

Summer Term 2024

Program Verification

Part 5 – Reasoning about Functional Programs

René Thiemann

Department of Computer Science

Inference Rules for the Standard Model

Plan

- [only consider well-de](https://uibk.ac.at)fined functional programs, so that standard model is well-defined
- aim
	- derive theorems and inference rules which are valid in the standard model
	- these can be used to formally reason about functional programs as on slide $1/18$ where associativity of append was proven
- examples
	- reaso[ning about c](http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/01x1.pdf#page=18)onstructors
		- $\forall x, y$. Succ $(x) =_{\text{Nat}}$ Succ $(y) \longleftrightarrow x =_{\text{Nat}} y$

•
$$
\forall x. \neg \text{Succ}(x) =_{\text{Nat}} \text{Zero}
$$

• getting defining equations of functional programs as theorems

$$
\quad \bullet \ \ \forall x, xs, ys.\text{append}(\mathsf{Cons}(x, xs), ys) =_{\mathsf{List}} \mathsf{Cons}(x, \mathsf{append}(xs, ys))
$$

• [induction schemes](http://cl-informatik.uibk.ac.at/teaching/ss24/pv/)

$$
\bullet \xrightarrow{\varphi(\mathsf{Zero})} \forall x. \varphi(x) \longrightarrow \varphi(\mathsf{Succ}(x))
$$

$$
\forall x.\,\varphi(x)
$$

Notation – The Normal Form

• when speaking about \hookrightarrow , we always consider some fixed well-defined functional program

Inference Rules for the Standard Model

• since every term has a unique normal form w.r.t. \rightarrow , we can define a function $\int\!\! \downarrow:\! \mathcal{T}(\Sigma,\mathcal{V})_\tau\to \mathcal{T}(\Sigma,\mathcal{V})_\tau$ which returns this normal form and write it in postfix notation:

 $t\!\downarrow$:= the unique normal of t w.r.t. \hookrightarrow

• using \int , the meaning of symbols in the standard model can concisely be written as

$$
F^{\mathcal{M}}(t_1,\ldots,t_n)=F(t_1,\ldots,t_n)\mathcal{L}
$$

• proof

• universe of type
$$
\tau
$$
 is $\mathcal{T}(\mathcal{C})_{\tau}$, so $t \in \mathcal{T}(\mathcal{C})_{\tau}$ implies $t \in NF(\hookrightarrow)$

• if
$$
F \in \mathcal{C}
$$
, then $F^{\mathcal{M}}(t_1, \ldots, t_n) \stackrel{\text{def}}{=} F(t_1, \ldots, t_n) = F(t_1, \ldots, t_n) \downarrow$

• if
$$
F \in \mathcal{D}
$$
, then $F^{\mathcal{M}}(t_1, \ldots, t_n) \stackrel{def}{=} F(t_1, \ldots, t_n) \downarrow$

Inference Rules for the Standard Model

The Substitution Lemma

• there are two possibilities to plug in objects into variables

• as assignment: $\alpha : \mathcal{V}_{\tau} \to \mathcal{A}_{\tau}$ result of $[[t]]_{\alpha}$ is an element of A_{τ} • as substitution: $\sigma : \mathcal{V}_{\tau} \to \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$ result of $t\sigma$ is an element of $\mathcal{T}(\Sigma, \mathcal{V})_{\tau}$

• substitution lemma: substitutions can be moved into assignment:

 $[[t\sigma]]_{\alpha} = [[t]]_{\beta}$

where $\beta(x) := \llbracket \sigma(x) \rrbracket_{\alpha}$ • proof by structural induction on t • $[x\sigma]_{\alpha} = [\sigma(x)]_{\alpha} = \beta(x) = [x]_{\beta}$

$$
\begin{aligned}\n[F(t_1, \ldots, t_n)\sigma]_{\alpha} &= [F(t_1\sigma, \ldots, t_n\sigma)]_{\alpha} \\
&= F^{\mathcal{M}}([t_1\sigma]_{\alpha}, \ldots, [t_n\sigma]_{\alpha}) \\
&\stackrel{IH}{=} F^{\mathcal{M}}([t_1]_{\beta}, \ldots, [t_n]_{\beta}) \\
&= [F(t_1, \ldots, t_n)]_{\beta}\n\end{aligned}
$$
\nRT (DCS @ UIBK)\n
\nPart 5 – Reasoning about Functional Programs\n
\n5/68

•

- the substitution lemma holds independently of the model
- in case of the standard model, we have the special condition that $A_{\tau} = \mathcal{T}(\mathcal{C})_{\tau}$, so • the universes consist of terms
	- hence, each assignment $\alpha : \mathcal{V}_{\tau} \to \mathcal{T}(\mathcal{C})_{\tau}$ is a special kind of substitution (constructor ground substitution)
- consequence: possibility to encode assignment as substitution
- reverse substitution lemma:

$$
[\![t]\!]_\alpha = t\alpha \!\downarrow
$$

• proof by structural induction on t

•
$$
[x]_{\alpha} = \alpha(x) \stackrel{(*)}{=} \alpha(x) \downarrow = x\alpha \downarrow \text{ where } (*) \text{ holds, since } \alpha(x) \in \mathcal{T}(\mathcal{C})
$$

$$
[F(t_1, \dots, t_n)]_{\alpha} = F^{\mathcal{M}}([t_1]_{\alpha}, \dots, [t_n]_{\alpha})
$$

$$
\stackrel{IH}{=} F^{\mathcal{M}}(t_1 \alpha \downarrow, \dots, t_n \alpha \downarrow) = F(t_1 \alpha \downarrow, \dots, t_n \alpha \downarrow) \downarrow
$$

$$
\stackrel{(conf.)}{=} F(t_1\alpha,\ldots,t_n\alpha) \downarrow = F(t_1,\ldots,t_n)\alpha \downarrow
$$

•

RT (DCS @ UIBK) 6/68 (Part 5 – Reasoning about Functional Programs 6/68 (Part 5 – Reasoning about Functional Programs 6/68

Inference Rules for the Standard Model

Defining Equations are Theorems in Standard Model

- notation: $\vec{V}\varphi$ means that universal quantification ranges over all free variables that occur in φ
- example: if φ is append(Cons(x, xs), ys) = List Cons(x, append(xs, ys)) then $\vec{\nabla}\varphi$ is

```
\forall x, xs, ys. append(Cons(x, xs), ys) =List Cons(x, append(xs, ys))
```
• theorem: if $\ell = r$ is defining equation of program (of type τ), then

$$
\mathcal{M} \models \vec{\forall} \ell =_{\tau} r
$$

- consequence: conversion of well-defined functional programs into equations is now possible, cf. previous problem on slide 1/20
- proof of theorem
	- by definition of \models and $\equiv^{\mathcal{M}}_{\tau}$ we ha[ve to show](http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/01x1.pdf#page=20) $\llbracket \ell \rrbracket_{\alpha} = \llbracket r \rrbracket_{\alpha}$ for all α
	- $\bullet\,$ via reverse substitution lemma this is equivalent to $\ell\alpha\,\mathcal{\downarrow} = r\alpha\,\mathcal{\downarrow}$
	- easily follows from confluence, since $\ell \alpha \hookrightarrow r \alpha$

Axiomatic Reasoning

- previous slide already provides us with some theorems that are satisfied in standard model
- axiomatic reasoning:

take those theorems as axioms to show property φ

- added axioms are theorems of standard model, so they are consistent
- example $AX = \{ \vec{\forall} \ell = \tau r \mid \ell = r \text{ is def. eqn.} \}$
- show $AX \models \varphi$ using first-order reasoning in order to prove $\mathcal{M} \models \varphi$ (and forget standard model M during the reasoning!)
- question: is it possible to prove every property φ in this way for which $\mathcal{M} \models \varphi$ holds?
- answer for above example is "no"
	- reason: there are models different than the standard model in which all axioms of AX are satisfied, but where φ does not hold!
	- example on next slide

Inference Rules for the Standard Model

Inference Rules for the Standard Model Axiomatic Reasoning – Problematic Model

• consider addition program, then example AX consists of two axioms

$$
\forall y. \text{ plus}(\text{Zero}, y) =_{\text{Nat}} y
$$

$$
\forall x, y. \text{ plus}(\text{Succ}(x), y) =_{\text{Nat}} \text{Succ}(\text{plus}(x, y))
$$

• we want to prove associativity of plus, so let φ be

$$
\forall x,y,z. \, \text{plus}(\text{plus}(x,y),z) =_{\text{Nat}} \text{plus}(x,\text{plus}(y,z))
$$

• consider the following model \mathcal{M}'

\n- \n
$$
\mathcal{A}_{\text{Nat}} = \mathbb{N} \cup \{x + \frac{1}{2} \mid x \in \mathbb{Z}\} = \{\ldots, -1\frac{1}{2}, -\frac{1}{2}, 0, \frac{1}{2}, 1, 1\frac{1}{2}, 2, 2\frac{1}{2}, \ldots\}
$$
\n
\n- \n $\mathsf{Zero}^{\mathcal{M}'} = 0$ \n
\n- \n $\mathsf{Succ}^{\mathcal{M}'}(n) = n + 1$ \n
\n- \n $\mathsf{plus}^{\mathcal{M}'}(n, m) = \begin{cases} n + m, & \text{if } n \in \mathbb{N} \text{ or } m \in \mathbb{N} \\ n - m + \frac{1}{2}, & \text{otherwise} \end{cases}$ \n
\n- \n $\mathsf{=}_{\mathbb{N}^{\mathbf{at}}}^{\mathcal{M}} = \{(n, n) \mid n \in \mathcal{A}_{\mathbb{N}^{\mathbf{at}}}\}$ \n
\n- \n $\mathcal{M}' \models \bigwedge AX, \text{ but } \mathcal{M}' \not\models \varphi: \text{ consider } \alpha(x) = \frac{19}{2}, \alpha(y) = \frac{9}{2}, \alpha(z) = \frac{7}{2}$ \n
\n- \n $\mathsf{problem: values in } \alpha \text{ do not correspond to constructor ground terms}$ \n
\n

RT (DCS @ UIBK) 9/68 Part 5 – Reasoning about Functional Programs 9/68

- **Gödel's Incompleteness Theorem** and the Standard Model Inference Rules for the Standard Model
	- taking AX as set of defining equations does not suffice to deduce all valid theorems of standard model
	- obvious approach: add more theorems to axioms AX (theorems about $=_\tau$, induction rules, ...)
	- question: is it then possible to deduce all valid theorems of standard model?
	- negative answer by Gödel's First Incompleteness Theorem
	- theorem: consider a well-defined functional program that includes addition and multiplication of natural numbers; let AX be a decidable set of valid theorems in the standard model: then there is a formula φ such that $\mathcal{M} \models \varphi$, but $AX \not\models \varphi$
	- $\bullet\,$ note: adding φ to AX does not fix the problem, since then there is another formula φ' such that $\mathcal{M} \models \varphi'$ and $AX \cup \{\varphi\} \not\models \varphi'$
	- consequence: "proving φ via $AX \models \varphi$ " is sound, but never complete
	- upcoming: add more axioms than just defining equations, so that still several proofs are possible
-
- RT (DCS @ UIBK) **Part 5 Reasoning about Functional Programs** 10/68

Inference Rules for the Standard Model

Inference Rules for the Standard Model

Axioms about Equality

- we define decomposition theorems and disjointness theorems in the form of logical equivalences
- for each $c : \tau_1 \times \ldots \times \tau_n \to \tau \in \mathcal{C}$ we define its decomposition theorem as

$$
\vec{\forall} c(x_1,\ldots,x_n) =_\tau c(y_1,\ldots,y_n) \longleftrightarrow x_1 =_{\tau_1} y_1 \land \ldots \land x_n =_{\tau_n} y_n
$$

and for all $d:\tau_1'\times\ldots\times\tau_k'\to\tau\in\mathcal C$ with $c\neq d$ we define the disjointness theorem as

$$
\vec{\forall} c(x_1,\ldots,x_n) =_{\tau} d(y_1,\ldots,y_k) \longleftrightarrow \text{false}
$$

• proof of validity of decomposition theorem:

 $\mathcal{M} \models_{\alpha} c(x_1,\ldots,x_n) =_{\tau} c(y_1,\ldots,y_n)$ iff $c(\alpha(x_1), \ldots, \alpha(x_n)) = c(\alpha(y_1), \ldots, \alpha(y_n))$ iff $\alpha(x_1) = \alpha(y_1)$ and ... and $\alpha(x_n) = \alpha(y_n)$ iff $M \models_{\alpha} x_1 =_{\tau_1} y_1$ and ... and $M \models_{\alpha} x_n =_{\tau_n} y_n$ iff $\mathcal{M} \models_{\alpha} x_1 =_{\tau_1} y_1 \wedge \ldots \wedge x_n =_{\tau_n} y_n$

$$
f_{\rm{max}}
$$

Axioms about Equality – Example

• for the datatypes of natural numbers and lists we get the following axioms

$$
\begin{aligned}\n\text{Zero} &=_{\text{Nat}} \text{Zero} \longleftrightarrow \text{true} \\
\forall x, y. \text{Succ}(x) &=_{\text{Nat}} \text{Succ}(y) \longleftrightarrow x =_{\text{Nat}} y \\
\text{Nil} &=_{\text{List}} \text{Nil} \longleftrightarrow \text{true} \\
\forall x, xs, y, ys. \text{Cons}(x, xs) &=_{\text{List}} \text{Cons}(y, ys) \longleftrightarrow x =_{\text{Nat}} y \land xs =_{\text{List}} ys\n\end{aligned}
$$

 $\forall y.$ Zero $=_{\text{Nat}}$ Succ $(y) \longleftrightarrow$ false $\forall x.$ Succ $(x) =_{\text{Nat}}$ Zero \longleftrightarrow false $\forall y, ys, Nil = \iota_{\text{jet}} \text{Cons}(y, ys) \longleftrightarrow \text{false}$ $\forall x, xs. \text{Cons}(x, xs) = \text{List} \text{Nil} \longleftrightarrow \text{false}$

Inference Rules for the Standard Model
 Inference Rules for the Standard Model

• current axioms are not even strong enough to prove simple theorems, e.g., $\forall x. \text{ plus } (x, \text{Zero}) =_{\text{Nat}} x$

- problem: proofs by induction are not yet covered in axioms
- since the principle of induction cannot be defined in general in a single first-order formula. we will add infinitely many induction theorems to the set of axioms, one for each property
- not a problem, since set of axioms stays decidable, i.e., one can see whether some tentative formula is an element of the axiom set or not
- example: induction over natural numbers
	- formula below is general, but not first-order as it quantifies over φ

$$
\forall \varphi(x:\mathsf{Nat}).\, \varphi(\mathsf{Zero}) \longrightarrow (\forall x.\, \varphi(x) \longrightarrow \varphi(\mathsf{Succ}(x))) \longrightarrow \forall x.\, \varphi(x)
$$

• quantification can be done on meta-level instead: let φ be an arbitrary formula with a free variable of type Nat; then

$$
\varphi(\mathsf{Zero}) \longrightarrow (\forall x.\,\varphi(x) \longrightarrow \varphi(\mathsf{Succ}(x))) \longrightarrow \forall x.\,\varphi(x)
$$

is a valid theorem: quantifying over φ results in induction scheme

RT (DCS @ UIBK) **Part 5 – Reasoning about Functional Programs** 13/68

Preparing Induction Theorems – Substitutions in Formulas Inference Rules for the Standard Mode

- current situation
	- substitutions are functions of type $\mathcal{V} \to \mathcal{T}(\Sigma, \mathcal{V})$
	- lifted to functions of type $\mathcal{T}(\Sigma, \mathcal{V}) \to \mathcal{T}(\Sigma, \mathcal{V})$, cf. slide 3/22
	- substitution of variables of formulas is not yet defined, b[ut is required](http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/03x1.pdf#page=22) for induction formulas, cf. notation $\varphi(x) \longrightarrow \varphi(\text{Succ}(x))$ on previous slide
- formal definition of applying a substitution σ to formulas
	- true $\sigma =$ true
	- $(\neg \varphi) \sigma = \neg(\varphi \sigma)$
	- \bullet $(\varphi \wedge \psi)\sigma = \varphi\sigma \wedge \psi\sigma$
	- $P(t_1, \ldots, t_n)\sigma = P(t_1\sigma, \ldots, t_n\sigma)$
	- $(\forall x. \varphi) \sigma = \forall x. (\varphi \sigma)$ if x does not occur in σ , i.e., $\sigma(x) = x$ and $x \notin \mathcal{V}ars(\sigma(y))$ for all $u \neq x$
	- $(\forall x.\,\varphi)\sigma = (\forall y.\,\varphi[x/y])\sigma$ if x occurs in σ where
		- y is a fresh variable, i.e., $\sigma(y) = y$, $y \notin \mathcal{V}ars(\sigma(z))$ for all $z \neq y$, and y is not a free variable of φ
		- $[x/y]$ is the substitution which just replaces x by y
		- \bullet effect is α -renaming: just rename universally quantified variable before substitution to avoid variable capture

• induction scheme

$$
\varphi(\mathsf{Zero}) \longrightarrow (\forall x.\,\varphi(x) \longrightarrow \varphi(\mathsf{Succ}(x))) \longrightarrow \forall x.\,\varphi(x)
$$

• example: right-neutral element: $\varphi(x) := \text{plus}(x, \text{Zero}) = \text{Nat } x$

 $plus(Zero, Zero) =_{Nat} Zero$ $\longrightarrow (\forall x. \text{plus}(x, \text{Zero}) =_{\text{Nat}} x \longrightarrow \text{plus}(\text{Succ}(x), \text{Zero}) =_{\text{Nat}} \text{Succ}(x))$ $\rightarrow \forall x. \text{ plus } (x, \text{Zero}) =_{\text{Nat}} x$

• example with quantifiers and free variables: $\varphi(x) := \forall y$. plus(plus(x, y), z) = φ , plus(x, plus(x, z))

$$
\rho(x) := \forall y. \text{ plus}(\text{plus}(x, y), z) =_{\text{Nat}} \text{plus}(x, \text{plus}(y, z))
$$

$$
\forall y. \text{ plus}(\text{plus}(\text{Zero}, y), z) =_{\text{Nat}} \text{plus}(\text{Zero}, \text{plus}(y, z))
$$
\n
$$
\longrightarrow (\forall x. (\forall y. \text{plus}(\text{plus}(x, y), z) =_{\text{Nat}} \text{plus}(x, \text{plus}(y, z)))
$$
\n
$$
\longrightarrow (\forall y. \text{plus}(\text{plus}(\text{Succ}(x), y), z) =_{\text{Nat}} \text{plus}(\text{Succ}(x), \text{plus}(y, z))))
$$
\n
$$
\longrightarrow \forall x. \forall y. \text{plus}(\text{plus}(x, y), z) =_{\text{Nat}} \text{plus}(x, \text{plus}(y, z))
$$

Rubber (Dubber 2018) Part 5 – Reasoning about Functional Programs 14 and 14 and 14 and 14 and 14 and 14 and 14 $\sqrt{68}$

Inference Rules for the Standard Model

[Ex](#page-0-0)amples

• substitution of formulas

- example substitution applications
	- $\bullet \varphi := \forall x. \neg x =_{\mathsf{Nat}} y$ • $\varphi[y/\text{Zero}] = \forall x. \neg x =_{\text{Nat}}$ Zero no renaming required • $\varphi[y/\text{Succ}(z)] = \forall x. \neg x =_{\text{Nat}} \text{Succ}(z)$ no renaming required
• $\varphi[y/\text{Succ}(x)] = \forall z. \neg z =_{\text{Nat}} \text{Succ}(x)$ renaming $[x/z]$ required • $\varphi[y/Succ(x)] = \forall z. \neg z =_{\text{Nat}} \text{Succ}(x)$ without renaming meaning will change: $\forall x \neg x =_{\text{Nat}} \text{Succ}(x)$ • $\varphi[x/\text{Succ}(y)] = \forall z.$ $\neg z =_{\text{Nat}} y$ renaming $[x/z]$ required without renaming meaning will change: $\forall x. \neg$ Succ(y) =Nat y
- example theorems involving substitutions

 $\varphi[x/\mathsf{Zero}] \longrightarrow (\forall y, \varphi[x/y] \longrightarrow \varphi[x/\mathsf{Succ}(y)]) \longrightarrow \forall x, \varphi$

Substitution Lemma for Formulas

• example induction formula

$$
\varphi[x/\mathsf{Zero}] \longrightarrow (\forall y.\, \varphi[x/y] \longrightarrow \varphi[x/\mathsf{Succ}(y)]) \longrightarrow \forall x.\, \varphi
$$

- proving validity of this formula (in standard model) requires another substitution lemma about substitutions in formulas
- lemma: $\mathcal{M} \models_{\alpha} \varphi \sigma$ iff $\mathcal{M} \models_{\beta} \varphi$ where $\beta(x) := \llbracket \sigma(x) \rrbracket_{\alpha}$
- proof by structural induction on φ for arbitrary α and σ

• $\mathcal{M} \models_{\alpha} P(t_1, \ldots, t_n) \sigma$ iff $\mathcal{M} \models_{\alpha} P(t_1\sigma, \ldots, t_n\sigma)$ iff $([t_1\sigma]_\alpha, \ldots, [t_n\sigma]_\alpha) \in P^{\mathcal{M}}$ iff $(\llbracket t_1 \rrbracket_\beta, \ldots, \llbracket t_n \rrbracket_\beta) \in P^{\mathcal{M}}$ iff $\mathcal{M} \models_{\beta} P(t_1, \ldots, t_n)$ where we use the substitution lemma of slide 5 to conclude $[\![t_i\sigma]\!]_\alpha=[\![t_i]\!] \beta$ • $M \models_{\alpha} (\neg \varphi) \sigma$ iff $M \models_{\alpha} \neg (\varphi \sigma)$ iff $M \not\models_{\alpha} \varphi \sigma$ iff $M \not\models_{\beta} \varphi$ (by IH) iff $M \models_{\beta} \neg \varphi$ • cases "true" and conjunction are proved in same way as negation

```
RT (DCS @ UIBK) Part 5 – Reasoning about Functional Programs 17/68
```
Substitution Lemma for Formulas – Proof Continued

- lemma: $M \models_{\alpha} \varphi \sigma$ iff $M \models_{\beta} \varphi$ where $\beta(x) := [\![\sigma(x)]\!]_{\alpha}$
- proof by structural induction on φ for arbitrary α and σ
- for quantification we here only consider the more complex case where renaming is required • $M \models_{\alpha} (\forall x. \varphi) \sigma$ iff $\mathcal{M} \models_{\alpha} (\forall y \ldotp \varphi[x/y]) \sigma$ for fresh y iff $\mathcal{M} \models_{\alpha} \forall y \in (\varphi[x/y]\sigma)$ iff $\mathcal{M} \models_{\alpha[u:=a]} \varphi[x/y] \sigma$ for all $a \in \mathcal{A}$ iff $\mathcal{M} \models_{\beta'} \varphi$ for all $a \in \mathcal{A}$ where $\beta'(z) := [[(x/y]\sigma)(z)]_{\alpha[y:=a]}$ (by IH) iff $M \models_{\beta[x:=a]} \varphi$ for all $a \in \mathcal{A}$ only non-automatic step iff $M \models_{\beta} \forall x.\,\varphi$ $\bullet\,$ equivalence of β' and $\beta[x:=a]$ on variables of φ $\bullet~~ \beta'(x) = \llbracket ([x/y]\sigma)(x)]\!]_{\alpha[y:=a]} = \llbracket \sigma(y)]\!]_{\alpha[y:=a]} = \llbracket y]\!]_{\alpha[y:=a]} = a$ and $\beta[x:=a](x) = a$ • z is variable of φ , $z \neq x$: by freshness condition conclude $z \neq y$ and $y \notin Vars(\sigma(z))$; hence $\beta'(z) = \llbracket ([x/y] \sigma)(z)] \rrbracket_{\alpha[y := a]} = \llbracket \sigma(z) \rrbracket_{\alpha[y := a]} = \llbracket \sigma(z) \rrbracket_{\alpha}$ and $\beta[x := a](z) = \beta(z) = [\![\sigma(z)]\!]_{\alpha}$
-

RT (DCS @ UIBK) **Part 5 – Reasoning about Functional Programs** 18/68 and 18/68

Inference Rules for the Standard Model

Substitution Lemma in Standard Model

- substitution lemma: $M \models_{\alpha} \varphi \sigma$ iff $M \models_{\beta} \varphi$ where $\beta(x) := \llbracket \sigma(x) \rrbracket_{\alpha}$
- lemma is valid for all models
- in standard model, substitution lemma permits to characterize universal quantification by substitutions, similar to reverse substitution lemma on slide 6
- lemma: let $x : \tau \in \mathcal{V}$, let M be the standard model

```
1. \mathcal{M} \models_{\alpha[x:=t]} \varphi iff \mathcal{M} \models_{\alpha} \varphi[x/t]2. M \models_{\alpha} \forall x.\varphi iff M \models_{\alpha} \varphi[x/t] for all t \in \mathcal{T}(\mathcal{C})_{\tau}
```
• proof

1. first note that the usage of $\alpha | x := t$ implies $t \in A_{\tau} = \mathcal{T}(\mathcal{C})_{\tau}$; by the substitution lemma obtain $\mathcal{M} \models_{\alpha} \varphi[x/t]$ iff $\mathcal{M} \models_{\beta} \varphi$ for $\beta(z) = [[x/t](z)]_{\alpha} = \alpha[x := [[t]]_{\alpha}](z)$ iff $M \models_{\alpha[x:=t]} \varphi$ ([t] $\alpha = t$, since $t \in \mathcal{T}(\mathcal{C})$) 2. immediate by part 1 of lemma

Inference Rules for the Standard Model [Su](#page-0-0)bstitution Lemma and Induction Formulas

- substitution lemma (SL) is crucial result to lift structural induction rule of universe $T(C)_{\tau}$ to a structural induction formula
- example: structural induction formula ψ for lists with fresh x, xs

$$
\psi:=\underbrace{\varphi[ys/\mathrm{Nil}]}_{1}\longrightarrow\big(\underbrace{\forall x, xs.\, \varphi[ys/xs] \longrightarrow \varphi[ys/\mathrm{Cons}(x, xs)]}_{2}\big)\longrightarrow \forall ys.\, \varphi
$$

• proof of $\mathcal{M} \models_{\alpha} \psi$:

assume premises 1 ($\mathcal{M} \models_{\alpha} \varphi[ys/Nil]$) and 2 and show $\mathcal{M} \models_{\alpha} \forall ys.\varphi$: by SL the latter is equivalent to " $\mathcal{M} \models_{\alpha} \varphi[y_S/\ell]$ for all $\ell \in \mathcal{T}(\mathcal{C})_{\text{List}}$ "; prove this statement by structural induction on lists

- Nil: showing $M \models_{\alpha} \varphi[ys/Nii]$ is easy: it is exactly premise 1
- $Cons(n, l)$: use SL on premise 2 to conclude

$$
\mathcal{M}\models_{\alpha}(\varphi[ys/xs]\longrightarrow\varphi[ys/\mathsf{Cons}(x, xs)])[x/n, xs/\ell]
$$

hence $M \models_{\alpha} \varphi[ys/\ell] \longrightarrow \varphi[ys/\text{Cons}(n, \ell)]$

and with IH $\mathcal{M} \models_{\alpha} \varphi[ys/\ell]$ conclude $\mathcal{M} \models_{\alpha} \varphi[ys/Cons(n, \ell)]$
RT (DCS @ UIBK) $Part 5 - Reasoning about Functional Programs$ 20/68

Freshness of Variables

Inference Rules for the Standard Model

• example: structural induction formula for lists with fresh x, xs

$$
\varphi[ys/\mathsf{Nil}] \longrightarrow (\forall x, xs. \varphi[ys/xs] \longrightarrow \varphi[ys/\mathsf{Cons}(x, xs)]) \longrightarrow \forall ys. \varphi
$$

- why freshness required? isn't name of quantified variables irrelevant?
- problem: substitution is applied below quantifier!
- example: let us drop freshness condition and "prove" non-theorem

$$
\mathcal{M} \models \forall x, xs, ys \mathrel{\mathop:}= _{\mathsf{List}} \mathsf{Nil} \lor ys =_{\mathsf{List}} \mathsf{Cons}(x, xs)
$$

• by semantics of $\forall x, xs...$ it suffices to prove

$$
\mathcal{M} \models_{\alpha} \forall y s. \underbrace{ys =_{\text{List}} \text{Nil} \lor ys =_{\text{List}} \text{Cons}(x, xs)}_{\varphi}
$$

- apply above induction formula and obtain two subgoals $M \models_{\alpha} \ldots$ for
	- $\varphi[ys/Nil]$ which is Nil =List Nil \vee Nil =List Cons (x, xs) • $\forall x, xs. \varphi[ys/xs] \longrightarrow \varphi[ys/Cons(x, xs)]$ which is
	- $\forall x, xs. \dots \longrightarrow Cons(x, xs) =_{\text{list}} \text{Nil} \vee \text{Cons}(x, xs) =_{\text{list}} \text{Cons}(x, xs)$
- solution: rename variables in induction formula whenever required $R = (DCS \otimes UBEK)$ Part 5 – Reasoning about Functional Programs 21/68

Structural Induction Formula

• finally definition of induction formula for data structures is possible

\n- consider\n
$$
\begin{array}{ccc}\n \text{data } \tau = c_1 : \tau_{1,1} \times \ldots \times \tau_{1,m_1} \to \tau \\
 & \mid & \ldots \\
 & \mid & c_n : \tau_{n,1} \times \ldots \times \tau_{n,m_n} \to \tau\n \end{array}
$$
\n
\n

- let $x \in \mathcal{V}_{\tau}$, let φ be a formula, let variables x_1, x_2, \ldots be fresh w.r.t. φ
- for each c_i define

$$
\varphi_i := \forall x_1, \dots, x_{m_i} \cdot \underbrace{\left(\bigwedge_{j, \tau_{i,j} = \tau} \varphi[x/x_j]\right)}_{\text{IH for recursive arguments}} \longrightarrow \varphi[x/c_i(x_1, \dots, x_{m_i})]
$$

• the induction formula is
$$
\vec{\forall} (\varphi_1 \longrightarrow \dots \longrightarrow \varphi_n \longrightarrow \forall x. \varphi)
$$

• theorem:
$$
\mathcal{M} \models \vec{V} \ (\varphi_1 \longrightarrow \dots \longrightarrow \varphi_n \longrightarrow \forall x.\, \varphi)
$$

RT (DCS @ UIBK) 22/68 (Part 5 – Reasoning about Functional Programs 22/68

Proof of Structural Induction Formula

- to prove: $\mathcal{M} \models \vec{\forall} (\varphi_1 \longrightarrow \ldots \longrightarrow \varphi_n \longrightarrow \forall x. \varphi)$
- \forall -intro: $M \models_{\alpha} (\varphi_1 \longrightarrow ... \longrightarrow \varphi_n \longrightarrow \forall x, \varphi)$ for arbitrary α
- \longrightarrow -intro: assume $\mathcal{M} \models_{\alpha} \varphi_i$ $\mathcal{M} \models_{\alpha} \varphi_i$ $\mathcal{M} \models_{\alpha} \varphi_i$ for all i and show $\mathcal{M} \models_{\alpha} \forall x.\ \varphi$
- \forall -intro via SL: show $\mathcal{M} \models_{\alpha} \varphi[x/t]$ for all $t \in \mathcal{T}(\mathcal{C})_{\tau}$ $t \in \mathcal{T}(\mathcal{C})_{\tau}$ $t \in \mathcal{T}(\mathcal{C})_{\tau}$
- prove this by structural induction on t [w.r.t](#page-5-0). induction rule of $T(C)_\tau$ (for precisely this α , not for arbitrary α)
- induction step for each constructor $c_i : \tau_{i1} \times \ldots \times \tau_{i,m} \rightarrow \tau$
	- aim: $\mathcal{M} \models_{\alpha} \varphi[x/c_i(t_1,\ldots,t_{m_i})]$ **IH:** $\mathcal{M} \models_{\alpha} \varphi[x/t_i]$ for all j such that $\tau_{i,j} = \tau$ • use assumption $\mathcal{M} \models_{\alpha} \varphi_i$, i.e., (here important: same α)

$$
\mathcal{M} \models_{\alpha} \forall x_1, \ldots, x_{m_i} \cdot (\bigwedge_{j, \tau_{i,j} = \tau} \varphi[x/x_j]) \longrightarrow \varphi[x/c_i(x_1, \ldots, x_{m_i})]
$$

 $\bullet\,$ use SL as \forall -elimination with substitution $[x_1/t_1,\ldots,x_{m_i}/t_{m_i}]$, obtain

$$
\mathcal{M}\models_{\alpha} (\bigwedge_{j,\tau_{i,j}=\tau}\varphi[x/t_{j}])\longrightarrow \varphi[x/c_{i}(t_{1},\ldots,t_{m_{i}})]
$$

• combination wi[th IH yields d](http://cl-informatik.uibk.ac.at/teaching/ss24/pv/slides/01x1.pdf#page=20)esired $M \models_{\alpha} \varphi[x/c_i(t_1, \ldots, t_{m_i})]$

Part 5 – Reasoning about Functional Programs

[Su](#page-0-0)mmary: Axiomatic Proofs of Functional Programs

- given a well-defined functional program, define a set of axioms AX consisting of
	- equations of defined symbols (slide 7)
	- axioms about equality of constructors (slide 11)
	- structural induction formulas (slide 22)
- instead of proving $\mathcal{M} \models \varphi$ deduce $AX \models \varphi$
- fact: standard model is ignored in previous step
- question: why all these efforts and not just state AX ?
- reason:

having proven $\mathcal{M} \models \psi$ for all $\psi \in AX$ implies that AX is consistent!

• recall: already just converting functional program equations naively into theorems led to proof of $0 = 1$ on slide $1/20$, i.e., inconsistent axioms, and AX now contains more complex axioms than just equalities

Example: Attempt to Prove Associativity of Append via AX

- task: prove associativity of append via natural deduction and AX
- define $\varphi := \text{append}(\text{append}(xs, ys), zs) = \text{Left}(\text{append}(xs, \text{append}(ys, zs))$
	- 1. show $\forall xs, ys, zs, \varphi$
	- 2. \forall -intro: show φ where now xs, us, zs are fresh variables
	- 3. to this end prove intermediate goal: $\forall xs.\ \varphi$
	- 4. applying induction axiom $\varphi[xs/Nii] \longrightarrow (\forall u, us, \varphi[xs/us] \longrightarrow \varphi[xs/Cons(u, us)]) \longrightarrow \forall xs. \varphi$ in combination with modus ponens yields two subgoals, one of them is $\varphi[x,s/N\text{ii}]$, i.e., append(append(Nil, ys), zs) =_{List} append(Nil, append(ys , zs))
	- 5. use axiom $\forall ys$. append(Nil, ys) =List ys
	- 6. \forall -elim: append(Nil, append(ys, zs)) =_{List} append(ys, zs)
	- 7. at this point we would like to simplify the rhs in the goal to obtain obligation append(append(Nil, ys), zs) =_{List} append(ys, zs)
	- 8. this is not possible at this point: there are missing axioms
		- \bullet = ϵ is an equivalence relation
		- \bullet =_{List} is a congruence; required to simplify the lhs append(\cdot , zs) at \cdot
		- \bullet . . .
- next step: reconsider the reasoning engine and the available axioms

```
RT (DCS @ UIBK) Part 5 – Reasoning about Functional Programs 25/68
```
Equational Reasoning and Induction

Equational Reasoning and Induction

Reasoning about Functional Programs: Current State

- given well-defined functional program, extract set of axioms AX that are satisfied in standard model M
	- equations of defined symbols
	- equivalences regarding equality of constructors
	- structural induction formulas
- for proving property $M \models \varphi$ it suffices to show $AX \models \varphi$
- problems: reasoning via natural deduction quite cumbersome
	- explicit introduction and elimination of quantifiers
	- no direct support for equational reasoning
- aim: equational reasoning
	- implicit transitivity reasoning: from $a = \tau b = \tau c = \tau d$ conclude $a = \tau d$
	- equational reasoning in contexts: from $a = \tau$ b conclude $f(a) = \tau'$ $f(b)$
- in general: want some calculus \vdash such that $\vdash \varphi$ implies $\mathcal{M} \models \varphi$

Equational Reasoning and Induction [Eq](#page-6-0)uational Reasoning with Universally Quantified Formulas

- for now let us restrict to universally quantified formulas
- we can formulate properties like
	- $\forall xs.$ reverse(reverse(xs)) = List xs
	- $\forall xs, ys. reverse(append(xs, ys)) =$ List append(reverse(ys), reverse(xs))
	- $\forall x, y$, plus $(x, y) =_{\text{Nat}}$ plus (y, x)

```
but not
```
- $\forall x. \exists y.$ greater $(y, x) =_{\text{Bool}}$ True
- universally quantified axioms
	- equations of defined symbols
		- $\forall y$. plus(Zero, y) =Nat y
		- $\forall x, y$. plus(Succ(x), y) =_{Nat} Succ(plus(x, y))
	- \bullet . . . • axioms about equality of constructors
		- $\forall x, y$. Succ $(x) =_{\text{Nat}}$ Succ $(y) \longleftrightarrow x =_{\text{Nat}} y$
		- $\forall x.$ Succ $(x) =_{\text{Nat}}$ Zero \longleftrightarrow false
	- \bullet • but not: structural induction formulas

```
• \varphi[y/\mathsf{Zero}] \longrightarrow (\forall x. \varphi[y/x] \longrightarrow \varphi[y/\mathsf{Succ}(x)]) \longrightarrow \forall y. \varphi
```
Equational Reasoning and Induction Equational Reasoning in Formulas

Equational Reasoning and Induction

- so far: \rightarrow replaces terms by terms using equations $\mathcal E$ of program
- upcoming: \rightarrow to simplify formulas using universally quantified axioms
- formal definition: let AX be a set of axioms; then \rightsquigarrow_{AX} is defined as

consisting of Boolean simplifications, equations, equivalences and congruences; often subscript AX is dropped in \rightsquigarrow_{AX} when clear from context

RT (DCS @ UIBK) 29/68 Part 5 – Reasoning about Functional Programs 29/68

Soundness of Equational Reasoning

• we show that whenever AX is valid in the standard model M , then

\n- $$
\varphi \leadsto_{AX} \psi
$$
 implies $\mathcal{M} \models_{\alpha} \varphi \longleftrightarrow \psi$ for all α
\n- so in particular $\mathcal{M} \models \vec{\forall} \varphi \longleftrightarrow \psi$
\n

- $\bullet\,$ immediate consequence: $\varphi \leadsto^*_{\,AX}\,$ true implies ${\cal M} \models \vec{\forall}\,\varphi$
- $\bullet\,$ define calculus: $\vdash\vec{\forall}\,\varphi$ if $\varphi\rightsquigarrow^*_{\ A X}\,$ true
- example

$$
plus(Zero, Zero) =_{Nat} times(Zero, x)
$$

\n
$$
\rightsquigarrow Zero =_{Nat} times(Zero, x)
$$

\n
$$
\rightsquigarrow Zero =_{Nat} Zero
$$

\n
$$
\rightsquigarrow true
$$

and therefore $\mathcal{M} \models \forall x$. plus(Zero, Zero) =_{Nat} times(Zero, x)

RT (DCS @ UIBK) 830/68 Part 5 – Reasoning about Functional Programs 30/68

Equational Reasoning and Induction

Proving Soundness of \rightsquigarrow : $\varphi \rightsquigarrow \psi$ implies $\mathcal{M} \models_{\alpha} \varphi \longleftrightarrow \psi$

by induction on \rightsquigarrow for arbitrary α

\n- \n
$$
\varphi \rightsquigarrow \varphi'
$$
\n
\n- \n
$$
\mathsf{case} \varphi \land \psi \rightsquigarrow \varphi' \land \psi
$$
\n
\n- \n
$$
\mathsf{IH}: \mathcal{M} \models_{\alpha} \varphi \longleftrightarrow \varphi' \text{ for arbitrary } \alpha
$$
\n
\n- \n
$$
\mathsf{conclude} \mathcal{M} \models_{\alpha} \varphi \land \psi
$$
\n
\n- \n
$$
\mathsf{iff} \mathcal{M} \models_{\alpha} \varphi \text{ and } \mathcal{M} \models_{\alpha} \psi
$$
\n
\n- \n
$$
\mathsf{iff} \mathcal{M} \models_{\alpha} \varphi' \text{ and } \mathcal{M} \models_{\alpha} \psi \text{ (by IH)}
$$
\n
\n- \n
$$
\mathsf{iff} \mathcal{M} \models_{\alpha} \varphi' \land \psi
$$
\n
\n- \n
$$
\mathsf{in} \mathsf{total}: \mathcal{M} \models_{\alpha} \varphi \land \psi \longleftrightarrow \varphi' \land \psi
$$
\n
\n

• all other cases for Boolean simplifications and congruences are similar

Proving Soundness of \rightsquigarrow : $\varphi \rightsquigarrow \psi$ implies $\mathcal{M} \models_{\alpha} \varphi \longleftrightarrow \psi$

$$
\begin{aligned}\n\overrightarrow{\nabla} (\ell &=_{\tau} r \longleftrightarrow \varphi) \in AX \\
\text{erimes } \mathcal{M} &= \overrightarrow{\nabla} \rightsquigarrow \varphi \sigma \\
\text{erimes } \mathcal{M} &= \overrightarrow{\nabla} (\ell =_{\tau} r \longleftrightarrow \varphi), \\
\text{so in particular } \mathcal{M} &=_{\beta} \ell =_{\tau} r \longleftrightarrow \varphi \text{ for } \beta(x) = [\sigma(x)]_{\alpha} \\
\text{conclude } \mathcal{M} &=_{\alpha} \ell \sigma =_{\tau} r \sigma \\
\text{if } [\ell]_{\beta} &= [\![r]\!]_{\beta} \text{ (by SL)} \\
\text{if } \mathcal{M} &=_{\beta} \varphi \text{ (by premise)} \\
\text{if } \mathcal{M} &=_{\alpha} \varphi \sigma \text{ (by SL)} \\
\text{in total: } \mathcal{M} &=_{\alpha} \ell \sigma =_{\tau} r \sigma \longleftrightarrow \varphi \sigma\n\end{aligned}
$$

Limits of \rightsquigarrow

- \rightarrow only works with universally quantified properties
	- defining equations
	- equivalences to simplify equalities $=_\tau$
	- newly derived properties such as $\forall xs$. reverse(reverse(xs)) = List xs
	- $\rightarrow \infty$ can not deal with induction axioms such as the one for associativity of append (app)

$$
(\forall ys, zs.\text{app}(\mathsf{app}(\mathsf{Nil}, ys), zs) =_{\mathsf{List}} \mathsf{app}(\mathsf{Nil}, \mathsf{app}(ys, zs))) \\ \longrightarrow (\forall x, xs.(\forall ys, zs.\text{app}(\mathsf{app}(xs, ys), zs) =_{\mathsf{List}} \mathsf{app}(xs, \mathsf{app}(ys, zs))) \longrightarrow \\ (\forall ys, zs.\text{app}(\mathsf{app}(\mathsf{Cons}(x, xs), ys), zs) =_{\mathsf{List}} \mathsf{app}(\mathsf{Cons}(x, xs), \mathsf{app}(ys, zs)))) \\ \longrightarrow (\forall xs, ys, zs.\text{app}(\mathsf{app}(xs, ys), zs) =_{\mathsf{List}} \mathsf{app}(xs, \mathsf{app}(ys, zs)))
$$

• in particular, \rightarrow often cannot perform any simplification without induction proving

$$
\mathsf{app}(\mathsf{app}(xs, ys), zs) =_{\mathsf{List}} \mathsf{app}(xs, \mathsf{app}(ys, zs)))
$$

cannot be simplified by \rightsquigarrow using the existing axioms

RT (DCS @ UIBK) 35/68 Part 5 – Reasoning about Functional Programs 35/68

Equational Reasoning and Induction

Equational Reasoning and Induction

Induction in Combination with Equational Reasoning

• aim: prove equality $\vec{\nabla}\ell = \tau r$

• approach:

- select induction variable x
- reorder quantifiers such that $\vec{\nabla}\ell = \tau r$ is written as $\forall x.\varphi$
- build induction formula w.r.t. slide 22

 $\varphi_1 \longrightarrow \ldots \longrightarrow \varphi_n \longrightarrow \forall x. \varphi$

(no outer universal quantifier, since by construction above formula has no free variables) • try to prove each φ_i via \rightsquigarrow

Integrating IHs into Equational Reasoning

• recall structure of induction formula for formula φ and constructor c_i :

$$
\varphi_i := \forall x_1, \dots, x_{m_i}. \underbrace{\left(\bigwedge_{j, \tau_{i,j} = \tau} \varphi[x/x_j]\right)}_{\text{IHS for recursive arguments}} \longrightarrow \varphi[x/c_i(x_1, \dots, x_{m_i})]
$$

- idea: for proving φ_i try to show $\varphi[x/c_i(x_1,\ldots,x_{m_i})]$ by evaluating it to true via \leadsto , where each IH $\varphi[x/x_i]$ is added as equality
- append-example
	- aim:

 $\mathsf{app}(\mathsf{app}(\mathsf{Cons}(x,xs),ys), zs) =_{\mathsf{List}} \mathsf{app}(\mathsf{Cons}(x,xs), \mathsf{app}(ys, zs)) \rightsquigarrow^* \mathsf{true}$

- add IH $\forall ys, zs.$ app(app(xs, ys), zs) = List app(xs, app(ys, zs)) to axioms
- problem IH $\varphi[x/x_j]$ is not universally quantified equation, since variable x_j is free (in append example, this would be xs)

[In](#page-6-0)tegrating IHs into Equational Reasoning, Continued

- to solve problem, extend \rightsquigarrow to allow evaluation with equations that contain free variables
- add two new inference rules

$$
\frac{\forall \vec{x}. \ \ell =_\tau r \in AX \quad s \hookrightarrow_{\{\ell = r\}} s' \qquad \frac{\forall \vec{x}. \ \ell =_\tau r \in AX \quad t \hookrightarrow_{\{r = \ell\}} t' }{s =_\tau t \leadsto_{AX} s =_\tau t'}
$$

where in both inference rules, only the variables of \vec{x} may be instantiated in the equation $\ell = r$ when simplifying with \rightarrow ; so the chosen substitution σ must satisfy $\sigma(y) = y$ for all $y \notin \vec{x}$

- the swap of direction, i.e., the $r = \ell$ in the second rule is intended and a heuristic
	- either apply the IH on some lhs of an equality from left-to-right
	- or apply the IH on some rhs of an equality from right-to-left

in both cases, an application will make both sides on the equality more equal

• another heuristic is to apply each IH only once

Equational Reasoning and Induction

Equational Reasoning and Induction

Equational Reasoning and Induction Example: Associativity of Append, Continued

Equational Reasoning and Induction

$$
\quad \bullet \ \ \text{proving} \ \forall \textit{xs}, \textit{ys}, \textit{zs}.\ \ \textsf{app}(\textsf{app}(\textit{xs}, \textit{ys}), \textit{zs}) =_{\textsf{List}} \textsf{app}(\textit{xs}, \textsf{app}(\textit{ys}, \textit{zs}))
$$

$$
\quad\quad\texttt{approach:}\ \dots
$$

• φ_2 is $\forall x, xs.(\forall ys, zs. \text{app}(\text{app}(xs, ys), zs) =_{List} \text{app}(xs, \text{app}(ys, zs))) \longrightarrow$ $(\forall y_s, zs.$ app $(\text{app}(\text{Cons}(x, xs), ys), zs)) =$ List app $(\text{Cons}(x, xs), \text{app}(ys, zs)))$

so we try to prove the rhs of \rightarrow via \rightsquigarrow and add

 $\forall us, zs, app(*app*(xs, us), zs) = L_{ist} app(xs, app(us, zs))$

to the set of axioms (only for the proof of φ_2); then

$$
\mathsf{app}(\mathsf{app}(\mathsf{Cons}(x, xs), ys), zs) =_{\mathsf{List}} \mathsf{app}(\mathsf{Cons}(x, xs), \mathsf{app}(ys, zs))
$$

$$
\leadsto^* \mathsf{app}(\mathsf{app}(xs, ys), zs) =_{\mathsf{List}} \mathsf{app}(xs, \mathsf{app}(ys, zs))
$$

$$
\leadsto \mathsf{app}(xs,\mathsf{app}(ys,zs)) =_{\mathsf{List}} \mathsf{app}(xs,\mathsf{app}(ys,zs))
$$

$$
\rightsquigarrow \mathsf{true}
$$

here it is important to apply the IH only once, otherwise one would get

$$
\mathsf{app}(xs,\mathsf{app}(ys,zs)) =_{\mathsf{List}} \mathsf{app}(\mathsf{app}(xs,ys),zs)
$$

RT (DCS @ UIBK)

Integrating IHs into Equational Reasoning, Soundness

• aim: prove $\mathcal{M} \models \varphi_i$ for

$$
\varphi_i := \vec{\nabla} \bigwedge_{\text{IHS}} \psi_j \longrightarrow \psi
$$

where we assume that $\psi \leadsto^*$ true with the additional local axioms of the IHs ψ_j

- hence show $M \models_{\alpha} \psi$ under the assumptions $M \models_{\alpha} \psi_j$ for all IHs ψ_j
- $\bullet\,$ by existing soundness proof of \leadsto we can nearly conclude $\mathcal{M}\models_\alpha \psi$ from $\psi\rightsquigarrow^\ast$ true
- only gap: proof needs to cover new inference rules on slide 40

Equational Reasoning and Induction Soundness of Partially Quantified Equation Application

• case $\forall \vec{x}. \ell = \tau r \in AX \quad s \hookrightarrow_{\{\ell=r\}} s'$ $\overline{s =_\tau t \leadsto s' =_\tau t}$ with $\sigma(y) = y$ for all $y \notin \vec{x}$ • premise is $M \models_{\alpha} \forall \vec{x} \ldotp \ell =_{\tau} r$ (and not $M \models \vec{y} \ell =_{\tau} r$) and $s = C[\ell \sigma]$ and $s' = C[r\sigma]$ as before • conclude $[s]_\alpha=[s']_\alpha$ as on slide 33 as main step to derive $\mathcal{M}\models_\alpha s=_\tau t \longleftrightarrow s'=_\tau t$ • only change is how to obtain $\llbracket \ell \rrbracket_8 = \llbracket r \rrbracket_8$ $\llbracket \ell \rrbracket_8 = \llbracket r \rrbracket_8$ $\llbracket \ell \rrbracket_8 = \llbracket r \rrbracket_8$ for $\beta(x) = \llbracket \sigma(x) \rrbracket_8$ • new proof • let $\vec{x} = x_1, \ldots, x_k$ • premise implies $[\ell]_{\alpha[x_1:=a_1,...,x_k:=a_k]} = [r]_{\alpha[x_1:=a_1,...,x_k:=a_k]}$ for arbitrary a_i , so in particular for $a_i = [\![\sigma(x_i)]\!]_{\alpha}$ • it now suffices to prove that $\alpha[x_1 := a_1, \ldots, x_k := a_k] = \beta$ • consider two cases • for variables x_i we have $\alpha[x_1 := a_1, \ldots, x_k := a_k](x_i) = a_i = [\![\sigma(x_i)]\!]_{\alpha} = \beta(x_i)$ • for all other variables $y \notin \vec{x}$ we have

 $\alpha[x_1 := a_1, \ldots, x_k := a_k](y) = \alpha(y) = \|y\|_{\alpha} = \|\sigma(y)\|_{\alpha} = \beta(y)$

Summary

- framework for inductive proofs combined with equational reasoning
- apply induction first
- $\bullet\,$ then prove each case $\vec\forall\;\bigwedge\psi_j\longrightarrow\psi$ via evaluation $\psi\leadsto^*$ true where lHs ψ_j become local axioms
- free variables in IHs (induction variables) may not be instantiated by \rightsquigarrow , all the other variables may be instantiated ("arbitrary" variables)
- heuristic: apply IHs only once
- upcoming: positive and negative examples, guidelines, extensions

Associativity of Append
 Associativity of Append

• program

 $app(Cons(x, xs), ys) = Cons(x, app(xs, ys))$ $app(Nil, ys) = ys$

• formula
$$
\vec{\forall} \text{app}(\text{app}(xs, ys), zs) =_{List} \text{app}(xs, \text{app}(ys, zs))
$$

- \bullet induction on xs works successfully
- what about induction on ys (or zs)?

• base case already gets stuck

$$
\mathsf{app}(\mathsf{app}(xs, \mathsf{Nil}), \mathsf{zs}) =_{\mathsf{List}} \mathsf{app}(xs, \mathsf{app}(\mathsf{Nil}, \mathsf{zs}))
$$

$$
\rightsquigarrow \mathsf{app}(\mathsf{app}(xs, \mathsf{Nil}), \mathsf{zs}) =_{\mathsf{List}} \mathsf{app}(xs, \mathsf{zs})
$$

- problem: ys is argument on second position of append, whereas case analysis in lhs of append happens on first argument
- guideline: select variables such that case analysis triggers evaluation

• program

RT (DCS @ UIBK) **Part 5 – Reasoning about Functional Programs** 46/68 (1968) 46/68

Examples, Guidelines, and Extensions Commutativity of Addition

• program

$$
plus(Succ(x), y) = Succ(plus(x, y))
$$

$$
plus(Zero, y) = y
$$

Examples, Guidelines, and Extensions

• formula \vec{V} plus $(x, y) = N_{\text{at}}$ plus (y, x)

- let us try induction on x
- base case already gets stuck

plus(Zero, y) = $_{Nat}$ plus(y, Zero) $\leadsto y =_{\text{Nat}} \text{plus}(y, \text{Zero})$

- final result suggests required lemma: Zero is also right neutral
- $\forall x. \text{ plus}(x, \text{Zero}) =_{\text{Nat}} x$ can be proven with our approach
- then this lemma can be added to AX and base case of commutativity-proof can be completed

• base case: • step case adds IH $plus(x, Zero) =_{Nat} x$ as axiom and we get $plus(Succ(r), Zero) =_{N_{tot}}Succ(r)$

$$
\Rightarrow \text{Succ}(x), \text{Zero} = \text{Nat} \text{Succ}(x)
$$

$$
\Rightarrow \text{Succ}(p|us(x, \text{Zero})) = \text{Nat} \text{Succ}(x)
$$

$$
\Rightarrow \text{Succ}(x) = \text{Nat} \text{Succ}(x)
$$

 \rightsquigarrow true

• formula \vec{V} plus(x, Zero) =Nat x

plus(Zero, y) = y

Examples, Guidelines, and Extensions [Ri](#page-11-0)ght-Zero of Addition

 $plus(Succ(x), y) = Succ(plus(x, y))$

• only one possible induction variable: x

plus(Zero, Zero) $=_{Nat}$ Zero \rightsquigarrow Zero $=_{Nat}$ Zero \rightsquigarrow true

Examples, Guidelines, and Extensions

Commutativity of Addition

• formula

 \vec{V} plus $(x, y) =_{\text{Nat}}$ plus (y, x)

• step case adds IH $\forall y$. plus $(x, y) =_{\text{Nat}}$ plus (y, x) to axioms and we get

plus(Succ(x), y) =_{Nat} plus(y, Succ(x))
\n
$$
\rightsquigarrow
$$
 Succ(plus(x, y)) =_{Nat} plus(y, Succ(x))
\n \rightsquigarrow Succ(plus(y, x)) =_{Nat} plus(y, Succ(x))

- final result suggests required lemma: Succ on second argument can be moved outside
- $\forall x, y$. plus $(x, \text{Succ}(y)) =_{\text{Nat}} \text{Succ}(\text{plus}(x, y))$ can be proven with our approach (induction on x)
- then this lemma can be added to AX and commutativity-proof can be completed

```
RT (DCS @ UIBK) Part 5 – Reasoning about Functional Programs 49/68
                                                                             RT (DCS @ UIBK) Part 5 – Reasoning about Functional Programs 50/68 (S8) 50/68
```

```
Generalizations Required Examples, Guidelines, and Extensions
```
• for induction for the following formula there is only one choice: xs

$$
\forall xs. \; \mathsf{r}(xs, \mathsf{Nil}) =_{\mathsf{List}} \mathsf{rev}(xs)
$$

• step-case gets stuck

 $r(Cons(x, xs), Nil) =$ List rev(Cons(x, xs)) \rightsquigarrow^* r(xs, Cons(x, Nil)) = _{List} app(rev(xs), Cons(x, Nil)) \rightsquigarrow r(xs, Cons(x, Nil)) = List app(r(xs, Nil), Cons(x, Nil))

• problem: the second argument Nil of r in formula is too specific

- solution: generalize formula by replacing constants by variables
- naive replacement does not work, since it does not hold

$$
\forall xs, ys. \mathsf{r}(xs, ys) =_{List} \mathsf{rev}(xs)
$$

• creativity required

 $\forall xs, ys, r(xs, ys) = \lim_{\epsilon \to 0} \text{app}(rev(xs), ys)$

RT (DCS @ UIBK) **Part 5 – Reasoning about Functional Programs** 51/68

Fast Implementation of Reversal

$$
\bullet \ \ program
$$

$$
app(Cons(x, xs), ys) = Cons(x, app(xs, ys))
$$

\n
$$
app(Nil, ys) = ys
$$

\n
$$
rev(Cons(x, xs)) = app(rev(xs), Cons(x, Nil))
$$

\n
$$
rev(Nil) = Nil
$$

\n
$$
r(Cons(x, xs), ys) = r(xs, Cons(x, ys))
$$

\n
$$
r(Nil, ys) = ys
$$

\n
$$
rev_fast(xs) = r(xs, Nil)
$$

• aim: show that both implementations of reverse are equivalent, so that the naive implementation can be replaced by the faster one

 $\forall xs.$ rev fast $(xs) = \text{Let } \text{rev}(xs)$

• applying \rightsquigarrow first yields desired lemma

 $\forall xs. r(xs, Nil) = \iota_{ist} rev(xs)$

Examples, Guidelines, and Extensions [Fa](#page-11-0)st Implementation of Reversal, Continued

• proving main formula by induction on xs , since recursion is on xs

 $\forall xs, ys, r(xs, ys) = \lim_{s \to \infty} \text{app}(rev(xs), ys)$

• base-case

 $r(Nil, ys) =$ List app(rev(Nil), ys) \rightsquigarrow^* ys $=$ List ys \rightsquigarrow true

 \bullet step-case solved with associativity of append and IH added to axioms

 $r(Cons(x, xs), ys) = \lim_{x \to \infty} \frac{1}{r} \sup(r \in v(Cons(x, xs)), ys)$ \rightsquigarrow r(xs, Cons(x, ys)) = L_{ist} app(rev(Cons(x, xs)), ys)

 \rightsquigarrow app(rev(xs), Cons(x, ys)) =_{List} app(rev(Cons(x, xs)), ys)

 \rightsquigarrow app(rev(xs), Cons(x, ys)) =_{List} app(app(rev(xs), Cons(x, Nil)), ys)

 \rightsquigarrow app(rev(xs), Cons(x, ys)) =_{List} app(rev(xs), app(Cons(x, Nil), ys))

 \rightsquigarrow app(rev(xs), Cons(x, ys)) = List app(rev(xs), Cons(x, app(Nil, ys)))

 \rightsquigarrow app(rev(xs), Cons(x, ys)) = L_{ist} app(rev(xs), Cons(x, ys)) \rightsquigarrow true

Examples, Guidelines, and Extensions Fast Implementation of Reversal, Finalized

• now add main formula to axioms, so that it can be used by \rightsquigarrow

$$
\forall \mathit{xs}, \mathit{ys}.~\mathsf{r}(\mathit{xs}, \mathit{ys}) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(\mathit{xs}), \mathit{ys})
$$

• then for our initial aim we get

rev $fast(xs) = L_{\text{jet}} rev(xs)$ \rightsquigarrow r(xs, Nil) $=$ List rev(xs) \rightsquigarrow app(rev(xs), Nil) =_{List} rev(xs)

• at this point one easily identifies a missing property

$$
\forall xs. \; \mathsf{app}(xs, \mathsf{Nil}) =_{\mathsf{List}} xs
$$

which is proven by induction on xs in combination with \rightsquigarrow

• afterwards it is trivial to complete the equivalence proof of the two reversal implementations

RT (DCS @ UIBK) **Part 5 – Reasoning about Functional Programs** 53/68 (STAG) 53/68

• consider the following program

 $half(Zero) = Zero$ $half(Succ(Zero)) = Zero$ $half(Succ(Succ(x))) = Succ(half(x))$ $le(Zero, y) = True$ $le(Succ(x), Zero) = False$ $le(Succ(x), Succ(y)) = le(x, y)$

• and the desired property

 $\forall x. \mathsf{le}(\mathsf{half}(x), x) =_{\mathsf{Bool}}$ True

- induction on x will get stuck, since the step-case $Succ(x)$ does not permit evaluation w.r.t. half-equations
- better induction is desirable, namely rule that corresponds to algorithm definition (e.g. of half) with cases that correspond to patterns in lhss
 RT (DCS @ UIBK)
Part 5 – Reasoning about Functional P

Part 5 – Reasoning about Functional Programs 54/68

- **Induction w.r.t. Algorithm Examples, Guidelines, and Extensions**
- \bullet induction w.r.t. algorithm was informally performed on slide $4/36$
	- select some n -ary function f
	- each f -equation is turned into one case
	- for each recursive f -call in rhs get one IH
- example: for algorithm

$$
half(Zero) = Zero
$$

half(Succ(Zero)) = Zero
half(Succ(Succ(x))) = Succ(half(x))

the induction rule for half is

$$
\varphi[y/\text{Zero}]
$$
\n
$$
\longrightarrow \varphi[y/\text{Succ}(\text{Zero})]
$$
\n
$$
\longrightarrow (\forall x. \varphi[y/x] \longrightarrow \varphi[y/\text{Succ}(\text{Succ}(x))])
$$
\n
$$
\longrightarrow \forall y. \varphi
$$
\n
$$
\text{Part (DCS @ UIBK)}
$$
\n
$$
\text{Part 5 - Resoning about Functional Programs}
$$
\n
$$
\text{55/68}
$$

[In](#page-11-0)duction w.r.t. Algorithm Examples, Guidelines, and Extensions

- induction w.r.t. algorithm formally defined
	- let f be *n*-ary defined function within well-defined program
	- let there be k defining equations for f
	- let φ be some formula which has exactly n free variables x_1, \ldots, x_n
	- \bullet then the induction rule for f is

$$
\varphi_{ind,f} := \psi_1 \longrightarrow \ldots \longrightarrow \psi_k \longrightarrow \forall x_1, \ldots, x_n. \; \varphi
$$

where for the *i*-th *f*-equation $f(\ell_1, \ldots, \ell_n) = r$ we define

$$
\psi_i := \vec{\forall} \left(\bigwedge_{r \in f(r_1, \ldots, r_n)} \varphi[x_1/r_1, \ldots, x_n/r_n] \right) \longrightarrow \varphi[x_1/\ell_1, \ldots, x_n/\ell_n]
$$

where \vec{V} ranges over all variables in the equation

- properties
	- $\mathcal{M} \models \varphi_{ind.f}$; reason: pattern-completeness and termination $(SN(\hookrightarrow \circ \triangleright))$
	- heuristic: good idea to prove properties $\vec{\nabla}\varphi$ about function f via φ_{final}

• reason: structure will always allow one evaluation step of f -invocation

RT (DCS @ UIBK) 66/68 Part 5 – Reasoning about Functional Programs 56/68

Back to Example

• consider program

```
half(Zero) = Zerohalf(Succ(Zero)) = Zerohalf(Succ(Succ(x))) = Succ(half(x))le(Zero, y) = Truele(Succ(x), Zero) = Falsele(Succ(x), Succ(y)) = le(x, y)
```
• for property

```
\forall x. le(half(x), x) = Bool True
```
chose induction for half (and not for $|e|$), since half is inner function call; hopefully evaluation of inner function calls will enable evaluation of outer function calls

```
RT (DCS @ UIBK) Part 5 – Reasoning about Functional Programs 57/68
```
Examples, Guidelines, and Extensions

```
Examples, Guidelines, and Extensions (Nearly) Completing the Proof
```
• applying induction for half on

 $\forall x. \mathsf{le}(\mathsf{half}(x), x) =_{\mathsf{Bool}}$ True

turns this problem into three new proof obligations

- $le(half(Zero), Zero) =_{Bool}$ True
- $le(half(Succ(Zero)), Succ(Zero)) =_{Bool}$ True
- le(half(Succ(Succ(x))), Succ(Succ(x))) = B_{cool} True where $\text{le}(\text{half}(x), x) =_{\text{Bool}}$ True can be assumed as IH
- the first two are easy, the third one works as follows

 $le(half(Succ(Succ(x))), Succ(Succ(x))) =_{Bool}$ True \rightsquigarrow le(Succ(half(x)), Succ(Succ(x))) = Bool True \rightsquigarrow le(half(x), Succ(x)) = Bool True

- here there is another problem, namely that the IH is not applicable
- problem solvable by proving an implication like
- $le(x, y) =_{\text{Bool}}$ True \longrightarrow le $(x, \text{Succ}(y)) =_{\text{Bool}}$ True;

uses equational reasoning with conditions; covered informally only

RT (DCS @ UIBK) **Part 5 – Reasoning about Functional Programs** 58/68 (68

Examples, Guidelines, and Extensions

Equational Reasoning with Conditions

- generalization: instead of pure equalities also support implications
- simplifications with \rightarrow can happen on both sides of implication, since \rightsquigarrow yields equivalent formulas
- applying conditional equations triggers new proofs: preconditions must be satisfied
- example:
	- assume axioms contain conditional equality $\varphi \longrightarrow \ell = \tau$, e.g., from IH
	- current goal is implication $\psi \longrightarrow C[\ell \sigma] = \tau t$
	- we would like to replace goal by $\psi \rightarrow C[r\sigma] = \tau t$
	- but then we must ensure $\psi \longrightarrow \varphi \sigma$, e.g., via $\psi \longrightarrow \varphi \sigma \rightsquigarrow^*$ true
- \rightarrow must be extended to perform more Boolean reasoning
- not done formally at this point

[Eq](#page-11-0)uational Reasoning with Conditions, Example Example • property

$$
\mathsf{le}(x,y) =_{\mathsf{Bool}} \mathsf{True} \longrightarrow \mathsf{le}(x,\mathsf{Succ}(y)) =_{\mathsf{Bool}} \mathsf{True}
$$

- apply induction on le
- first case

 $le(Zero, y) =_{Bool}$ True $\longrightarrow le(Zero, Succ(y)) =_{Bool}$ True \rightarrow le(Zero, y) $=$ _{Bool} True → True $=$ _{Bool} True \rightarrow le(Zero, y) =_{Bool} True \rightarrow true \rightsquigarrow true

• second case

 $le(Succ(x), Zero) =_{Bool}$ True $\longrightarrow le(Succ(x), Succ(Zero)) =_{Bool}$ True \rightsquigarrow False $=_{Bool}$ True \longrightarrow le(Succ(x), Succ(Zero)) $=_{Bool}$ True

 \rightsquigarrow false \longrightarrow le(Succ(x), Succ(Zero)) = Bool True

 \rightsquigarrow true

Examples, Guidelines, and Extensions Equational Reasoning with Conditions, Example • property $\mathsf{le}(x, y) =_{\mathsf{Bool}}$ True $\longrightarrow \mathsf{le}(x, \mathsf{Succ}(y)) =_{\mathsf{Bool}}$ True • third case has IH $\log(x, y) =$ Bool True $\longrightarrow \log(x, \text{Succ}(y)) =$ Bool True and we reason as follows le(Succ(x), Succ(y)) = $_{\text{Bool}}$ True → le(Succ(x), Succ(Succ(y))) = $_{\text{Bool}}$ True \rightsquigarrow le(x, y) = _{Bool} True \rightarrow le(Succ(x), Succ(Succ(y))) = _{Bool} True \rightsquigarrow le(x, y) = _{Bool} True \rightarrow le(x, Succ(y)) = _{Bool} True \rightsquigarrow le $(x, y) =_{\text{Bool}}$ True \rightsquigarrow True $=_{\text{Bool}}$ True \rightarrow le(x, y) = _{Bool} True → true \rightarrow true Examples, Guidelines, and Extensions Final Example: Insertion Sort • consider insertion sort $le(Zero, y) = True$ $le(Succ(x), Zero) = False$ $le(Succ(x), Succ(y)) = le(x, y)$ if(True, xs, ys) = xs if(False, $xs, ys) = ys$ $\textsf{insort}(x, \textsf{Nil}) = \textsf{Cons}(x, \textsf{Nil})$ $\textsf{insort}(x, \textsf{Cons}(y, ys)) = \textsf{if}(\textsf{le}(x, y), \textsf{Cons}(x, \textsf{Cons}(y, ys)), \textsf{Cons}(y, \textsf{insort}(x, ys)))$ $sort(Nil) = Nil$ $sort(Cons(x, xs)) = insert(x, sort(xs))$ • aim: prove soundness, e.g., result is sorted • problem: how to express "being sorted"?

- in general: how to express properties if certain primitives are not available?
- RT (DCS @ UIBK) 61/68 Part 5 Reasoning about Functional Programs 61/68
	- RT (DCS @ UIBK) 62/68 (DCS @ UIBK) Part 5 Reasoning about Functional Programs 62/68

Examples, Guidelines, and Extensions [Ex](#page-11-0)ample: Soundness of sort

• solution: express properties via functional programs $\ldots = \ldots$ $sort(Cons(x, xs)) = insort(x, sort(xs))$ algorithm above, properties for specification below and(True, b) = b and(False, b) = False all $le(x, Nil)$ = True $all_le(x, Cons(y, ys)) = and (le(x, y), all_le(x, ys))$ $sorted(Nil) = True$ $sorted(Cons(x, xs)) = and(all_le(x, xs), sorted(xs))$ • example properties (where $b =_{\text{Bool}}$ True is written just as b) • sorted(insort (x, xs)) = _{Bool} sorted(xs) • sorted(sort (xs)) • important: functional programs for specifications should be simple; they must be readable for validation and need not be efficient RT (DCS @ UIBK) 63/68 Part 5 – Reasoning about Functional Programs 63/68 • already assume property of insort: $\forall x, xs.$ sorted(insort (x, xs)) = Bool sorted(xs) (*) speculative proofs are risky: conjectures might be wrong • property $\forall xs$. sorted(sort(xs)) is shown by induction on xs • base case: sorted(sort(Nil)) \rightsquigarrow sorted(Nil) \rightarrow True (recall: syntax omits = $_{\text{Bool}}$ True) \rightsquigarrow true • step case with IH sorted(sort(xs)): $\sqrt{\text{sorted}(\text{sort}(\text{Cons}(x, xs)))}$ \rightsquigarrow sorted(insort(x, sort(xs))) $\xrightarrow{(*)}$ sorted(sort(xs)) \rightsquigarrow True RT (DCS @ UIBK) 64/68 (Bart 5 – Reasoning about Functional Programs 64/68

Expressing Properties **Expressing Properties**

• proof of property $\forall x$. le(half (x) , x) = Bool True finished

Examples, Guidelines, and Extensions

