(z)); hence
B'(2) = [([z/y]o) ()] aty=a) = [0(2)]afy:=a) = [0(2)]a and
Bl :=d(z) = B(2) = [0(2)]a
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Inference Rules for the Standard Model

Substitution Lemma in Standard Model
® substitution lemma: M =, ¢o iff M =3 ¢ where 3(z) = [o(z)]a

® |[emma is valid for all models

® in standard model, substitution lemma permits to characterize universal quantification by
substitutions, similar to reverse substitution lemma on slide 6
® lemma: let x : 7 €V, let M be the standard model
L M Eafe:=q ¢ iff M Eq plz/t]
2. M=o V. @ iff M =, pla/t] forall t € T(C),
® proof

1. first note that the usage of afz :=t] implies t € A, = T(C),;

by the substitution lemma obtain

M Eq pla/t]

iff M =g @ for B(2) = [[2/t](2)]a = afz := [tla](2)

iff M =qfpi=y @ ([tla =t since t € T(C))
2. immediate by part 1 of lemma
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Inference Rules for the Standard Model

Substitution Lemma and Induction Formulas

e substitution lemma (SL) is crucial result to lift structural
induction rule of universe 7(C), to a structural induction formula

® example: structural induction formula 1 for lists with fresh x, zs
= plys/Nil] — (Va, zs. plys/zs] — ¢[ys/Cons(z, zs)]) — Vys. p
1 2

® proof of M =, -
assume premises 1 (M =, ¢[ys/Nil]) and 2 and show M =, Yys. ¢:

by SL the latter is equivalent to “M =, ¢[ys/{] for all £ € T(C)List";
prove this statement by structural induction on lists

® Nil: showing M =4 ¢[ys/Nil] is easy: it is exactly premise 1
® Cons(n,?): use SL on premise 2 to conclude
M Ea (plys/zs] — plys/Cons(xz, zs)])[x/n, xs /(]
hence
M [Fa ¢lys/t] — ¢lys/Cons(n, £)]
and with IH M =, ¢[ys/] conclude M =, ¢[ys/Cons(n, )]
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. Inference Rules for the Standard Model
Freshness of Variables
e example: structural induction formula for lists with fresh x, xs

olys/Nil] — (Va, xs. plys/zs] — plys/Cons(z, xs)]) — Vys. ¢

® why freshness required? isn't name of quantified variables irrelevant?

® problem: substitution is applied below quantifier!
® example: let us drop freshness condition and “prove” non-theorem

M EV, zs, ys. ys =List Nil V ys =List Cons(z, zs)

® by semantics of Vx, xs. . .. it suffices to prove
M =4 Vys. ys =Lise Nil V ys =i Cons(z, xs)
©
® apply above induction formula and obtain two subgoals M |=,, ... for
® o[ys/Nil] which is Nil =(ist Nil V Nil =Lix Cons(z, zs)

® Vz,zs. plys/zs] — ¢[ys/Cons(z, zs)] which is
Va,zs. ... — Cons(z, zs) =it Nil V Cons(z, zs) =List Cons(z, zs)

® solution: rename variables in induction formula whenever required
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Inference Rules for the Standard Model

Structural Induction Formula
e finally definition of induction formula for data structures is possible

® consider dataT=c1:7T1 X ... XTim —T

| en i1 X oo X Tpm,, = T
® let x € V;, let v be a formula, let variables =1, 29, ... be fresh w.r.t. ¢

® for each ¢; define

©i =V, T, /\ olz/xz;] | — elr/ci(zr, ..., Tm,)]

IH for recursive arguments

e the induction formula is ¥ (p1 — ... — pp — VT, )
o theorem: M =V (o1 — ... — @, — V. @)
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Inference Rules for the Standard Model

Proof of Structural Induction Formula

° to prove: M =V (01 — ... — op — V. )

e V-intro: M =, (p1 — ... — @, — V. ) for arbitrary «
e —-intro: assume M =, @; for all i and show M =, Vz. ¢
® V-intro via SL: show M =, ¢[z/t] for all t € T(C)~

® prove this by structural induction on ¢ w.r.t. induction rule of 7(C),
(for precisely this «, not for arbitrary «)

® induction step for each constructor ¢; : 7;1 X ... X Tjm; — T

® aim: M =, plr/ei(ty, . tm,)] IH: M =4 @[z /t;] for all j such that 7, ; =7
® use assumption M =, ¢;, i.e., (here important: same «)
MEL Ve, o, ( /\ plz/x;]) — olz/ci(z1, ..., Tm,)]
J5Ti,j =T
® use SL as V-elimination with substitution [x1/t1,. .., Tm,/tm,], obtain
Mo (N el/t]) — ela/eilty, - tm,)]
JiTi =T

® combination with IH yields desired M =, plz/c;(t1,. .. tm,)]
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Inference Rules for the Standard Model
Summary: Axiomatic Proofs of Functional Programs

® given a well-defined functional program, define a set of axioms AX consisting of

® equations of defined symbols (slide 7)
® axioms about equality of constructors (slide 11)
® structural induction formulas (slide 22)

® instead of proving M = ¢ deduce AX = ¢
e fact: standard model is ignored in previous step
® question: why all these efforts and not just state AX?

® reason:

having proven M = 4 for all ¢y € AX
implies that AX is consistent!

e recall: already just converting functional program equations naively into theorems led to
proof of 0 = 1 on slide 1/20, i.e., inconsistent axioms,
and AX now contains more complex axioms than just equalities
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Example: Attempt to Prove Associativity of Append via AX

® task: prove associativity of append via natural deduction and AX
¢ define ¢ := append(append(zs, ys), zs) =Lis: append(zs, append(ys, 25))

1. show Vs, ys, zs. ¢

2. V-intro: show ¢ where now zs, ys, zs are fresh variables

3. to this end prove intermediate goal: Vzs.

4. applying induction axiom @[zs/Nil] — (Vu, us. p[zs/us] — @[zs/Cons(u, us)]) — Vzs. p
in combination with modus ponens yields two subgoals, one of them is ¢[zs/Nil], i.e.,
append(append(Nil, ys), zs) =it append(Nil, append(ys, zs))
use axiom Vys. append(Nil, ys) =ist ys
V-elim: append(Nil, append(ys, zs)) =List append(ys, zs)
7. at this point we would like to simplify the rhs in the goal to obtain obligation

append(append(Nil, ys), z8) =List append(ys, zs)
8. this is not possible at this point: there are missing axioms
® —| . is an equivalence relation

® —is is a congruence; required to simplify the Ihs append(-, zs) at -
[ ]

A

® next step: reconsider the reasoning engine and the available axioms
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Equational Reasoning and Induction



Equational Reasoning and Induction

Reasoning about Functional Programs: Current State
e given well-defined functional program, extract set of axioms AX that are satisfied in
standard model M

® equations of defined symbols
® equivalences regarding equality of constructors
® structural induction formulas

e for proving property M |= ¢ it suffices to show AX | ¢

® problems: reasoning via natural deduction quite cumbersome

® explicit introduction and elimination of quantifiers
® no direct support for equational reasoning

® aim: equational reasoning

® implicit transitivity reasoning: from a =, b =, ¢ =, d conclude a =, d
® equational reasoning in contexts: from a =, b conclude f(a) =, f(b)

® in general: want some calculus - such that - ¢ implies M = ¢
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Equational Reasoning and Induction

Equational Reasoning with Universally Quantified Formulas

e for now let us restrict to universally quantified formulas

® we can formulate properties like
® Vzs. reverse(reverse(zs)) =List TS
® Vs, ys. reverse(append(xs, ys)) =List append(reverse(ys), reverse(xs))
® VY, y. plus(z,y) =nat plus(y, x)

but not

® VY. Jy. greater(y,x) =pool True

® universally quantified axioms
® equations of defined symbols
® Vy. plus(Zero,y) =nat ¥
® Vz,y. plus(Succ(z),y) =nat Succ(plus(z,y))

[ ]
® axioms about equality of constructors
® Vz,y. Succ(x) =nat Succ(y) «— T =nat Y

® Vzx. Succ(z) =nat Zero <— false
°

® but not: structural induction formulas
* ply/Zero] — (Vz. ply/x] — ¢ly/Succ(z)]) — Vy. ¢
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Equational Reasoning and Induction

Equational Reasoning in Formulas
® so far: —¢ replaces terms by terms using equations £ of program
® upcoming: ~- to simplify formulas using universally quantified axioms
® formal definition: let AX be a set of axioms; then ~~ 4 x is defined as

true A p ~ax @ p Atrue ~>ax @ false A ¢ ~» 4 x false

—false ~» 4 x true —true ~» 4 x false

Ve =reAX s — {=r} s Ve =recAX t = {e=r} t’

SZTtWAXSIZTt SZTtWAXSZTt/
V(l=rr+p)e AX
bo =; 10 ~>Ax QO t =;t ~>4x true
O~ ax ¢ Y~ ax Y 0~ ax ¢

PN ~ax @AY @AY ~ax @AY o v ax g

consisting of Boolean simplifications, equations, equivalences and congruences;
often subscript AX is dropped in ~ 4x when clear from context
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Equational Reasoning and Induction

Soundness of Equational Reasoning

® we show that whenever AX is valid in the standard model M, then
® p~ax Y implies M =, ¢ «— o for all
® so in particular M EVp «— 9

® immediate consequence: ¢ ~=7 - true implies M = 999
e define calculus: -V ¢ if o ~"% x true

® example

plus(Zero, Zero) =pat times(Zero, x)
~ Zero =pat times(Zero, x)
~> Zero =gt Zero

~> true

and therefore M = Vx. plus(Zero, Zero) =g times(Zero, )
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Equational Reasoning and Induction

Proving Soundness of ~+: ¢ ~» 1) implies M =, ¢ «— ¢
by induction on ~- for arbitrary «
o~
® case p AP~ @ N
® |H: M =, ¢ +— ¢’ for arbitrary «
® conclude M =, o A9
iff M=o @ and M =4 ¢
iff M =, ¢ and M =, ¢ (by IH)

iff M [=a ¢ A
® intotall M=, oA — ' A

® all other cases for Boolean simplifications and congruences are similar
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Equational Reasoning and Induction

Proving Soundness of ~+: ¢ ~ ¢ implies M =, ¢ «— ¢

9(€:T7w—><p)€AX
® case lo = ro ~ po
® premise M = V(E =, T p),
so in particular M |=g £ =; 7 <— ¢ for §(z) = [o(2)]a
® conclude M =, lo =, ro
iff [¢]s = [r]s (by SL)
iff M =5 ¢ (by premise)
iff M [=o @o (by SL)
® in total: M =, lo =; ro +— @o
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Equational Reasoning and Induction

Proving Soundness of ~~: ¢ ~~ 1) implies M =, ¢ +— ¢

Vi=,recAX s (o=} 8

® case s=,t~ 8 =1
* premise M =V { =, r, and s = C[lo] and s = C[ro] where C' is some context, i.e., term
with one hole which can be filled via [/]
® conclude [s]
= [Clto]]a
= C[lo]af (by reverse SL)
= Calloa)[ = Caltoa ][

Y cafroaf][ = Cafroal |

= Clrolaf

= [C[ro]]a (by reverse SL)

= [5']a
® reason for (x): premise implies

[4s = [r]s for B(z) = [o(z)]a.

hence [¢o], = [ro]a (by SL),

and thus, loa [ = roa | (by reverse SL)
® intotall M=, s=,t+—s =1
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Equational Reasoning and Induction

Comparing ~~ with —

® < rewrites on terms whereas ~~ also simplifies Boolean connectives and uses axioms
about equality =,
® —; uses defining equations of program whereas ~~ 4x is parametrized by set of axioms
® in particular proven properties like Vxs. reverse(reverse(xs)) =it s can be added to set of
axioms and then be used for ~»
® this addition of new knowledge greatly improves power, but can destroy both termination
and confluence
example: adding Vizs. xs =| s reverse(reverse(zs)) to AX is bad idea
® heuristics or user input required to select subset of theorems that are used with ~~
® new equations should be added in suitable direction

® obvious: Vzs. reverse(reverse(zs)) =List xs is intended direction
® direction sometimes not obvious for distributive laws

Va,y, z. times(plus(z,y), z) =nat plus(times(z, z), times(y, z))
reason for left-to-right: more often applicable

reason for right-to-left: term gets smaller
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Equational Reasoning and Induction

Limits of ~~

e ~ only works with universally quantified properties
® defining equations
® equivalences to simplify equalities =,
® newly derived properties such as Vzs. reverse(reverse(zs)) =List 8
® -~ can not deal with induction axioms such as the one for associativity of append (app)

(Vys, zs. app(app(Nil, ys), zs) =List app(Nil,app(ys, 2s)))
— (Va, s.(Vys, zs. app(app(zs, ys), zs) =List app(zs, app(ys, zs))) —
(Vys, zs. app(app(Cons(z, zs), ys), zs) =List app(Cons(z, zs), app(ys, 2s))))
— (Vas, ys, zs. app(app(zs, ys), zs) =List app(zs, app(ys, 2s)))

® in particular, ~ often cannot perform any simplification without induction proving

app(app(zs, ys), zs) =List app(zs,app(ys, zs)))

cannot be simplified by ~» using the existing axioms
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Equational Reasoning and Induction

Induction in Combination with Equational Reasoning

® aim: prove equality Vi=rr
® approach:

® select induction variable x
® reorder quantifiers such that V¢ =, r is written as Vz.p
® build induction formula w.r.t. slide 22

p1—> ... — P — VT. 0

(no outer universal quantifier, since by construction above formula has no free variables)
® try to prove each ¢; via ~»
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Equational Reasoning and Induction

Example: Associativity of Append

® aim: prove equality Vs, ys, zs. app(app(zs, ys), zs) =List app(zs, app(ys, z5))
® approach:

® select induction variable zs
reordering of quantifiers not required
the induction formula is presented on slide 35

p1 is

Vys, zs. app(app(Nil, ys), zs) =List app(Nil, app(ys, zs))
so we simply evaluate
app(app(Nil, ys), zs) =List app(Nil, app(ys, 25))
~~ app(ys, zs) =List app(Nil, app(ys, zs))

~ app(ys, zs) =List app(ys, 25)
~~ true
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Equational Reasoning and Induction

Example: Associativity of Append, Continued
® proving Vs, ys, zs. app(app(zs, ys), zs) =List app(zs, app(ys, 2s))
® approach: ...
® oy is
Va, xs.(Vys, zs. app(app(zs, ys), zs) =Lt app(zs, app(ys, zs))) —
(Yys, zs. app(app(Cons(z, zs), ys), zs) =vist app(Cons(z, zs), app(ys, 2s)))

so we try to prove the rhs of — via ~

app(app(Cons(z, zs), ys), zs) =List app(Cons(z, zs), app(ys, 2s))
~> app(Cons(z, app(zs, ys)), zs) =List app(Cons(z, zs), app(ys, 25))
~ Cons(z, app(app(zs, ys), zs)) =List app(Cons(z, xs), app(ys, 2s))
~ Cons(z, app(app(zs, ys), 2s)) =List Cons(z, app(zs,app(ys, 2s)))

~ & =Nat T A app(app(zs, ys), 28) =List app(zs, app(ys, 2s)
~> true A app(app(s, ys), 28) =List app(s, app(ys, 2s))

~ app(app (s, ys), z5) =List app(xs,app(ys, 25))

= true

® problem: we get stuck, since currently IH is unused
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Equational Reasoning and Induction

Integrating IHs into Equational Reasoning

e recall structure of induction formula for formula ¢ and constructor ¢;:

Qi =T, .., Ty /\ olr/z;] | — elx/ci(z1, ..., 2m,)]

J5Ti i =T

IHs for recursive arguments

e idea: for proving y; try to show p[z/c;(x1,...,Tm,)] by evaluating it to true via ~»,
where each IH ¢[z/z;] is added as equality
® append-example
® aim:
app(app(Cons(zx, s), ys), 2s) =vist app(Cons(z, xs), app(ys, 2s)) ~" true
® add IH Vys, zs. app(app(s, ys), zs) =List app(zs, app(ys, zs)) to axioms
® problem IH ¢[x/z;] is not universally quantified equation, since variable z; is free
(in append example, this would be zs)

RT (DCS @ UIBK) Part 5 — Reasoning about Functional Programs 39/68


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Equational Reasoning and Induction

Integrating IHs into Equational Reasoning, Continued

® to solve problem, extend ~~ to allow evaluation with equations that contain free variables

® add two new inference rules

Vi.b=,r€ AX s {o=r} s’ Vi.l=,re€AX t {r=0} t

sthwaslth SZTtWAXS:Tt/

where in both inference rules, only the variables of & may be instantiated in the equation
¢ = r when simplifying with <; so the chosen substitution ¢ must satisfy o(y) = y for
ally ¢ @

® the swap of direction, i.e., the r = £ in the second rule is intended and a heuristic

® either apply the IH on some lhs of an equality from left-to-right
® or apply the IH on some rhs of an equality from right-to-left

in both cases, an application will make both sides on the equality more equal
® another heuristic is to apply each IH only once
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Equational Reasoning and Induction

Example: Associativity of Append, Continued
® proving Vs, ys, zs. app(app(zs, ys), zs) =List app(zs, app(ys, 2s))
® approach: ...
® oy is vV, zs.(Vys, zs. app(app(zs, ys), zs) =List app(xs, app(ys, z5))) —>
(Vys, zs. app(app(Cons(z, zs), ys), zs) =vList app(Cons(z, zs), app(ys, 2s)))

so we try to prove the rhs of — via ~» and add

Vys, zs. app(app(zs, ys), zs) =List app(ws, app(ys, 25))

to the set of axioms (only for the proof of (3); then

app(app(Cons(z, xs), ys), zs) =List app(Cons(x, xs), app(ys, 2s))
~* app(app(zs, ys), zs) =List app(xs,app(ys, zs))
~ app(zs,app(ys, zs)) =List app(s, app(ys, 2s))
~ true

here it is important to apply the IH only once, otherwise one would get

app(zs, app(ys, zs)) =List app(app(zs, ys), zs)
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Equational Reasoning and Induction

Integrating IHs into Equational Reasoning, Soundness
® aim: prove M |= ¢; for

(o] ZQA@D]—)l/J
J

~——
IHs
where we assume that ¢ ~»* true with the additional local axioms of the IHs v;
® hence show M |=, v under the assumptions M |=, 1; for all IHs 1);
® by existing soundness proof of ~» we can nearly conclude M =, ¢ from ) ~>* true
® only gap: proof needs to cover new inference rules on slide 40
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Equational Reasoning and Induction

Soundness of Partially Quantified Equation Application
Vi A =rr€AX s —=p_n s'
® case s=rt~s =t with o(y) =y forall y ¢ &

® premise is M =, VZ. £ =, r (and not M =V £ =, r)
and s = C[lo] and s’ = C[ro] as before

® conclude [s]o = [$']« as on slide 33 as main step to derive M =, s =, t «— s’ =, ¢

® only change is how to obtain [{]z = [r]g for B(z) = [o(z)]a

® new proof

® let¥=ux1,...,Tk

® premise implies [(] o[z, :=ay,...,z5:=ar] = [Tlalz1:=ar,...,ux:=a,] TOr arbitrary a;, so in particular
for a; = [o(zi)]a

® it now suffices to prove that a[z1 := a1,...,zr :=ar] =

® consider two cases

® for variables z; we have

afrr = ay,. .. o = akl(i) = ai = [o(2:)]a = Blai)
® for all other variables y ¢ Z we have

alry = a1, ...z, = akl(y) = a(y) = [Y]a = [0(y)]a = B(y)
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Equational Reasoning and Induction

Summary

framework for inductive proofs combined with equational reasoning
apply induction first

then prove each case V /\ 9); — 4 via evaluation 1) ~»* true where IHs 1); become local
axioms

free variables in |Hs (induction variables) may not be instantiated by ~-, all the other
variables may be instantiated (“arbitrary” variables)

heuristic: apply IHs only once

upcoming: positive and negative examples, guidelines, extensions
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Examples, Guidelines, and Extensions



Examples, Guidelines, and Extensions

Associativity of Append

® program
app(Cons(x, as), ys) = Cons(x, app(as, ys))

app(Nil, ys) = ys

formula .
Vapp(app(zs, ys), zs) =List app(zs,app(ys, zs))

® induction on zs works successfully

what about induction on ys (or zs)?

base case already gets stuck

app(app(zs, Nil), zs) =ist app(zs, app(Nil, zs))
~~ app(app(zs, Nil), zs) =(ist app(as, 2s)

problem: ys is argument on second position of append,
whereas case analysis in |hs of append happens on first argument

® guideline: select variables such that case analysis triggers evaluation
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Examples, Guidelines, and Extensions

Commutativity of Addition

[}
program plus(Succ(z),y) = Succ(plus(z,y))

plus(Zero,y) =y
e formula -
v p|US(3§', y) —Nat pIus(y, 33')
® let us try induction on x

® base case already gets stuck

plus(Zero,y) =Nat plus(y, Zero)
~> Y =Nat Plus(y, Zero)

e final result suggests required lemma: Zero is also right neutral
® V. plus(x,Zero) =nat « can be proven with our approach

® then this lemma can be added to AX and base case of commutativity-proof can be
completed
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Examples, Guidelines, and Extensions

Right-Zero of Addition

® program
plus(Succ(z),y) = Succ(plus(z,y))

plus(Zero,y) =y

formula -
V plus(z, Zero) =nat
® only one possible induction variable: z

® base case:

plus(Zero, Zero) =Nat Zero ~» Zero =nat Zero ~> true

e step case adds IH plus(x, Zero) =nat © as axiom and we get
plus(Succ(x), Zero) =nat Succ(z)
~ Succ(plus(x, Zero)) =nat Succ(x)
~ Succ(z) =Nat Succ(x)

~> true
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Examples, Guidelines, and Extensions
Commutativity of Addition
e formula

V plus(, y) =nat plus(y, =)

step case adds IH Vy. plus(z,y) =nat plus(y, ) to axioms and we get

plus(Succ(z),y) =Nat plus(y, Succ(z))
~ Succ(plus(x,y)) =Nat plus(y, Succ(z))
)

s Succ(plus(y, ) =nat plus(y, Suce(x))

final result suggests required lemma: Succ on second argument can be moved outside

Va,y. plus(z, Succ(y)) =nat Succ(plus(x,y)) can be proven with our approach
(induction on )

then this lemma can be added to AX and commutativity-proof can be completed
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Examples, Guidelines, and Extensions

Fast Implementation of Reversal

® program
app(Cons(z, zs), ys) = Cons(z, app(zs, ys))

app(Nil, ys) = ys

rev(Cons(z, zs)) = app(rev(zs), Cons(z, Nil))
rev(Nil) = Nil

r(Cons(z, zs), ys) = r(zs, Cons(z, ys))

r(Nil, ys) = ys

rev_fast(xzs) = r(zs, Nil)
® aim: show that both implementations of reverse are equivalent, so that the naive
implementation can be replaced by the faster one

Vas. rev_fast(zs) =pist rev(zs)

® applying ~ first yields desired lemma
Vas. r(xs, Nil) =Lis rev(xs)

RT (DCS @ UIBK) Part 5 — Reasoning about Functional Programs 50/68


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Examples, Guidelines, and Extensions

Generalizations Required
e for induction for the following formula there is only one choice: zs

Vas. r(xs, Nil) =Lis rev(xs)

® step-case gets stuck
r(Cons(z, zs), Nil) =i rev(Cons(z, zs))
~* r(zs, Cons(z, Nil)) =|;st app(rev(zs), Cons(z, Nil))
~ r(zs, Cons(z, Nil)) =List app(r(zs, Nil), Cons(z, Nil))

problem: the second argument Nil of r in formula is too specific
® solution: generalize formula by replacing constants by variables
® naive replacement does not work, since it does not hold

Vs, ys. r(zs, ys) =List rev(xs)
® creativity required
Vs, ys. r(zs, ys) =List app(rev(zs), ys)
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Examples, Guidelines, and Extensions

Fast Implementation of Reversal, Continued

® proving main formula by induction on zs, since recursion is on zs
Vs, ys. r(zs, ys) =List app(rev(xs), ys)
® base-case ) )
r(Nil, ys) =List app(rev(Nil), ys)
" ys =gt Ys ~ true

® step-case solved with associativity of append and IH added to axioms
r(Cons(z, zs), ys) =List app(rev(Cons(z, xs)), ys)
~ r(zs,Cons(z, ys)) =List app(rev(Cons(z, zs)), ys)
~ app(rev(zs), Cons(z, ys)) =List app(rev(Cons(z, xs)), ys)
, Cons(x, ys)) =List app(app(rev(zs), Cons(z, Nil)), ys)
, Cons(x, ys)) =List app(rev(zs), app(Cons(z, Nil), ys))
, Cons(x, ys)) =List app(rev(zs), Cons(x, app(Nil, ys)))

, Cons(x, ys)) =List app(rev(zs), Cons(x, ys)) ~> true
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Examples, Guidelines, and Extensions

Fast Implementation of Reversal, Finalized
® now add main formula to axioms, so that it can be used by ~~

Vs, ys. r(zs, ys) =List app(rev(zs), ys)
® then for our initial aim we get

rev_fast(xs) =List rev(xs)
~ r(zs, Nil) =| st rev(axs)

~> app(rev(zs), Nil) =Lt rev(xzs)
® at this point one easily identifies a missing property
Vas. app(xs, Nil) =Lt xs

which is proven by induction on xs in combination with ~~

e afterwards it is trivial to complete the equivalence proof of the two reversal
implementations
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Another Problem

Examples, Guidelines, and Extensions

® consider the following program

® and the desired property

half(Zero) = Zero
half (Succ(Zero)) = Zero
half (Succ(Succ(x))) = Succ(half(x))
le(Zero,y) = True
le(Succ(x), Zero) = False
)

c(y)) = le(z,y)

le(Succ(z), Suc

Vz. le(half(z), x) =goo True

® induction on z will get stuck, since the step-case Succ(x) does not permit evaluation

w.r.t. half-equations

® better induction is desirable, namely rule that corresponds to algorithm definition (e.g. of
half) with cases that correspond to patterns in lhss
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Examples, Guidelines, and Extensions

Induction w.r.t. Algorithm

® induction w.r.t. algorithm was informally performed on slide 4/36

® select some n-ary function f
® each f-equation is turned into one case
® for each recursive f-call in rhs get one IH

e example: for algorithm

half(Zero) = Zero
half (Succ(Zero)) = Zero
half (Succ(Succ(x))) = Succ(half(x))

the induction rule for half is

ply/Zero]
— @[y /Succ(Zero)]

— (Y. ply/z] — ¢[y/Succ(Succ(z))])
— Yy.

RT (DCS @ UIBK) Part 5 — Reasoning about Functional Programs 55/68


http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/04x1.pdf#page=36
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Induction w.r.t. Algorithm

® induction w.r.t. algorithm formally defined

let f be m-ary defined function within well-defined program

let there be k defining equations for f

let ¢ be some formula which has exactly n free variables z1,...,z,
then the induction rule for f is

Pind, f ‘= 'L/Jl —_— ... —>’l/)k —>Vm1,...,xn. ©
where for the i-th f-equation f({1,...,¢,) =7 we define
P; =V /\ olz1/r1, ., T /mn) | — @lxi/l, .. T /]

> f(r1,.,mn)

where V ranges over all variables in the equation

® properties

[ ]

°

°
RT (DCS @ UIBK)

M = @ina,r; reason: pattern-completeness and termination (SN (< o I>))
heuristic: good idea to prove properties V ¢ about function f via ¢ ina
reason: structure will always allow one evaluation step of f-invocation
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Back to Example

® consider program

e for property

half(Zero) = Zero
half (Succ(Zero)) = Zero
half (Succ(Succ(x))) = Succ(half(x))
le(Zero,y) = True
le(Succ(x), Zero) = False
)

le(Succ(z), Succ(y)) = le(z,y)

Vz. le(half(z), x) =gool True

Examples, Guidelines, and Extensions

chose induction for half (and not for le), since half is inner function call; hopefully
evaluation of inner function calls will enable evaluation of outer function calls

RT (DCS @ UIBK)
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Examples, Guidelines, and Extensions

(Nearly) Completing the Proof
® applying induction for half on
PPN Vz. le(half(z), x) =gool True

turns this problem into three new proof obligations
® le(half(Zero), Zero) =poo True
® le(half(Succ(Zero)), Succ(Zero)) =gool True
® le(half(Succ(Succ(z))), Succ(Succ(x))) =gool True
where le(half(z), z) =gool True can be assumed as IH

e the first two are easy, the third one works as follows

le(half (Succ(Succ(x))), Succ(Succ(x))) =gool True
~~ le(Succ(half(x)), Succ(Succ(x))) =pool True
~ le(half(z), Succ(x)) =gool True
® here there is another problem, namely that the IH is not applicable

® problem solvable by proving an implication like
le(x,y) =gool True — le(x, Succ(y)) =gool True;
uses equational reasoning with conditions; covered informally only
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Equational Reasoning with Conditions

e generalization: instead of pure equalities also support implications
e simplifications with ~» can happen on both sides of implication,
since ~~ yields equivalent formulas
e applying conditional equations triggers new proofs: preconditions must be satisfied

® example:

® assume axioms contain conditional equality ¢ — ¢ =, r, e.g., from IH
® current goal is implication ¢ — Clo] =, t

® we would like to replace goal by » — C[ro] =, ¢

® but then we must ensure ¥ — @0, e.g., via ) —> po ~~* true

® ~» must be extended to perform more Boolean reasoning

® not done formally at this point
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Equational Reasoning with Conditions, Example
® property

le(z,Yy) =Bool True — le(x, Succ(y)) =pool True

® apply induction on le
e first case

le(Zero, y) =gool True — le(Zero, Succ(y)) =pool True
~ le(Zero,y) =gool True — True =gool True
~ le(Zero,y) =gool True — true

~+ true
® second case

le(Succ(z), Zero) =pool True — le(Succ(x), Succ(Zero)) =goo True
~~ False =gool True — le(Succ(z), Succ(Zero)) =gool True
~ false — le(Succ(z), Succ(Zero)) =pool True

~> true
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Equational Reasoning with Conditions, Example
® property
le(z,Yy) =Bool True — le(x, Succ(y)) =pool True
® third case has |H

le(x, y) =Bool True — le(x, Succ(y)) =gool True

and we reason as follows

le(Succ(z), Succ(y)) =Bool True — le(Succ(x), Succ(Succ(y))) =gool True
~ le(x, y) =Bool True — le(Succ(z), Succ(Succ(y))) =pool True
~ le(z,y) =Bool True — le(x, Succ(y)) =goo True
~ le(x,y) =Bool True — True =pool True
~ le(x,y) =Bool True —» true
~> true

® proof of property Vz. le(half(x), z) =gool True finished
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Final Example: Insertion Sort

® consider insertion sort

le(Zero,y) = True
le(Succ(z), Zero

le(Succ(z), Succ(y)

False

le(z, y)

if (True, s, ys) = xs

insort(z, Nil) = Cons(z, Nil)

insort(z, Cons(y, ys) (Ie(x y), Cons(z, Cons(y, ys)), Cons(y, insort(x, ys)))

sort(Nil

)=
)=
)=
)=
if (False, s, ys) = ys
)
)=
)
) =

sort(Cons(z, zs) msort(:r7 sort(zs))

® aim: prove soundness, e.g., result is sorted

® problem: how to express “being sorted”?

® in general: how to express properties if certain primitives are not available?
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Expressing Properties

® solution: express properties via functional programs

sort(Cons(zx, zs)) = insort(z, sort(zs))

algorithm above, properties for specification below

and(True, b) =
and(False, b) = False
all_le(z, Nil) = True
all_le(z, Cons(y, ys)) = and(le(z, y), all_le(z, ys))
sorted(Nil) = True
sorted(Cons(z, zs)) = and(all_le(z, zs), sorted(zs))

e example properties (where b =goo True is written just as b)
® sorted(insort(z, xs)) =pool sorted(zs)
® sorted(sort(zs))
® important: functional programs for specifications should be simple;
they must be readable for validation and need not be efficient
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Example: Soundness of sort

® already assume property of insort:
Vx, xs. sorted(insort(z, xs)) =pool sorted(xs) (%)

speculative proofs are risky: conjectures might be wrong

® property Vzs. sorted(sort(zs)) is shown by induction on s

® base case:
sorted(sort(Nil))

~~ sorted(Nil)
~> True (recall: syntax omits =poo True)

~> true

e step case with IH sorted(sort(zs)):
sorted(sort(Cons(z, zs)))

~ sorted(insort(x, sort(zs)))
¢ sorted(sort(xs))
~~ True
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Example: Soundness of insort

® prove Vz, zs. sorted(insort(x, zs)) =pool Sorted(zs) by induction on xs
® base case:
sorted(insort(z, Nil)) =pgoos sorted(Nil)
~ sorted(Cons(z, Nil)) =pool sorted(Nil)
~- and(all_le(zx, Nil), sorted(Nil)) =gool sorted(Nil)
~ and(True, sorted(Nil)) =pgoos sorted(Nil)
~ sorted(Nil) =goo sorted(Nil)

~> true
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Example: Soundness of insort, Step Case

® prove Vz, zs. sorted(insort(x, zs)) =pool Sorted(zs) by induction on s
e step case with |H Vz. sorted(insort(z, ys)) =pool sorted(ys):
sorted(insort(z, Cons(y, ys))) =gool sorted(Cons(y, ys))
~ sorted(if (le(z, y), Cons(z, Cons(y, ys)), Cons(y, insort(z, ¥s)))) =gool - - -
now perform case analysis on first argument of if
® case le(z,y), i.e., le(x,y) =gool True

sorted(if(le(x, y), Cons(x, Cons(y, ys)), Cons(y, insort(z, ys)))) =sool - - -
~> sorted(if (True, Cons(z, Cons(y, ys)), Cons(y, insort(z, ys)))) =gool - - -
~> sorted(Cons(z, Cons(y, ¥s))) =sool sorted(Cons(y, ys))
~ and(all_le(z, Cons(y, ys)), sorted(Cons(y, ys))) =gool sorted(Cons(y, ys))

the key to resolve this final formula is the following auxiliary property
Vle(z,y) —> sorted(Cons(y, 2s)) —> all_le(z, Cons(y, 2s))

this property can be proved by induction on zs but it will require a transitivity property for le
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Example: Soundness of insort, Final Part
® prove Vz, zs. sorted(insort(x, zs)) =pool sorted(zs) by ind. on s
® step case with IH Vz. sorted(insort(z, ys)) =gool sorted(ys):

sorted(insort(z, Cons(y, ys))) =gool sorted(Cons(y, ys))
~ sorted(if (le(z, y), Cons(z, Cons(y, ys)), Cons(y, insort(x, ¥s)))) =gool - - -

® case —le(z,y), i.e., le(x,y) =pgool False
(

sorted(if (le(z, y), Cons(z, Cons(y, ys)), Cons(y, insort(z, ys)))) =sool - - -
~ sorted(if (False, Cons(z, Cons(y, ys)), Cons(y, insort(z, ys)))) =gool - - -
~> sorted(Cons(y, insort(z, ys))) =gool sorted(Cons(y, ys))
~ and(all_le(y, insort(zx, ys)), sorted(insort(z, ys))) =gool sorted(Cons(y, ys))
~ and(all_le(y, insort(z, ys)), sorted(ys)) =gool sorted(Cons(y, ys))
~ and(all_le(y, insort(zx, ys)), sorted(ys)) =goo and(all_le(y, ys), sorted(ys))

at this point identify further required auxiliary properties
* Vall_le(y, insort(z, ys)) =sool all_le(y, Cons(z, ys))
* Vle(z,y) =sool False —» le(y, z) =gool True
these allow us to complete this case and hence the overall proof for sort
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Summary

definition of several axioms (inference rules)
® all axioms are satisfied in standard model, so they are consistent

equational properties can often conveniently be proved via induction and equational
reasoning via ~~

induction w.r.t. algorithm preferable whenever algorithms use more complex pattern
structure than ¢;(x1,...,x,) for all constructors ¢;

when getting stuck with ~~ try to detect suitable auxiliary property;
after proving it, add it to set of axioms for evaluation

not every property can be expressed purely equational;
e.g., Boolean connectives are sometimes required

specify properties of functional programs (e.g., sort) as functional programs (e.g., sorted)

DemoO05. thy: Isabelle formalization of all example proofs
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