

Summer Term 2024

Program Verification

Part 5 – Reasoning about Functional Programs

René Thiemann

Department of Computer Science

Inference Rules for the Standard Model

Plan

- only consider well-defined functional programs, so that standard model is well-defined
- aim
 - derive theorems and inference rules which are valid in the standard model
 - these can be used to formally reason about functional programs as on slide 1/18 where associativity of append was proven
- examples
 - reasoning about constructors
 - $\bullet \ \forall x,y. \ \mathsf{Succ}(x) \mathrel{=_{\mathsf{Nat}}} \mathsf{Succ}(y) \longleftrightarrow x \mathrel{=_{\mathsf{Nat}}} y$

$$\forall x. \neg \mathsf{Succ}(x) =_{\mathsf{Nat}} \mathsf{Zero}$$

- getting defining equations of functional programs as theorems
 - $\forall x, xs, ys. append(Cons(x, xs), ys) =_{List} Cons(x, append(xs, ys))$
- induction schemes

 $\varphi(\mathsf{Zero}) \quad \forall x. \, \varphi(x) \longrightarrow \varphi(\mathsf{Succ}(x))$

$$\forall x. \varphi(x)$$

Inference Rules for the Standard Model

Inference Rules for the Standard Model

Notation – The Normal Form

- $\bullet\,$ when speaking about $\hookrightarrow,$ we always consider some fixed well-defined functional program
- since every term has a unique normal form w.r.t. \hookrightarrow , we can define a function $\int : \mathcal{T}(\Sigma, \mathcal{V})_{\tau} \to \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$ which returns this normal form and write it in postfix notation:

 $t\!\!\downarrow\!:=$ the unique normal of t w.r.t. \hookrightarrow

 $\bullet\,$ using $\,\,{}_{\downarrow}$, the meaning of symbols in the standard model can concisely be written as

$$F^{\mathcal{M}}(t_1,\ldots,t_n)=F(t_1,\ldots,t_n)\downarrow$$

• proof

• universe of type τ is $\mathcal{T}(\mathcal{C})_{\tau}$, so $t \in \mathcal{T}(\mathcal{C})_{\tau}$ implies $t \in NF(\hookrightarrow)$

• if
$$F \in \mathcal{C}$$
, then $F^{\mathcal{M}}(t_1, \ldots, t_n) \stackrel{def}{=} F(t_1, \ldots, t_n) = F(t_1, \ldots, t_n) \downarrow$

• if
$$F \in \mathcal{D}$$
, then $F^{\mathcal{M}}(t_1, \ldots, t_n) \stackrel{def}{=} F(t_1, \ldots, t_n) \downarrow$

The Substitution Lemma

- there are two possibilities to plug in objects into variables
 - as assignment: $\alpha : \mathcal{V}_{\tau} \to \mathcal{A}_{\tau}$ result of $[t]_{\alpha}$ is an element of \mathcal{A}_{τ} • as substitution: $\sigma: \mathcal{V}_{\tau} \to \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$ result of $t\sigma$ is an element of $\mathcal{T}(\Sigma, \mathcal{V})_{\tau}$
- substitution lemma: substitutions can be moved into assignment:

$$\llbracket t\sigma \rrbracket_{\alpha} = \llbracket t \rrbracket_{\beta}$$

where $\beta(x) := [\![\sigma(x)]\!]_{\alpha}$ proof by structural induction on t • $\llbracket x\sigma \rrbracket_{\alpha} = \llbracket \sigma(x) \rrbracket_{\alpha} = \beta(x) = \llbracket x \rrbracket_{\beta}$

$$\begin{split} \llbracket F(t_1, \dots, t_n) \sigma \rrbracket_{\alpha} &= \llbracket F(t_1 \sigma, \dots, t_n \sigma) \rrbracket_{\alpha} \\ &= F^{\mathcal{M}}(\llbracket t_1 \sigma \rrbracket_{\alpha}, \dots, \llbracket t_n \sigma \rrbracket_{\alpha}) \\ &\stackrel{IH}{=} F^{\mathcal{M}}(\llbracket t_1 \rrbracket_{\beta}, \dots, \llbracket t_n \rrbracket_{\beta}) \\ &= \llbracket F(t_1, \dots, t_n) \rrbracket_{\beta} \end{split}$$
Part 5 - Reasoning about Functional Programs

RT (DCS @ UIBK)

- the substitution lemma holds independently of the model
- in case of the standard model, we have the special condition that $\mathcal{A}_{\tau} = \mathcal{T}(\mathcal{C})_{\tau}$, so the universes consist of terms
 - hence, each assignment $\alpha: \mathcal{V}_{\tau} \to \mathcal{T}(\mathcal{C})_{\tau}$ is a special kind of substitution (constructor ground substitution)
- consequence: possibility to encode assignment as substitution
- reverse substitution lemma:

$$\llbracket t \rrbracket_{\alpha} = t \alpha \downarrow$$

proof by structural induction on t

$$\llbracket x \rrbracket_{\alpha} = \alpha(x) \stackrel{(*)}{=} \alpha(x) \downarrow = x \alpha \downarrow \text{ where } (*) \text{ holds, since } \alpha(x) \in \mathcal{T}(\mathcal{C})$$
$$\llbracket F(t_1, \dots, t_n) \rrbracket_{\alpha} = F^{\mathcal{M}}(\llbracket t_1 \rrbracket_{\alpha}, \dots, \llbracket t_n \rrbracket_{\alpha})$$
$$\stackrel{\text{IH}}{=} F^{\mathcal{M}}(t_1 \alpha \downarrow, \dots, t_n \alpha \downarrow) = F(t_1 \alpha \downarrow, \dots, t_n \alpha \downarrow) \downarrow$$
$$\stackrel{(confl.)}{=} F(t_1 \alpha, \dots, t_n \alpha) \downarrow = F(t_1, \dots, t_n) \alpha \downarrow$$

RT (DCS @ UIBK) 5/68

Part 5 - Reasoning about Functional Programs

6/68

Inference Rules for the Standard Model

Defining Equations are Theorems in Standard Model

- notation: $\vec{\forall} \varphi$ means that universal quantification ranges over all free variables that occur in φ
- example: if φ is append(Cons(x, xs), ys) =_{List} Cons(x, append(xs, ys)) then $\vec{\forall} \varphi$ is

 $\forall x, xs, ys. append(Cons(x, xs), ys) =_{List} Cons(x, append(xs, ys))$

• theorem: if $\ell = r$ is defining equation of program (of type τ), then

$$\mathcal{M} \models \vec{\forall} \, \ell =_{\tau} r$$

- consequence: conversion of well-defined functional programs into equations is now possible, cf. previous problem on slide 1/20
- proof of theorem
 - by definition of \models and $=_{\tau}^{\mathcal{M}}$ we have to show $\llbracket \ell \rrbracket_{\alpha} = \llbracket r \rrbracket_{\alpha}$ for all α
 - via reverse substitution lemma this is equivalent to $\ell \alpha f = r \alpha f$
 - easily follows from confluence, since $\ell \alpha \hookrightarrow r \alpha$

Axiomatic Reasoning

- previous slide already provides us with some theorems that are satisfied in standard model
- axiomatic reasoning: take those theorems as axioms to show property φ
- added axioms are theorems of standard model, so they are consistent
- example $AX = \{ \vec{\forall} \ell =_{\tau} r \mid \ell = r \text{ is def. eqn.} \}$
- show $AX \models \varphi$ using first-order reasoning in order to prove $\mathcal{M} \models \varphi$ (and forget standard model \mathcal{M} during the reasoning!)
- question: is it possible to prove every property φ in this way for which $\mathcal{M} \models \varphi$ holds?
- answer for above example is "no"
 - reason: there are models different than the standard model in which all axioms of AX are satisfied, but where φ does not hold!
 - example on next slide

RT (DCS @ UIBK)

Inference Rules for the Standard Model

Inference Rules for the Standard Model

Axiomatic Reasoning - Problematic Model

 ${\ensuremath{\, \bullet }}$ consider addition program, then example AX consists of two axioms

$$\begin{aligned} \forall y. \mathsf{plus}(\mathsf{Zero}, y) =_{\mathsf{Nat}} y \\ \forall x, y. \mathsf{plus}(\mathsf{Succ}(x), y) =_{\mathsf{Nat}} \mathsf{Succ}(\mathsf{plus}(x, y)) \end{aligned}$$

• we want to prove associativity of plus, so let φ be

$$\forall x, y, z. \operatorname{plus}(\operatorname{plus}(x, y), z) =_{\operatorname{Nat}} \operatorname{plus}(x, \operatorname{plus}(y, z))$$

• consider the following model \mathcal{M}'

•
$$\mathcal{A}_{Nat} = \mathbb{N} \cup \{x + \frac{1}{2} \mid x \in \mathbb{Z}\} = \{\dots, -1\frac{1}{2}, -\frac{1}{2}, 0, \frac{1}{2}, 1, 1\frac{1}{2}, 2, 2\frac{1}{2}, \dots\}$$

• $\mathsf{Zero}^{\mathcal{M}'} = 0$
• $\mathsf{Succ}^{\mathcal{M}'}(n) = n + 1$
• $\mathsf{plus}^{\mathcal{M}'}(n, m) = \begin{cases} n + m, & \text{if } n \in \mathbb{N} \text{ or } m \in \mathbb{N} \\ n - m + \frac{1}{2}, & \text{otherwise} \end{cases}$
• $=_{\mathsf{Nat}}^{\mathcal{M}} = \{(n, n) \mid n \in \mathcal{A}_{\mathsf{Nat}}\}$
• $\mathcal{M}' \models \bigwedge AX, \text{ but } \mathcal{M}' \nvDash \varphi: \text{ consider } \alpha(x) = \frac{19}{2}, \alpha(y) = \frac{9}{2}, \alpha(z) = \frac{7}{2}$
• problem: values in α do not correspond to constructor ground terms
RT (DCS @ UIBK) Part 5 - Reasoning about Functional Programs

- taking AX as set of defining equations does not suffice to deduce all valid theorems of standard model
- obvious approach: add more theorems to axioms AX (theorems about $=_{\tau}$, induction rules, ...)
- question: is it then possible to deduce all valid theorems of standard model?
- negative answer by Gödel's First Incompleteness Theorem
- theorem: consider a well-defined functional program that includes addition and multiplication of natural numbers; let *AX* be a decidable set of valid theorems in the standard model;

then there is a formula φ such that $\mathcal{M} \models \varphi$, but $AX \not\models \varphi$

- note: adding φ to AX does not fix the problem, since then there is another formula φ' such that $\mathcal{M} \models \varphi'$ and $AX \cup \{\varphi\} \not\models \varphi'$
- consequence: "proving φ via $AX \models \varphi$ " is sound, but never complete
- upcoming: add more axioms than just defining equations, so that still several proofs are possible
- 9/68 RT (DCS @ UIBK)

Part 5 – Reasoning about Functional Programs

10/68

Inference Rules for the Standard Model

Axioms about Equality

- we define decomposition theorems and disjointness theorems in the form of logical equivalences
- for each $c: \tau_1 \times \ldots \times \tau_n \to \tau \in \mathcal{C}$ we define its decomposition theorem as

$$\vec{\forall} c(x_1, \dots, x_n) =_{\tau} c(y_1, \dots, y_n) \longleftrightarrow x_1 =_{\tau_1} y_1 \land \dots \land x_n =_{\tau_n} y_n$$

and for all $d: \tau'_1 \times \ldots \times \tau'_k \to \tau \in C$ with $c \neq d$ we define the disjointness theorem as

$$\vec{\forall} c(x_1, \dots, x_n) =_{\tau} d(y_1, \dots, y_k) \longleftrightarrow$$
 false

• proof of validity of decomposition theorem:

$$\begin{split} \mathcal{M} &\models_{\alpha} c(x_1, \dots, x_n) =_{\tau} c(y_1, \dots, y_n) \\ \text{iff } c(\alpha(x_1), \dots, \alpha(x_n)) = c(\alpha(y_1), \dots, \alpha(y_n)) \\ \text{iff } \alpha(x_1) = \alpha(y_1) \text{ and } \dots \text{ and } \alpha(x_n) = \alpha(y_n) \\ \text{iff } \mathcal{M} \models_{\alpha} x_1 =_{\tau_1} y_1 \text{ and } \dots \text{ and } \mathcal{M} \models_{\alpha} x_n =_{\tau_n} y_n \\ \text{iff } \mathcal{M} \models_{\alpha} x_1 =_{\tau_1} y_1 \wedge \dots \wedge x_n =_{\tau_n} y_n \end{split}$$

Inference Rules for the Standard Model

Inference Rules for the Standard Model

Axioms about Equality – Example

• for the datatypes of natural numbers and lists we get the following axioms

$$\begin{array}{l} {\sf Zero} =_{\sf Nat} {\sf Zero} \longleftrightarrow {\sf true} \\ \forall x,y.{\sf Succ}(x) =_{\sf Nat} {\sf Succ}(y) \longleftrightarrow x =_{\sf Nat} y \\ {\sf Nil} =_{\sf List} {\sf Nil} \longleftrightarrow {\sf true} \\ \forall x,xs,y,ys.{\sf Cons}(x,xs) =_{\sf List} {\sf Cons}(y,ys) \longleftrightarrow x =_{\sf Nat} y \wedge xs =_{\sf List} ys \end{array}$$

 $\forall y. \operatorname{Zero} =_{\operatorname{Nat}} \operatorname{Succ}(y) \longleftrightarrow \text{ false}$ $\forall x. \operatorname{Succ}(x) =_{\operatorname{Nat}} \operatorname{Zero} \longleftrightarrow \text{ false}$ $\forall y, ys. \operatorname{Nil} =_{\operatorname{List}} \operatorname{Cons}(y, ys) \longleftrightarrow \text{ false}$ $\forall x, xs. \operatorname{Cons}(x, xs) =_{\operatorname{List}} \operatorname{Nil} \longleftrightarrow \text{ false}$

Induction Theorems

Inference Rules for the Standard Model

 $\hfill \bullet$ current axioms are not even strong enough to prove simple theorems, e.g.,

- $\forall x. \ \mathsf{plus}(x, \mathsf{Zero}) =_{\mathsf{Nat}} x$
- problem: proofs by induction are not yet covered in axioms
- since the principle of induction cannot be defined in general in a single first-order formula, we will add infinitely many induction theorems to the set of axioms, one for each property
- not a problem, since set of axioms stays decidable, i.e., one can see whether some tentative formula is an element of the axiom set or not
- example: induction over natural numbers

ł

- formula below is general, but not first-order as it quantifies over φ

$$\forall \varphi(x:\mathsf{Nat}).\,\varphi(\mathsf{Zero}) \longrightarrow (\forall x.\,\varphi(x) \longrightarrow \varphi(\mathsf{Succ}(x))) \longrightarrow \forall x.\,\varphi(x)$$

 quantification can be done on meta-level instead: let φ be an arbitrary formula with a free variable of type Nat; then

$$\varphi(\mathsf{Zero}) \longrightarrow (\forall x. \, \varphi(x) \longrightarrow \varphi(\mathsf{Succ}(x))) \longrightarrow \forall x. \, \varphi(x)$$

is a valid theorem; quantifying over arphi results in induction scheme

```
RT (DCS @ UIBK)
```

```
Part 5 – Reasoning about Functional Programs
```

```
Induction Theorems – Example Instances
```

• induction scheme

$$\varphi(\mathsf{Zero}) \longrightarrow (\forall x. \, \varphi(x) \longrightarrow \varphi(\mathsf{Succ}(x))) \longrightarrow \forall x. \, \varphi(x)$$

• example: right-neutral element: $\varphi(x) := \mathsf{plus}(x, \mathsf{Zero}) =_{\mathsf{Nat}} x$

 $\begin{array}{l} \mathsf{plus}(\mathsf{Zero},\mathsf{Zero}) =_{\mathsf{Nat}} \mathsf{Zero} \\ \longrightarrow (\forall x. \, \mathsf{plus}(x,\mathsf{Zero}) =_{\mathsf{Nat}} x \longrightarrow \mathsf{plus}(\mathsf{Succ}(x),\mathsf{Zero}) =_{\mathsf{Nat}} \mathsf{Succ}(x)) \\ \longrightarrow \forall x. \, \mathsf{plus}(x,\mathsf{Zero}) =_{\mathsf{Nat}} x \end{array}$

• example with quantifiers and free variables: $\varphi(x) := \forall y. \text{plus}(\text{plus}(x, y), z) =_{\text{Nat}} \text{plus}(x, \text{plus}(y, z))$

13/68 RT (DCS @ UIBK)

Inference Rules for the Standard Model

Preparing Induction Theorems – Substitutions in Formulas

• current situation

- substitutions are functions of type $\mathcal{V} \to \mathcal{T}(\Sigma, \mathcal{V})$
- lifted to functions of type $\mathcal{T}(\Sigma, \mathcal{V}) \to \mathcal{T}(\Sigma, \mathcal{V})$, cf. slide 3/22
- substitution of variables of formulas is not yet defined, but is required for induction formulas, cf. notation φ(x) → φ(Succ(x)) on previous slide
- formal definition of applying a substitution σ to formulas
 - $\bullet \ \operatorname{true} \sigma = \operatorname{true}$
 - $(\neg \varphi)\sigma = \neg(\varphi\sigma)$
 - $(\varphi \wedge \psi)\sigma = \varphi \sigma \wedge \psi \sigma$
 - $P(t_1,\ldots,t_n)\sigma = P(t_1\sigma,\ldots,t_n\sigma)$
 - $(\forall x. \varphi)\sigma = \forall x. (\varphi\sigma)$ if x does not occur in σ , i.e., $\sigma(x) = x$ and $x \notin Vars(\sigma(y))$ for all $y \neq x$
 - $(\forall x. \varphi)\sigma = (\forall y. \varphi[x/y])\sigma$ if x occurs in σ where
 - y is a fresh variable, i.e., $\sigma(y) = y$, $y \notin Vars(\sigma(z))$ for all $z \neq y$, and y is not a free variable of φ
 - [x/y] is the substitution which just replaces x by y
 - effect is α -renaming: just rename universally quantified variable before substitution to avoid variable capture

Examples

• substitution of formulas

٠	$(\forall x.\varphi)\sigma = \forall x.(\varphi\sigma)$	if x does not occur in σ
٠	$(\forall x. \varphi)\sigma = (\forall y. \varphi[x/y])\sigma$	if x occurs in σ where y is fresh

- example substitution applications
 - $\varphi := \forall x. \neg x =_{Nat} y$ • $\varphi[y/Zero] = \forall x. \neg x =_{Nat} Zero$ no renaming required • $\varphi[y/Succ(z)] = \forall x. \neg x =_{Nat} Succ(z)$ no renaming required • $\varphi[y/Succ(x)] = \forall z. \neg z =_{Nat} Succ(x)$ renaming [x/z] required without renaming meaning will change: $\forall x. \neg x =_{Nat} Succ(y)$ renaming [x/z] required without renaming meaning will change: $\forall x. \neg Succ(y) =_{Nat} y$
- example theorems involving substitutions

 $\varphi[x/\mathsf{Zero}] \longrightarrow (\forall y.\, \varphi[x/y] \longrightarrow \varphi[x/\mathsf{Succ}(y)]) \longrightarrow \forall x.\, \varphi$

RT (DCS @ UIBK)

Inference Rules for the Standard Model

Substitution Lemma for Formulas

Inference Rules for the Standard Model

example induction formula

$$\varphi[x/\mathsf{Zero}] \longrightarrow (\forall y. \, \varphi[x/y] \longrightarrow \varphi[x/\mathsf{Succ}(y)]) \longrightarrow \forall x. \, \varphi$$

- proving validity of this formula (in standard model) requires another substitution lemma about substitutions in formulas
- lemma: $\mathcal{M} \models_{\alpha} \varphi \sigma$ iff $\mathcal{M} \models_{\beta} \varphi$ where $\beta(x) := \llbracket \sigma(x) \rrbracket_{\alpha}$
- proof by structural induction on φ for arbitrary α and σ

• $\mathcal{M} \models_{\alpha} P(t_1, \ldots, t_n) \sigma$ iff $\mathcal{M} \models_{\alpha} P(t_1 \sigma, \dots, t_n \sigma)$ iff $(\llbracket t_1 \sigma \rrbracket_{\alpha}, \ldots, \llbracket t_n \sigma \rrbracket_{\alpha}) \in P^{\mathcal{M}}$ iff $(\llbracket t_1 \rrbracket_{\beta}, \ldots, \llbracket t_n \rrbracket_{\beta}) \in P^{\mathcal{M}}$ iff $\mathcal{M} \models_{\beta} P(t_1, \ldots, t_n)$ where we use the substitution lemma of slide 5 to conclude $[t_i\sigma]_{\alpha} = [t_i]_{\beta}$ • $\mathcal{M} \models_{\alpha} (\neg \varphi) \sigma$ iff $\mathcal{M} \models_{\alpha} \neg (\varphi \sigma)$ iff $\mathcal{M} \not\models_{\alpha} \varphi \sigma$ iff $\mathcal{M} \not\models_{\beta} \varphi$ (by IH) iff $\mathcal{M} \models_{\beta} \neg \varphi$ • cases "true" and conjunction are proved in same way as negation

RT (DCS @ UIBK)

```
Part 5 - Reasoning about Functional Programs
```

Substitution Lemma for Formulas – Proof Continued

- lemma: $\mathcal{M} \models_{\alpha} \varphi \sigma$ iff $\mathcal{M} \models_{\beta} \varphi$ where $\beta(x) := \llbracket \sigma(x) \rrbracket_{\alpha}$
- proof by structural induction on φ for arbitrary α and σ
- for quantification we here only consider the more complex case where renaming is required • $\mathcal{M} \models_{\alpha} (\forall x. \varphi) \sigma$ iff $\mathcal{M} \models_{\alpha} (\forall y. \varphi[x/y]) \sigma$ for fresh y iff $\mathcal{M} \models_{\alpha} \forall y. (\varphi[x/y]\sigma)$ iff $\mathcal{M} \models_{\alpha[w=a]} \varphi[x/y]\sigma$ for all $a \in \mathcal{A}$ iff $\mathcal{M} \models_{\beta'} \varphi$ for all $a \in \mathcal{A}$ where $\beta'(z) := \llbracket ([x/y]\sigma)(z) \rrbracket_{\alpha[y:=a]}$ (by IH) iff $\mathcal{M} \models_{\beta[x:=a]} \varphi$ for all $a \in \mathcal{A}$ only non-automatic step iff $\mathcal{M} \models_{\beta} \forall x. \varphi$ • equivalence of β' and $\beta[x := a]$ on variables of φ • $\beta'(x) = [[([x/y]\sigma)(x)]]_{\alpha[y:=a]} = [[\sigma(y)]]_{\alpha[y:=a]} = [[y]]_{\alpha[y:=a]} = a$ and $\beta[x:=a](x) = a$ • z is variable of φ , $z \neq x$: by freshness condition conclude $z \neq y$ and $y \notin Vars(\sigma(z))$; hence $\beta'(z) = [[(x/y]\sigma)(z)]_{\alpha[y:=a]} = [[\sigma(z)]_{\alpha[y:=a]} = [[\sigma(z)]_{\alpha} \text{ and }$ $\beta[x := a](z) = \beta(z) = \llbracket \sigma(z) \rrbracket_{\alpha}$
- RT (DCS @ UIBK)

Part 5 - Reasoning about Functional Programs

18/68

Inference Rules for the Standard Model

17/68

Substitution Lemma in Standard Model

- substitution lemma: $\mathcal{M} \models_{\alpha} \varphi \sigma$ iff $\mathcal{M} \models_{\beta} \varphi$ where $\beta(x) := \llbracket \sigma(x) \rrbracket_{\alpha}$
- lemma is valid for all models
- in standard model, substitution lemma permits to characterize universal quantification by substitutions, similar to reverse substitution lemma on slide 6
- lemma: let $x : \tau \in \mathcal{V}$, let \mathcal{M} be the standard model

```
1. \mathcal{M} \models_{\alpha[x=t]} \varphi iff \mathcal{M} \models_{\alpha} \varphi[x/t]
2. \mathcal{M} \models_{\alpha} \forall x. \varphi iff \mathcal{M} \models_{\alpha} \varphi[x/t] for all t \in \mathcal{T}(\mathcal{C})_{\tau}
```

• proof

1. first note that the usage of $\alpha[x := t]$ implies $t \in \mathcal{A}_{\tau} = \mathcal{T}(\mathcal{C})_{\tau}$; by the substitution lemma obtain $\mathcal{M} \models_{\alpha} \varphi[x/t]$ iff $\mathcal{M} \models_{\beta} \varphi$ for $\beta(z) = \llbracket [x/t](z) \rrbracket_{\alpha} = \alpha [x := \llbracket t \rrbracket_{\alpha}](z)$ $(\llbracket t \rrbracket_{\alpha} = t, \text{ since } t \in \mathcal{T}(\mathcal{C}))$ iff $\mathcal{M} \models_{\alpha[x:=t]} \varphi$ 2. immediate by part 1 of lemma

Substitution Lemma and Induction Formulas

Inference Rules for the Standard Model

- substitution lemma (SL) is crucial result to lift structural induction rule of universe $\mathcal{T}(\mathcal{C})_{\tau}$ to a structural induction formula
- example: structural induction formula ψ for lists with fresh x, xs

$$\psi:=\underbrace{\varphi[ys/\mathsf{Nil}]}_1\longrightarrow (\underbrace{\forall x,xs.\,\varphi[ys/xs]\longrightarrow \varphi[ys/\mathsf{Cons}(x,xs)]}_2)\longrightarrow \forall ys.\,\varphi$$

• proof of $\mathcal{M} \models_{\alpha} \psi$:

assume premises 1 ($\mathcal{M} \models_{\alpha} \varphi[ys/\mathsf{Nil}]$) and 2 and show $\mathcal{M} \models_{\alpha} \forall ys. \varphi$: by SL the latter is equivalent to " $\mathcal{M} \models_{\alpha} \varphi[ys/\ell]$ for all $\ell \in \mathcal{T}(\mathcal{C})_{\mathsf{List}}$ "; prove this statement by structural induction on lists

- Nil: showing $\mathcal{M} \models_{\alpha} \varphi[ys/\text{Nil}]$ is easy: it is exactly premise 1
- $Cons(n, \ell)$: use SL on premise 2 to conclude

 $\mathcal{M} \models_{\alpha} (\varphi[ys/xs] \longrightarrow \varphi[ys/\mathsf{Cons}(x,xs)])[x/n,xs/\ell]$

 $\mathcal{M} \models_{\alpha} \varphi[ys/\ell] \longrightarrow \varphi[ys/\mathsf{Cons}(n,\ell)]$

hence

and with IH $\mathcal{M} \models_{\alpha} \varphi[ys/\ell]$ conclude $\mathcal{M} \models_{\alpha} \varphi[ys/\mathsf{Cons}(n,\ell)]$ RT (DCS @ UIBK) Part 5 – Reasoning about Functional Programs

20/68

Freshness of Variables

Inference Rules for the Standard Model

• example: structural induction formula for lists with fresh x, xs

$$\varphi[ys/\mathsf{Nil}] \longrightarrow (\forall x, xs. \, \varphi[ys/xs] \longrightarrow \varphi[ys/\mathsf{Cons}(x, xs)]) \longrightarrow \forall ys. \, \varphi$$

- why freshness required? isn't name of quantified variables irrelevant?
- problem: substitution is applied below quantifier!
- example: let us drop freshness condition and "prove" non-theorem

$$\mathcal{M} \models \forall x, xs, ys. ys =_{\mathsf{List}} \mathsf{Nil} \lor ys =_{\mathsf{List}} \mathsf{Cons}(x, xs)$$

• by semantics of $\forall x, xs...$ it suffices to prove

$$\mathcal{M}\models_{\alpha} \forall ys. \underbrace{ys =_{\mathsf{List}} \mathsf{Nil} \lor ys =_{\mathsf{List}} \mathsf{Cons}(x, xs)}_{\mathsf{Tist}}$$

- apply above induction formula and obtain two subgoals $\mathcal{M}\models_{lpha}\ldots$ for
 - $\varphi[ys/\text{Nil}]$ which is $\text{Nil} =_{\text{List}} \text{Nil} \lor \text{Nil} =_{\text{List}} \text{Cons}(x, xs)$

$$\forall x, xs. \varphi[ys/xs] \longrightarrow \varphi[ys/\operatorname{Cons}(x, xs)] \text{ which is} \\ \forall x, xs. \dots \longrightarrow \operatorname{Cons}(x, xs) =_{\operatorname{List}} \operatorname{Nil} \lor \operatorname{Cons}(x, xs) =_{\operatorname{List}} \operatorname{Cons}(x, xs)$$

solution: rename variables in induction formula whenever required
 RT (DCS @ UIBK)
 Part 5 - Reasoning about Functional Programs

Structural Induction Formula

• finally definition of induction formula for data structures is possible

• consider data
$$\tau = c_1 : \tau_{1,1} \times \ldots \times \tau_{1,m_1} \rightarrow \tau$$

 $\mid \dots \mid$
 $\mid c_n : \tau_{n,1} \times \ldots \times \tau_{n,m_n} \rightarrow \tau$

- let $x \in \mathcal{V}_{\tau}$, let φ be a formula, let variables x_1, x_2, \ldots be fresh w.r.t. φ
- for each c_i define

$$\varphi_i := \forall x_1, \dots, x_{m_i}. \underbrace{\left(\bigwedge_{j, \tau_{i,j} = \tau} \varphi[x/x_j]\right)}_{\text{IH for recursive arguments}} \longrightarrow \varphi[x/c_i(x_1, \dots, x_{m_i})]$$

• the induction formula is
$$\vec{\forall} (\varphi_1 \longrightarrow \ldots \longrightarrow \varphi_n \longrightarrow \forall x. \varphi)$$

• theorem:
$$\mathcal{M} \models \vec{\forall} \ (\varphi_1 \longrightarrow \ldots \longrightarrow \varphi_n \longrightarrow \forall x. \varphi)$$

```
RT (DCS @ UIBK)
```

21/68

Part 5 – Reasoning about Functional Programs

- **Proof of Structural Induction Formula**
- to prove: $\mathcal{M} \models \vec{\forall} (\varphi_1 \longrightarrow \ldots \longrightarrow \varphi_n \longrightarrow \forall x. \varphi)$
- \forall -intro: $\mathcal{M} \models_{\alpha} (\varphi_1 \longrightarrow \ldots \longrightarrow \varphi_n \longrightarrow \forall x. \varphi)$ for arbitrary α
- \longrightarrow -intro: assume $\mathcal{M} \models_{\alpha} \varphi_i$ for all *i* and show $\mathcal{M} \models_{\alpha} \forall x. \varphi$
- \forall -intro via SL: show $\mathcal{M} \models_{\alpha} \varphi[x/t]$ for all $t \in \mathcal{T}(\mathcal{C})_{\tau}$
- prove this by structural induction on t w.r.t. induction rule of $\mathcal{T}(\mathcal{C})_{\tau}$ (for precisely this α , not for arbitrary α)
- induction step for each constructor $c_i : \tau_{i,1} \times \ldots \times \tau_{i,m_i} \to \tau$
 - aim: $\mathcal{M} \models_{\alpha} \varphi[x/c_i(t_1, \dots, t_{m_i})]$ IH: $\mathcal{M} \models_{\alpha} \varphi[x/t_j]$ for all j such that $\tau_{i,j} = \tau$ • use assumption $\mathcal{M} \models_{\alpha} \varphi_i$, i.e., (here important: same α)

$$\mathcal{M} \models_{\alpha} \forall x_1, \dots, x_{m_i} \cdot (\bigwedge_{j, \tau_{i,j} = \tau} \varphi[x/x_j]) \longrightarrow \varphi[x/c_i(x_1, \dots, x_{m_i})]$$

• use SL as $\forall\text{-elimination}$ with substitution $[x_1/t_1,\ldots,x_{m_i}/t_{m_i}]$, obtain

$$\mathcal{M} \models_{\alpha} \left(\bigwedge_{j, \tau_{i,j} = \tau} \varphi[x/t_j] \right) \longrightarrow \varphi[x/c_i(t_1, \dots, t_{m_i})]$$

• combination with IH yields desired $\mathcal{M} \models_{\alpha} \varphi[x/c_i(t_1, \ldots, t_{m_i})]$ RT (DCS © UIBK) Part 5 – Reasoning about Functional Programs Inference Rules for the Standard Model

Summary: Axiomatic Proofs of Functional Programs

- given a well-defined functional program, define a set of axioms AX consisting of
 - equations of defined symbols (slide 7)
 - axioms about equality of constructors (slide 11)
 - structural induction formulas (slide 22)
- instead of proving $\mathcal{M} \models \varphi$ deduce $AX \models \varphi$
- fact: standard model is ignored in previous step
- question: why all these efforts and not just state AX?
- reason:

having proven $\mathcal{M} \models \psi$ for all $\psi \in AX$ implies that AX is consistent!

• recall: already just converting functional program equations naively into theorems led to proof of 0 = 1 on slide 1/20, i.e., inconsistent axioms, and AX now contains more complex axioms than just equalities

23/68

22/68

Inference Rules for the Standard Model

Example: Attempt to Prove Associativity of Append via AX

- task: prove associativity of append via natural deduction and AX
- define $\varphi := \operatorname{append}(\operatorname{append}(xs, ys), zs) =_{\operatorname{List}} \operatorname{append}(xs, \operatorname{append}(ys, zs))$
 - 1. show $\forall xs, ys, zs. \varphi$
 - 2. $\forall\text{-intro:}$ show φ where now $\mathit{xs}, \mathit{ys}, \mathit{zs}$ are fresh variables
 - 3. to this end prove intermediate goal: $\forall xs. \, \varphi$
 - 4. applying induction axiom $\varphi[xs/\text{Nil}] \longrightarrow (\forall u, us. \varphi[xs/us] \longrightarrow \varphi[xs/\text{Cons}(u, us)]) \longrightarrow \forall xs. \varphi$ in combination with modus ponens yields two subgoals, one of them is $\varphi[xs/\text{Nil}]$, i.e., append(append(Nil, ys), zs) =_{List} append(Nil, append(ys, zs))
 - 5. use axiom $\forall ys. \mathsf{append}(\mathsf{Nil}, ys) =_{\mathsf{List}} ys$
 - 6. \forall -elim: append(Nil, append(ys, zs)) =_{List} append(ys, zs)
 - 7. at this point we would like to simplify the rhs in the goal to obtain obligation append(append(Nil, ys), zs) =_{List} append(ys, zs)
 - 8. this is not possible at this point: there are missing axioms
 - $\bullet \ =_{\mathsf{List}} \mathsf{is an equivalence relation}$
 - =_List is a congruence; required to simplify the lhs <code>append(., zs)</code> at .
 - ...

• next step: reconsider the reasoning engine and the available axioms

RT (DCS @ UIBK)

Part 5 – Reasoning about Functional Programs

25/68

Equational Reasoning and Induction

Equational Reasoning and Induction

Reasoning about Functional Programs: Current State

- given well-defined functional program, extract set of axioms AX that are satisfied in standard model ${\cal M}$
 - equations of defined symbols
 - equivalences regarding equality of constructors
 - structural induction formulas
- for proving property $\mathcal{M}\models\varphi$ it suffices to show $AX\models\varphi$
- problems: reasoning via natural deduction quite cumbersome
 - explicit introduction and elimination of quantifiers
 - $\bullet\,$ no direct support for equational reasoning
- aim: equational reasoning
 - implicit transitivity reasoning: from $a=_{\tau}b=_{\tau}c=_{\tau}d$ conclude $a=_{\tau}d$
 - equational reasoning in contexts: from $a=_{\tau}b$ conclude $f(a)=_{\tau'}f(b)$
- in general: want some calculus \vdash such that $\vdash \varphi$ implies $\mathcal{M} \models \varphi$

Equational Reasoning with Universally Quantified Formulas

- for now let us restrict to universally quantified formulas
- we can formulate properties like
 - $\forall xs. reverse(reverse(xs)) =_{List} xs$
 - $\forall xs, ys. reverse(append(xs, ys)) =_{List} append(reverse(ys), reverse(xs))$
 - $\forall x, y. \ \mathsf{plus}(x, y) =_{\mathsf{Nat}} \mathsf{plus}(y, x)$

```
but not
```

RT (DCS @ UIBK)

- $\forall x. \exists y. greater(y, x) =_{\mathsf{Bool}} \mathsf{True}$
- universally quantified axioms
 - equations of defined symbols

```
• \forall y. \ \mathsf{plus}(\mathsf{Zero}, y) =_{\mathsf{Nat}} y
```

- $\forall x, y. \ \mathsf{plus}(\mathsf{Succ}(x), y) =_{\mathsf{Nat}} \mathsf{Succ}(\mathsf{plus}(x, y))$
- ... • axioms about equality of constructors
 - $\forall x, y. \ \mathsf{Succ}(x) =_{\mathsf{Nat}} \mathsf{Succ}(y) \longleftrightarrow x =_{\mathsf{Nat}} y$
 - $\forall x. \operatorname{Succ}(x) =_{\operatorname{Nat}} \operatorname{Zero} \longleftrightarrow \operatorname{false}$
- ... • but not: structural induction formulas

```
\bullet \hspace{0.2cm} \varphi[y/{\sf Zero}] \longrightarrow (\forall x. \hspace{0.2cm} \varphi[y/x] \longrightarrow \varphi[y/{\sf Succ}(x)]) \longrightarrow \forall y. \hspace{0.2cm} \varphi
```

Part 5 – Reasoning about Functional Programs

Equational Reasoning and Induction

Equational Reasoning in Formulas

Equational Reasoning and Induction

Equational Reasoning and Induction

- so far: $\hookrightarrow_{\mathcal{E}}$ replaces terms by terms using equations \mathcal{E} of program
- upcoming: \rightsquigarrow to simplify formulas using universally quantified axioms
- formal definition: let AX be a set of axioms; then \rightsquigarrow_{AX} is defined as

$$\begin{array}{c|c} \hline \mathsf{true} \land \varphi \rightsquigarrow_{AX} \varphi & \overline{\varphi} \land \mathsf{true} \rightsquigarrow_{AX} \varphi & \mathsf{false} \land \varphi \rightsquigarrow_{AX} \mathsf{false} \\ \hline \neg \mathsf{false} \rightsquigarrow_{AX} \mathsf{true} & \neg \mathsf{true} \rightsquigarrow_{AX} \mathsf{false} & \\ \hline \neg \mathsf{true} \rightsquigarrow_{AX} \mathsf{false} & \\ \hline \hline \forall \ell =_{\tau} r \in AX \quad s \hookrightarrow_{\{\ell = r\}} s' & \forall \ell =_{\tau} r \in AX \quad t \hookrightarrow_{\{\ell = r\}} t' \\ \hline s =_{\tau} t \rightsquigarrow_{AX} s' =_{\tau} t & \\ \hline \forall (\ell =_{\tau} r \longleftrightarrow \varphi) \in AX & \\ \hline \ell \sigma =_{\tau} r \sigma \rightsquigarrow_{AX} \varphi \sigma & \hline t =_{\tau} t \rightsquigarrow_{AX} \mathsf{true} & \\ \hline \hline \varphi \rightsquigarrow_{AX} \varphi' & \psi \rightsquigarrow_{AX} \psi' & \varphi \land_{XX} \varphi \land \psi' & \hline \neg \varphi \rightsquigarrow_{AX} \varphi \varphi' \\ \hline \hline \varphi \land \psi \rightsquigarrow_{AX} \varphi' \land \psi & \hline \varphi \land \psi \sim_{AX} \varphi \land \psi' & \hline \neg \varphi \rightsquigarrow_{AX} \neg \varphi' & \\ \hline \end{array}$$

consisting of Boolean simplifications, equations, equivalences and congruences; often subscript AX is dropped in \rightsquigarrow_{AX} when clear from context

RT (DCS @ UIBK)

Part 5 - Reasoning about Functional Programs

Soundness of Equational Reasoning

 ${\ensuremath{\, \bullet }}$ we show that whenever AX is valid in the standard model ${\ensuremath{\mathcal M}},$ then

•
$$\varphi \rightsquigarrow_{AX} \psi$$
 implies $\mathcal{M} \models_{\alpha} \varphi \longleftrightarrow \psi$ for all α
• so in particular $\mathcal{M} \models \vec{\forall} \varphi \longleftrightarrow \psi$

- immediate consequence: $\varphi \rightsquigarrow_{AX}^*$ true implies $\mathcal{M} \models \vec{\forall} \varphi$
- define calculus: $\vdash \vec{\forall} \, \varphi$ if $\varphi \rightsquigarrow^*_{AX}$ true
- example

$$plus(Zero, Zero) =_{Nat} times(Zero, x)$$

$$\rightsquigarrow Zero =_{Nat} times(Zero, x)$$

$$\rightsquigarrow Zero =_{Nat} Zero$$

$$\rightsquigarrow true$$

and therefore $\mathcal{M} \models \forall x$. plus(Zero, Zero) =_{Nat} times(Zero, x)

29/68 RT (DCS @ UIBK)

Part 5 – Reasoning about Functional Programs

Equational Reasoning and Induction

30/68

Proving Soundness of \rightsquigarrow : $\varphi \rightsquigarrow \psi$ **implies** $\mathcal{M} \models_{\alpha} \varphi \longleftrightarrow \psi$

by induction on \rightsquigarrow for arbitrary α

• case
$$\frac{\varphi \rightsquigarrow \varphi'}{\varphi \land \psi \rightsquigarrow \varphi' \land \psi}$$

• IH: $\mathcal{M} \models_{\alpha} \varphi \longleftrightarrow \varphi'$ for arbitrary α
• conclude $\mathcal{M} \models_{\alpha} \varphi \land \psi$
iff $\mathcal{M} \models_{\alpha} \varphi$ and $\mathcal{M} \models_{\alpha} \psi$
iff $\mathcal{M} \models_{\alpha} \varphi'$ and $\mathcal{M} \models_{\alpha} \psi$ (by IH)
iff $\mathcal{M} \models_{\alpha} \varphi' \land \psi$

• in total:
$$\mathcal{M} \models_{\alpha} \varphi \land \psi \longleftrightarrow \varphi' \land \psi$$

• all other cases for Boolean simplifications and congruences are similar

Proving Soundness of \rightsquigarrow : $\varphi \rightsquigarrow \psi$ **implies** $\mathcal{M} \models_{\alpha} \varphi \longleftrightarrow \psi$

• case
$$\frac{\vec{\forall} (\ell =_{\tau} r \longleftrightarrow \varphi) \in AX}{\ell \sigma =_{\tau} r \sigma \leadsto \varphi \sigma}$$

• premise $\mathcal{M} \models \vec{\forall} (\ell =_{\tau} r \longleftrightarrow \varphi)$,
so in particular $\mathcal{M} \models_{\beta} \ell =_{\tau} r \longleftrightarrow \varphi$ for $\beta(x) = \llbracket \sigma(x) \rrbracket_{\alpha}$
• conclude $\mathcal{M} \models_{\alpha} \ell \sigma =_{\tau} r \sigma$
iff $\llbracket \ell \rrbracket_{\beta} = \llbracket r \rrbracket_{\beta}$ (by SL)
iff $\mathcal{M} \models_{\alpha} \varphi \sigma$ (by premise)
iff $\mathcal{M} \models_{\alpha} \varphi \sigma$ (by SL)
• in total: $\mathcal{M} \models_{\alpha} \ell \sigma =_{\tau} r \sigma \longleftrightarrow \varphi \sigma$

0	$\Rightarrow: \varphi \rightsquigarrow \psi \text{ implies } \mathcal{M} \models_{\alpha} \varphi \longleftrightarrow \psi$	Equational Reasoning and Induction	Comparing \rightsquigarrow w	Fquational Reason with \hookrightarrow	ing and Induction
• case $\frac{\vec{\forall} \ell =_{\tau} r \in AX s}{s =_{\tau} t \rightsquigarrow s'}$ • premise $\mathcal{M} \models \vec{\forall} \ell =_{\tau}$ with one hole which • conclude $[s]_{\alpha}$ $= [C[\ell\sigma]]_{\alpha}$ (by rever $= C\alpha[\ell\sigma\alpha] \downarrow = C\alpha[\ell$ $\stackrel{(*)}{=} C\alpha[r\sigma\alpha \downarrow] \downarrow = C\alpha[\ell$ $\stackrel{(*)}{=} C\alpha[r\sigma]_{\alpha} \downarrow$ $= [C[r\sigma]]_{\alpha}$ (by rever $= [s']_{\alpha}$ • reason for (*): premi $[\ell]_{\beta} = [r]_{\beta}$ for $\beta(x)$	$s = \frac{1}{\tau} t$ $s = r$, and $s = C[\ell\sigma]$ and $s' = C[r\sigma]$ where C is can be filled via $[\cdot]$ $s \in SL$) $s \in SL$) $s \in SL$) $s \in SL$) $s \in s \in SL$)	some context, i.e., term	about equality ● → uses definin ● in particular axioms and ● this addition and confluce example: a ● heuristics of ■ new equat ● obvio	ng equations of program whereas \rightsquigarrow_{AX} is parametrized by set of ax ar proven properties like $\forall xs. \text{ reverse}(\text{reverse}(xs)) =_{\text{List}} xs$ can be added t d then be used for \rightsquigarrow on of new knowledge greatly improves power, but can destroy both termin	tioms o set of
hence $\llbracket \ell \sigma \rrbracket_{\alpha} = \llbracket r \sigma \rrbracket_{\alpha}$ and thus, $\ell \sigma \alpha \downarrow = r \sigma$				n for left-to-right: more often applicable n for right-to-left: term gets smaller	
RT (DCS @ UIBK)	Part 5 – Reasoning about Functional Programs	33/68	RT (DCS @ UIBK)	Part 5 – Reasoning about Functional Programs	34/68

Limits of ~~>

- \rightsquigarrow only works with universally quantified properties
 - defining equations
 - equivalences to simplify equalities $=_{\tau}$
 - newly derived properties such as $\forall xs. reverse(reverse(xs)) =_{List} xs$
 - \rightsquigarrow can not deal with induction axioms such as the one for associativity of append (app)

```
\begin{array}{l} (\forall ys, zs. \operatorname{app}(\operatorname{app}(\operatorname{Nil}, ys), zs) =_{\operatorname{List}} \operatorname{app}(\operatorname{Nil}, \operatorname{app}(ys, zs))) \\ \longrightarrow (\forall x, xs. (\forall ys, zs. \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\operatorname{List}} \operatorname{app}(xs, \operatorname{app}(ys, zs))) \longrightarrow \\ (\forall ys, zs. \operatorname{app}(\operatorname{app}(\operatorname{Cons}(x, xs), ys), zs) =_{\operatorname{List}} \operatorname{app}(\operatorname{Cons}(x, xs), \operatorname{app}(ys, zs)))) \\ \longrightarrow (\forall xs, ys, zs. \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\operatorname{List}} \operatorname{app}(xs, \operatorname{app}(ys, zs)))) \end{array}
```

• in particular, \rightsquigarrow often cannot perform any simplification without induction proving

$$app(app(xs, ys), zs) =_{List} app(xs, app(ys, zs)))$$

cannot be simplified by \rightsquigarrow using the existing axioms

RT (DCS @ UIBK)

Part 5 – Reasoning about Functional Programs

35/68

Equational Reasoning and Induction

RT (DCS @ UIBK)

Equational Reasoning and Induction

Induction in Combination with Equational Reasoning

• aim: prove equality $\vec{\forall} \ell =_{\tau} r$

• approach:

- select induction variable x
- reorder quantifiers such that $\vec{\forall} \ell =_{\tau} r$ is written as $\forall x. \varphi$
- build induction formula w.r.t. slide 22

 $\varphi_1 \longrightarrow \ldots \longrightarrow \varphi_n \longrightarrow \forall x. \varphi$

(no outer universal quantifier, since by construction above formula has no free variables) • try to prove each φ_i via \rightsquigarrow

Example: Associativity of Append	Inal Reasoning and InductionEquational Real Example: Associativity of Append, Continued• proving $\forall xs, ys, zs.$ app $(app(xs, ys), zs) =_{List} app(xs, app(ys, zs))$	soning and Induction		
 aim: prove equality ∀xs, ys, zs. app(app(xs, ys), zs) =List app(xs, app(ys)) approach: select induction variable xs reordering of quantifiers not required 				
• the induction formula is presented on slide 35 • φ_1 is	so we try to prove the rhs of \longrightarrow via \rightsquigarrow			
$\forall ys, zs. app(app(Nil, ys), zs) =_{List} app(Nil, app(ys, zs))$ so we simply evaluate	$app(app(Cons(x, xs), ys), zs) =_{List} app(Cons(x, xs), app(ys, zs))$ $\rightsquigarrow app(Cons(x, app(xs, ys)), zs) =_{List} app(Cons(x, xs), app(ys, zs))$			
$app(app(Nil, ys), zs) =_{List} app(Nil, app(ys, zs))$ $\rightsquigarrow app(ys, zs) =_{List} app(Nil, app(ys, zs))$ $\rightsquigarrow app(ys, zs) =_{List} app(ys, zs)$ $\rightsquigarrow true$	$ \begin{array}{l} \leftrightarrow Cons(x, app(cons(x, ys)), zs) =_{List} app(cons(x, xs), app(ys, zs)) \\ \rightsquigarrow Cons(x, app(app(xs, ys), zs)) =_{List} app(Cons(x, xs), app(ys, zs)) \\ \rightsquigarrow Cons(x, app(app(xs, ys), zs)) =_{List} Cons(x, app(xs, app(ys, zs))) \\ \rightsquigarrow x =_{Nat} x \land app(app(xs, ys), zs) =_{List} app(xs, app(ys, zs)) \\ \rightsquigarrow true \land app(app(xs, ys), zs) =_{List} app(xs, app(ys, zs)) \\ \rightsquigarrow app(app(xs, ys), zs) =_{List} app(xs, app(ys, zs)) \\ \rightsquigarrow app(app(xs, ys), zs) =_{List} app(xs, app(ys, zs)) \\ \not = true \end{array} $			
	problem: we get stuck, since currently IH is unused			
Part 5 – Reasoning about Functional Programs	37/68 RT (DCS @ UIBK) Part 5 – Reasoning about Functional Programs	38/68		

Equational Reasoning and Induction

Integrating IHs into Equational Reasoning

• recall structure of induction formula for formula φ and constructor c_i :

$$\varphi_i := \forall x_1, \dots, x_{m_i}. \underbrace{\left(\bigwedge_{j, \tau_{i,j} = \tau} \varphi[x/x_j]\right)}_{\text{IHs for recursive arguments}} \longrightarrow \varphi[x/c_i(x_1, \dots, x_{m_i})]$$

- idea: for proving φ_i try to show $\varphi[x/c_i(x_1, \ldots, x_{m_i})]$ by evaluating it to true via \rightsquigarrow , where each IH $\varphi[x/x_j]$ is added as equality
- append-example
 - aim:

 $\mathsf{app}(\mathsf{app}(\mathsf{Cons}(x, xs), ys), zs) =_{\mathsf{List}} \mathsf{app}(\mathsf{Cons}(x, xs), \mathsf{app}(ys, zs)) \leadsto^* \mathsf{true}$

- add IH $\forall ys, zs. \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\operatorname{List}} \operatorname{app}(xs, \operatorname{app}(ys, zs))$ to axioms
- problem IH $\varphi[x/x_j]$ is not universally quantified equation, since variable x_j is free (in append example, this would be xs)

Integrating IHs into Equational Reasoning, Continued

- \bullet to solve problem, extend \leadsto to allow evaluation with equations that contain free variables
- add two new inference rules

$$\frac{\forall \vec{x}. \ \ell =_{\tau} r \in AX \quad s \hookrightarrow_{\{\ell = r\}} s'}{s =_{\tau} t \rightsquigarrow_{AX} s' =_{\tau} t} \qquad \frac{\forall \vec{x}. \ \ell =_{\tau} r \in AX \quad t \hookrightarrow_{\{r = \ell\}} t'}{s =_{\tau} t \rightsquigarrow_{AX} s =_{\tau} t'}$$

where in both inference rules, only the variables of \vec{x} may be instantiated in the equation $\ell = r$ when simplifying with \hookrightarrow ; so the chosen substitution σ must satisfy $\sigma(y) = y$ for all $y \notin \vec{x}$

- the swap of direction, i.e., the $r=\ell$ in the second rule is intended and a heuristic
 - either apply the IH on some lhs of an equality from left-to-right
 - ${\ensuremath{\,^\circ}}$ or apply the IH on some rhs of an equality from right-to-left

in both cases, an application will make both sides on the equality more equal

• another heuristic is to apply each IH only once

Equational Reasoning and Induction

Example: Associativity of Append, Continued

Equational Reasoning and Induction

• proving
$$\forall xs, ys, zs. \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\operatorname{List}} \operatorname{app}(xs, \operatorname{app}(ys, zs))$$

• φ_2 is $\forall x, xs.(\forall ys, zs. \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\operatorname{List}} \operatorname{app}(xs, \operatorname{app}(ys, zs))) \longrightarrow (\forall ys, zs. \operatorname{app}(\operatorname{app}(\operatorname{Cons}(x, xs), ys), zs) =_{\operatorname{List}} \operatorname{app}(\operatorname{Cons}(x, xs), \operatorname{app}(ys, zs)))$

so we try to prove the rhs of \longrightarrow via \rightsquigarrow and add

 $\forall ys, zs. \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\mathsf{List}} \operatorname{app}(xs, \operatorname{app}(ys, zs))$

to the set of axioms (only for the proof of φ_2); then

$$\operatorname{app}(\operatorname{app}(\operatorname{Cons}(x, xs), ys), zs) =_{\operatorname{List}} \operatorname{app}(\operatorname{Cons}(x, xs), \operatorname{app}(ys, zs))$$

$$\rightsquigarrow^* \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\operatorname{List}} \operatorname{app}(xs, \operatorname{app}(ys, zs))$$

$$\rightsquigarrow \operatorname{app}(xs, \operatorname{app}(ys, zs)) =_{\operatorname{List}} \operatorname{app}(xs, \operatorname{app}(ys, zs))$$

$$\rightsquigarrow$$
 true

here it is important to apply the IH only once, otherwise one would get

$$app(xs, app(ys, zs)) =_{List} app(app(xs, ys), zs)$$

RT (DCS @ UIBK)

Integrating IHs into Equational Reasoning, Soundness

• aim: prove $\mathcal{M} \models \varphi_i$ for

$$\varphi_i := \vec{\forall} \underbrace{\bigwedge_{j} \psi_j}_{\text{IHs}} \psi_j \longrightarrow \psi$$

where we assume that $\psi \rightsquigarrow^*$ true with the additional local axioms of the IHs ψ_i

- hence show $\mathcal{M} \models_{\alpha} \psi$ under the assumptions $\mathcal{M} \models_{\alpha} \psi_j$ for all IHs ψ_j
- by existing soundness proof of \rightsquigarrow we can nearly conclude $\mathcal{M} \models_{\alpha} \psi$ from $\psi \rightsquigarrow^*$ true

• only gap: proof needs to cover new inference rules on slide 40

$(g_3, z_3) = L_{\text{ist}} app(app(z_3, g_3), z_3)$				
Part 5 – Reasoning about Functional Programs	41/68	RT (DCS @ UIBK)	Part 5 – Reasoning about Functional Programs	42/68

Soundness of Partially Quantified Equation Application

• case $\frac{\forall \vec{x}. \ \ell =_{\tau} r \in AX \quad s \hookrightarrow_{\{\ell = r\}} s'}{s =_{\tau} t \rightsquigarrow s' =_{\tau} t} \text{ with } \sigma(y) = y \text{ for all } y \notin \vec{x}$ • premise is $\mathcal{M} \models_{\alpha} \forall \vec{x}. \ \ell =_{\tau} r$ (and not $\mathcal{M} \models \vec{\forall} \ell =_{\tau} r$) and $s = C[\ell\sigma]$ and $s' = C[r\sigma]$ as before • conclude $[\![s]\!]_{\alpha} = [\![s']\!]_{\alpha}$ as on slide 33 as main step to derive $\mathcal{M} \models_{\alpha} s =_{\tau} t \longleftrightarrow s' =_{\tau} t$ • only change is how to obtain $[\![\ell]\!]_{\beta} = [\![r]\!]_{\beta}$ for $\beta(x) = [\![\sigma(x)]\!]_{\alpha}$ • new proof • let $\vec{x} = x_1, \dots, x_k$ • premise implies $[\![\ell]\!]_{\alpha[x_1:=a_1,\dots,x_k:=a_k]} = [\![r]\!]_{\alpha[x_1:=a_1,\dots,x_k:=a_k]}$ for arbitrary a_i , so in particular for $a_i = [\![\sigma(x_i)]\!]_{\alpha}$ • it now suffices to prove that $\alpha[x_1 := a_1,\dots,x_k := a_k] = \beta$ • consider two cases

• for variables x_i we have

$$\alpha[x_1 := a_1, \dots, x_k := a_k](x_i) = a_i = \llbracket \sigma(x_i) \rrbracket_{\alpha} = \beta(x_i)$$

• for all other variables $y \notin \vec{x}$ we have

$$\alpha[x_1 := a_1, \dots, x_k := a_k](y) = \alpha(y) = \llbracket y \rrbracket_{\alpha} = \llbracket \sigma(y) \rrbracket_{\alpha} = \beta(y)$$

Equational Reasoning and Induction

Summary

- framework for inductive proofs combined with equational reasoning
- apply induction first
- then prove each case $\vec{\forall} \land \psi_j \longrightarrow \psi$ via evaluation $\psi \rightsquigarrow^*$ true where IHs ψ_j become local axioms
- free variables in IHs (induction variables) may not be instantiated by ↔, all the other variables may be instantiated ("arbitrary" variables)
- heuristic: apply IHs only once
- upcoming: positive and negative examples, guidelines, extensions

RT (DCS @ UIBK)

Examples, Guidelines, and Extensions

Associativity of Append

• program

app(Cons(x, xs), ys) = Cons(x, app(xs, ys))app(Nil, ys) = ys

• formula

$$\vec{\forall} \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\mathsf{List}} \operatorname{app}(xs, \operatorname{app}(ys, zs))$$

- induction on *xs* works successfully
- what about induction on ys (or zs)?

• base case already gets stuck

Right-Zero of Addition

program

$$app(app(xs, Nil), zs) =_{List} app(xs, app(Nil, zs))$$

 $\rightarrow app(app(xs, Nil), zs) =_{List} app(xs, zs)$

- problem: *ys* is argument on second position of append, whereas case analysis in lhs of append happens on first argument
- guideline: select variables such that case analysis triggers evaluation

```
RT (DCS @ UIBK)
```

Part 5 - Reasoning about Functional Programs

46/68

Examples, Guidelines, and Extensions

Commutativity of Addition program

$$\mathsf{plus}(\mathsf{Succ}(x), y) = \mathsf{Succ}(\mathsf{plus}(x, y))$$

 $\mathsf{plus}(\mathsf{Zero}, y) = y$

Examples, Guidelines, and Extensions

formula

 $\vec{\forall} \mathsf{plus}(x, y) =_{\mathsf{Nat}} \mathsf{plus}(y, x)$

- let us try induction on x
- base case already gets stuck

 $plus(Zero, y) =_{Nat} plus(y, Zero)$ $\rightsquigarrow y =_{\mathsf{Nat}} \mathsf{plus}(y, \mathsf{Zero})$

- final result suggests required lemma: Zero is also right neutral
- $\forall x. \text{ plus}(x, \text{Zero}) =_{\text{Nat}} x$ can be proven with our approach
- then this lemma can be added to AX and base case of commutativity-proof can be completed

 $\mathsf{plus}(\mathsf{Zero}, y) = y$ formula $\vec{\forall} \mathsf{plus}(x, \mathsf{Zero}) =_{\mathsf{Nat}} x$ • only one possible induction variable: x • base case: $plus(Zero, Zero) =_{Nat} Zero \rightsquigarrow Zero =_{Nat} Zero \rightsquigarrow true$ • step case adds IH $plus(x, Zero) =_{Nat} x$ as axiom and we get

 \rightarrow true

RT (DCS @ UIBK) 47/68

Examples, Guidelines, and Extensions

RT (DCS @ UIBK)

$$plus(Succ(x), Zero) =_{Nat} Succ(x)$$

$$\rightsquigarrow Succ(plus(x, Zero)) =_{Nat} Succ(x)$$

$$\rightsquigarrow Succ(x) =_{Nat} Succ(x)$$

plus(Succ(x), y) = Succ(plus(x, y))

Examples, Guidelines, and Extensions

Examples, Guidelines, and Extensions

Commutativity of Addition

• formula

$$\vec{\forall} \operatorname{\mathsf{plus}}(x,y) =_{\mathsf{Nat}} \operatorname{\mathsf{plus}}(y,x)$$

• step case adds IH $\forall y. \ \mathsf{plus}(x, y) =_{\mathsf{Nat}} \mathsf{plus}(y, x)$ to axioms and we get

$$\begin{aligned} & \mathsf{plus}(\mathsf{Succ}(x), y) =_{\mathsf{Nat}} \mathsf{plus}(y, \mathsf{Succ}(x)) \\ & \rightsquigarrow \mathsf{Succ}(\mathsf{plus}(x, y)) =_{\mathsf{Nat}} \mathsf{plus}(y, \mathsf{Succ}(x)) \\ & \rightsquigarrow \mathsf{Succ}(\mathsf{plus}(y, x)) =_{\mathsf{Nat}} \mathsf{plus}(y, \mathsf{Succ}(x)) \end{aligned}$$

- final result suggests required lemma: Succ on second argument can be moved outside
- $\forall x, y. \text{ plus}(x, \text{Succ}(y)) =_{\text{Nat}} \text{Succ}(\text{plus}(x, y))$ can be proven with our approach (induction on x)
- ${\ensuremath{\,^\circ}}$ then this lemma can be added to AX and commutativity-proof can be completed

```
RT (DCS @ UIBK) Part 5 - Reasoning about Functional Programs 49/68 RT (DCS @ UIBK) Part 5 - Reasoning about Functional Programs 50/68
```

```
Generalizations Required
```

• for induction for the following formula there is only one choice: xs

$$\forall xs. r(xs, Nil) =_{List} rev(xs)$$

step-case gets stuck

 $\begin{aligned} \mathsf{r}(\mathsf{Cons}(x, xs), \mathsf{Nil}) =_{\mathsf{List}} \mathsf{rev}(\mathsf{Cons}(x, xs)) \\ & \rightsquigarrow^* \mathsf{r}(xs, \mathsf{Cons}(x, \mathsf{Nil})) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(xs), \mathsf{Cons}(x, \mathsf{Nil})) \\ & \rightsquigarrow \mathsf{r}(xs, \mathsf{Cons}(x, \mathsf{Nil})) =_{\mathsf{List}} \mathsf{app}(\mathsf{r}(xs, \mathsf{Nil}), \mathsf{Cons}(x, \mathsf{Nil})) \end{aligned}$

• problem: the second argument Nil of r in formula is too specific

- solution: generalize formula by replacing constants by variables
- naive replacement does not work, since it does not hold

$$\forall xs, ys. \ \mathsf{r}(xs, ys) =_{\mathsf{List}} \mathsf{rev}(xs)$$

creativity required

 $\forall xs, ys. r(xs, ys) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(xs), ys)$

RT (DCS @ UIBK)

Part 5 – Reasoning about Functional Programs

Fast Implementation of Reversal

program

$$\begin{aligned} & \mathsf{app}(\mathsf{Cons}(x,xs),ys) = \mathsf{Cons}(x,\mathsf{app}(xs,ys)) \\ & \mathsf{app}(\mathsf{Nil},ys) = ys \\ & \mathsf{rev}(\mathsf{Cons}(x,xs)) = \mathsf{app}(\mathsf{rev}(xs),\mathsf{Cons}(x,\mathsf{Nil})) \\ & \mathsf{rev}(\mathsf{Nil}) = \mathsf{Nil} \\ & \mathsf{r}(\mathsf{Cons}(x,xs),ys) = \mathsf{r}(xs,\mathsf{Cons}(x,ys)) \\ & \mathsf{r}(\mathsf{Nil},ys) = ys \\ & \mathsf{rev}_\mathsf{fast}(xs) = \mathsf{r}(xs,\mathsf{Nil}) \end{aligned}$$

• aim: show that both implementations of reverse are equivalent, so that the naive implementation can be replaced by the faster one

 $\forall xs. \operatorname{rev}_{\mathsf{fast}}(xs) =_{\mathsf{List}} \operatorname{rev}(xs)$

• applying ~> first yields desired lemma

 $\forall xs. r(xs, Nil) =_{List} rev(xs)$

Fast Implementation of Reversal, Continued

• proving main formula by induction on xs, since recursion is on xs

 $\forall xs, ys. r(xs, ys) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(xs), ys)$

base-case

 $r(Nil, ys) =_{List} app(rev(Nil), ys)$ $\rightsquigarrow^* ys =_{List} ys \rightsquigarrow true$

• step-case solved with associativity of append and IH added to axioms

 $\begin{aligned} \mathsf{r}(\mathsf{Cons}(x, xs), ys) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(\mathsf{Cons}(x, xs)), ys) \\ & \rightsquigarrow \mathsf{r}(xs, \mathsf{Cons}(x, ys)) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(\mathsf{Cons}(x, xs)), ys) \\ & \rightsquigarrow \mathsf{app}(\mathsf{rev}(xs), \mathsf{Cons}(x, ys)) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(\mathsf{Cons}(x, xs)), ys) \\ & \rightsquigarrow \mathsf{app}(\mathsf{rev}(xs), \mathsf{Cons}(x, ys)) =_{\mathsf{List}} \mathsf{app}(\mathsf{app}(\mathsf{rev}(xs), \mathsf{Cons}(x, \mathsf{Nil})), ys) \\ & \rightsquigarrow \mathsf{app}(\mathsf{rev}(xs), \mathsf{Cons}(x, ys)) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(xs), \mathsf{app}(\mathsf{Cons}(x, \mathsf{Nil}), ys)) \\ & \rightsquigarrow \mathsf{app}(\mathsf{rev}(xs), \mathsf{Cons}(x, ys)) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(xs), \mathsf{app}(\mathsf{Nil}, ys)) \\ & \rightsquigarrow \mathsf{app}(\mathsf{rev}(xs), \mathsf{Cons}(x, ys)) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(xs), \mathsf{Cons}(x, \mathsf{app}(\mathsf{Nil}, ys))) \\ & \rightsquigarrow \mathsf{app}(\mathsf{rev}(xs), \mathsf{Cons}(x, ys)) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(xs), \mathsf{Cons}(x, ys)) \rightarrow \mathsf{true} \\ & \mathsf{Part} \, \mathsf{5} - \mathsf{Reasoning about Functional Programs} \end{aligned}$

Examples, Guidelines, and Extensions

Fast Implementation of Reversal, Finalized

• now add main formula to axioms, so that it can be used by \rightsquigarrow

$$\forall xs, ys. r(xs, ys) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(xs), ys)$$

• then for our initial aim we get

 $rev_fast(xs) =_{list} rev(xs)$ \rightarrow r(xs, Nil) =_{1 ist} rev(xs) \rightarrow app(rev(xs), Nil) =_{l ist} rev(xs)

• at this point one easily identifies a missing property

$$\forall xs. app(xs, Nil) =_{List} xs$$

which is proven by induction on xs in combination with \rightsquigarrow

• afterwards it is trivial to complete the equivalence proof of the two reversal implementations

RT (DCS @ UIBK)

```
Part 5 - Reasoning about Functional Programs
```

Another Problem

Examples, Guidelines, and Extensions

consider the following program

half(Zero) = Zerohalf(Succ(Zero)) = Zerohalf(Succ(Succ(x))) = Succ(half(x))le(Zero, y) = Truele(Succ(x), Zero) = Falsele(Succ(x), Succ(y)) = le(x, y)

and the desired property

 $\forall x. \ \mathsf{le}(\mathsf{half}(x), x) =_{\mathsf{Bool}} \mathsf{True}$

- induction on x will get stuck, since the step-case Succ(x) does not permit evaluation w.r.t. half-equations
- better induction is desirable, namely rule that corresponds to algorithm definition (e.g. of half) with cases that correspond to patterns in lhss Part 5 – Reasoning about Functional Programs
- RT (DCS @ UIBK)

53/68

Examples, Guidelines, and Extensions

Examples, Guidelines, and Extensions

54/68

56/68

- Induction w.r.t. Algorithm
 - induction w.r.t. algorithm was informally performed on slide 4/36
 - select some *n*-ary function *f*
 - each *f*-equation is turned into one case
 - for each recursive *f*-call in rhs get one IH
- example: for algorithm

$$\begin{aligned} \mathsf{half}(\mathsf{Zero}) &= \mathsf{Zero} \\ \mathsf{half}(\mathsf{Succ}(\mathsf{Zero})) &= \mathsf{Zero} \\ \mathsf{half}(\mathsf{Succ}(\mathsf{Succ}(x))) &= \mathsf{Succ}(\mathsf{half}(x)) \end{aligned}$$

the induction rule for half is

$$\begin{array}{l} \varphi[y/\mathsf{Zero}] \\ \longrightarrow \varphi[y/\mathsf{Succ}(\mathsf{Zero})] \\ \longrightarrow (\forall x. \ \varphi[y/x] \longrightarrow \varphi[y/\mathsf{Succ}(\mathsf{Succ}(x))]) \\ \longrightarrow \forall y. \ \varphi \\ & \\ \mathsf{Part 5-Reasoning about Functional Programs} \end{array}$$

Induction w.r.t. Algorithm

- induction w.r.t. algorithm formally defined
 - let *f* be *n*-ary defined function within well-defined program
 - let there be k defining equations for f
 - let φ be some formula which has exactly n free variables x_1, \ldots, x_n
 - then the induction rule for f is

$$\varphi_{ind,f} := \psi_1 \longrightarrow \ldots \longrightarrow \psi_k \longrightarrow \forall x_1, \ldots, x_n. \varphi$$

where for the *i*-th *f*-equation $f(\ell_1, \ldots, \ell_n) = r$ we define

$$\psi_i := \vec{\forall} \left(\bigwedge_{r \succeq f(r_1, \dots, r_n)} \varphi[x_1/r_1, \dots, x_n/r_n] \right) \longrightarrow \varphi[x_1/\ell_1, \dots, x_n/\ell_n]$$

where $\vec{\forall}$ ranges over all variables in the equation

- properties
 - $\mathcal{M} \models \varphi_{ind,f}$; reason: pattern-completeness and termination $(SN(\hookrightarrow \circ \supseteq))$
 - heuristic: good idea to prove properties $\vec{\forall} \varphi$ about function f via $\varphi_{f,ind}$
 - reason: structure will always allow one evaluation step of *f*-invocation

RT (DCS @ UIBK) 55/68

Part 5 – Reasoning about Functional Programs

Back to Example

consider program

```
\begin{aligned} \mathsf{half}(\mathsf{Zero}) &= \mathsf{Zero} \\ \mathsf{half}(\mathsf{Succ}(\mathsf{Zero})) &= \mathsf{Zero} \\ \mathsf{half}(\mathsf{Succ}(\mathsf{Succ}(x))) &= \mathsf{Succ}(\mathsf{half}(x)) \\ \mathsf{le}(\mathsf{Zero}, y) &= \mathsf{True} \\ \mathsf{le}(\mathsf{Succ}(x), \mathsf{Zero}) &= \mathsf{False} \\ \mathsf{le}(\mathsf{Succ}(x), \mathsf{Succ}(y)) &= \mathsf{le}(x, y) \end{aligned}
```

• for property

```
\forall x. \ \mathsf{le}(\mathsf{half}(x), x) =_{\mathsf{Bool}} \mathsf{True}
```

chose induction for half (and not for le), since half is inner function call; hopefully evaluation of inner function calls will enable evaluation of outer function calls

RT (DCS @ UIBK)

Part 5 - Reasoning about Functional Programs

57/6

```
(Nearly) Completing the Proof
```

applying induction for half on

 $\forall x. \ \mathsf{le}(\mathsf{half}(x), x) =_{\mathsf{Bool}} \mathsf{True}$

turns this problem into three new proof obligations

- le(half(Zero), Zero) =_{Bool} True
- le(half(Succ(Zero)), Succ(Zero)) = Bool True
- le(half(Succ(Succ(x))), Succ(Succ(x))) =_{Bool} True where le(half(x), x) =_{Bool} True can be assumed as IH
- the first two are easy, the third one works as follows

 $le(half(Succ(Succ(x))), Succ(Succ(x))) =_{Bool} True$ $\rightsquigarrow le(Succ(half(x)), Succ(Succ(x))) =_{Bool} True$ $\rightsquigarrow le(half(x), Succ(x)) =_{Bool} True$

- here there is another problem, namely that the IH is not applicable
- problem solvable by proving an implication like
- $le(x,y) =_{Bool} True \longrightarrow le(x, Succ(y)) =_{Bool} True;$

uses equational reasoning with conditions; covered informally only

57/68 RT (DCS @ UIBK)

Part 5 – Reasoning about Functional Programs

Examples, Guidelines, and Extensions

58/68

Examples, Guidelines, and Extensions

Examples, Guidelines, and Extensions

Equational Reasoning with Conditions

- generalization: instead of pure equalities also support implications
- simplifications with → can happen on both sides of implication, since → yields equivalent formulas
- applying conditional equations triggers new proofs: preconditions must be satisfied
- example:
 - assume axioms contain conditional equality $\varphi \longrightarrow \ell =_{\tau} r$, e.g., from IH
 - current goal is implication $\psi \longrightarrow C[\ell \sigma] =_\tau t$
 - we would like to replace goal by $\psi \longrightarrow C[r\sigma] =_\tau t$
 - but then we must ensure $\psi \longrightarrow \varphi \sigma$, e.g., via $\psi \longrightarrow \varphi \sigma \rightsquigarrow^*$ true
- ~> must be extended to perform more Boolean reasoning
- not done formally at this point

Equational Reasoning with Conditions, Example

property

$$le(x,y) =_{\mathsf{Bool}} \mathsf{True} \longrightarrow le(x,\mathsf{Succ}(y)) =_{\mathsf{Bool}} \mathsf{True}$$

- apply induction on le
- first case

$$\begin{split} &\mathsf{le}(\mathsf{Zero},y) =_{\mathsf{Bool}} \mathsf{True} \longrightarrow \mathsf{le}(\mathsf{Zero},\mathsf{Succ}(y)) =_{\mathsf{Bool}} \mathsf{True} \\ & \rightsquigarrow \mathsf{le}(\mathsf{Zero},y) =_{\mathsf{Bool}} \mathsf{True} \longrightarrow \mathsf{True} =_{\mathsf{Bool}} \mathsf{True} \\ & \rightsquigarrow \mathsf{le}(\mathsf{Zero},y) =_{\mathsf{Bool}} \mathsf{True} \longrightarrow \mathsf{true} \\ & \rightsquigarrow \mathsf{true} \end{split}$$

second case

 $\mathsf{le}(\mathsf{Succ}(x),\mathsf{Zero}) =_{\mathsf{Bool}} \mathsf{True} \longrightarrow \mathsf{le}(\mathsf{Succ}(x),\mathsf{Succ}(\mathsf{Zero})) =_{\mathsf{Bool}} \mathsf{True}$

 $\rightsquigarrow \mathsf{False} =_{\mathsf{Bool}} \mathsf{True} \longrightarrow \mathsf{le}(\mathsf{Succ}(x),\mathsf{Succ}(\mathsf{Zero})) =_{\mathsf{Bool}} \mathsf{True}$

 $\rightsquigarrow \mathsf{false} \longrightarrow \mathsf{le}(\mathsf{Succ}(x),\mathsf{Succ}(\mathsf{Zero})) =_{\mathsf{Bool}} \mathsf{True}$

 $\rightsquigarrow \mathsf{true}$

Examples, Guidelines, and Extensions Examples, Guidelines, and Extensions Equational Reasoning with Conditions, Example **Final Example: Insertion Sort** • property consider insertion sort $le(x, y) =_{Bool} True \longrightarrow le(x, Succ(y)) =_{Bool} True$ le(Zero, y) = Truele(Succ(x), Zero) = False• third case has IH $\mathsf{le}(\mathsf{Succ}(x),\mathsf{Succ}(y))=\mathsf{le}(x,y)$ $le(x, y) =_{Bool} True \longrightarrow le(x, Succ(y)) =_{Bool} True$ if(True, xs, ys) = xsand we reason as follows if(False, xs, ys) = ysinsort(x, Nil) = Cons(x, Nil) $le(Succ(x), Succ(y)) =_{Bool} True \longrightarrow le(Succ(x), Succ(Succ(y))) =_{Bool} True$ $\mathsf{insort}(x,\mathsf{Cons}(y,ys)) = \mathsf{if}(\mathsf{le}(x,y),\mathsf{Cons}(x,\mathsf{Cons}(y,ys)),\mathsf{Cons}(y,\mathsf{insort}(x,ys)))$ $\rightarrow \text{le}(x, y) =_{\text{Bool}} \text{True} \longrightarrow \text{le}(\text{Succ}(x), \text{Succ}(\text{Succ}(y))) =_{\text{Bool}} \text{True}$ sort(Nil) = Nil $\rightsquigarrow \operatorname{le}(x,y) =_{\operatorname{Bool}} \operatorname{True} \longrightarrow \operatorname{le}(x,\operatorname{Succ}(y)) =_{\operatorname{Bool}} \operatorname{True}$ sort(Cons(x, xs)) = insort(x, sort(xs)) $\rightsquigarrow \mathsf{le}(x,y) =_{\mathsf{Bool}} \mathsf{True} \longrightarrow \mathsf{True} =_{\mathsf{Bool}} \mathsf{True}$ $\rightsquigarrow \mathsf{le}(x,y) =_{\mathsf{Bool}} \mathsf{True} \longrightarrow \mathsf{true}$ • aim: prove soundness, e.g., result is sorted → true • problem: how to express "being sorted"? • in general: how to express properties if certain primitives are not available? • proof of property $\forall x. \ \mathsf{le}(\mathsf{half}(x), x) =_{\mathsf{Bool}} \mathsf{True} \text{ finished}$ RT (DCS @ UIBK) Part 5 - Reasoning about Functional Programs 61/68 RT (DCS @ UIBK) Part 5 – Reasoning about Functional Programs 62/68

Expressing Properties	Examples, Guidelines, and Extensions	e: Soundness of sort	Examples, Guidelines, and Extensions
 solution: express properties via functional programs 	• alrea		
$\dots = \dots$ sort(Cons (x, xs)) = insort $(x, sort(xs))$		$\forall x, xs. \text{ sorted}(\text{insort}(x, xs)) =_{\text{Bool}} \text{sorted}(xs)$	(*)
algorithm above, properties for specification below	speci • prop		
and(True,b) = b and(False,b) = False	• base	case: sorted(sort(Nil))	
$all_le(x, Nil) = True$ $all_le(x, Cons(y, ys)) = and(le(x, y), all_le(x, ys))$		→ sorted(Nil) → True (recall: syntax omits = _{Bool} True)	
sorted(Nil) = True $sorted(Cons(x, xs)) = and(all_le(x, xs), sorted(xs))$			
 example properties (where b =Bool True is written just as b) sorted(insort(x, xs)) =Bool sorted(xs) sorted(sort(xs)) 	• step		
 important: functional programs for specifications should be simple; they must be readable for validation and need not be efficient 			
RT (DCS @ UIBK) Part 5 – Reasoning about Functional Programs	63/68 RT (DCS @ UIBK)	Part 5 – Reasoning about Functional Programs	64/68

Examples Guidelines and Extensions

	Examples, Guid	delines, and Extensions	Example: Sound	ness of insort, Step Case	Examples, Guidelines, and Extensions	
Example: Soundness of insort • prove $\forall x, xs$. sorted(insort(x, xs)) = _{Bool} sorted(xs) by induction on xs • base case: sorted(insort(x, Nil)) = _{Bool} sorted(Nil) \Rightarrow sorted(Cons(x, Nil)) = _{Bool} sorted(Nil) \Rightarrow and(all_le(x, Nil), sorted(Nil)) = _{Bool} sorted(Nil) \Rightarrow and(True, sorted(Nil)) = _{Bool} sorted(Nil) \Rightarrow sorted(Nil) = _{Bool} sorted(Nil) \Rightarrow true			 prove ∀x, xs. sorted(insort(x, xs)) =_{Bool} sorted(xs) by induction on xs step case with IH ∀x. sorted(insort(x, ys)) =_{Bool} sorted(ys): sorted(insort(x, Cons(y, ys))) =_{Bool} sorted(Cons(y, ys)) ~ sorted(if(le(x, y), Cons(x, Cons(y, ys)), Cons(y, insort(x, ys)))) =_{Bool} now perform case analysis on first argument of if case le(x, y), i.e., le(x, y) =_{Bool} True sorted(if(le(x, y), Cons(x, Cons(y, ys)), Cons(y, insort(x, ys)))) = ~ sorted(if(True, Cons(x, Cons(y, ys)), Cons(y, insort(x, ys)))) = ~ sorted(if(True, Cons(x, Cons(y, ys)), Cons(y, insort(x, ys)))) = ~ sorted(Cons(x, Cons(y, ys))) =_{Bool} sorted(Cons(y, ys)) ~ and(all_le(x, Cons(y, ys))), sorted(Cons(y, ys))) =_{Bool} sorted(Cons(y, ys)) the key to resolve this final formula is the following auxiliary property v le(x, y) → sorted(Cons(y, zs)) → all_le(x, Cons(y, zs)) 		$= Bool \cdots$ $= Bool \cdots$ $= Bool \cdots$ $= Cons(y, ys))$ $zs))$	
RT (DCS @ UIBK) P	art 5 – Reasoning about Functional Programs	65/68	RT (DCS @ UIBK)	Part 5 – Reasoning about Functional Programs	66/68	
Example: Soundness of insort • prove $\forall x$ as sorted(insort(x))	(x, Final Part $(xs)) =_{Bool} sorted(xs) by ind. on xs$	delines, and Extensions	Summary		Examples, Guidelines, and Extensions	
• step case with IH $\forall x. \text{ sorted}($	$\operatorname{nsort}(x, ys)) =_{\operatorname{Bool}} \operatorname{sorted}(ys):$		 definition of several axioms (inference rules) 			
$sorted(insort(x, Cons(y, ys))) =_{Bool} sorted(Cons(y, ys))$ \rightsquigarrow $sorted(if(le(x, y), Cons(x, Cons(y, ys)), Cons(y, insort(x, ys)))) =_{Bool} \dots$			 all axioms are satisfied in standard model, so they are consistent equational properties can often conveniently be proved via induction and equational reasoning via ↔ 			
 case ¬le(x, y), i.e., le(x, y) =_{Bool} False sorted(if(le(x, y), Cons(x, Cons(y, ys)), Cons(y, insort(x, ys)))) =_{Bool} → sorted(if(False, Cons(x, Cons(y, ys)), Cons(y, insort(x, ys)))) =_{Bool} → sorted(Cons(y, insort(x, ys))) =_{Bool} sorted(Cons(y, ys)) → and(all_le(y, insort(x, ys)), sorted(insort(x, ys))) =_{Bool} sorted(Cons(y, ys)) → and(all_le(y, insort(x, ys)), sorted(ys)) =_{Bool} and(all_le(y, ys), sorted(ys)) → and(all_le(y, insort(x, ys)), sorted(ys)) =_{Bool} and(all_le(y, ys), sorted(ys)) at this point identify further required auxiliary properties V all_le(y, insort(x, ys)) =_{Bool} all_le(y, Cons(x, ys)) V el(x, y) =_{Bool} False → le(y, x) =_{Bool} True 			 induction w.r.t. algorithm preferable whenever algorithms use more complex pattern structure than c_i(x₁,,x_n) for all constructors c_i when getting stuck with → try to detect suitable auxiliary property; after proving it, add it to set of axioms for evaluation not every property can be expressed purely equational; e.g., Boolean connectives are sometimes required specify properties of functional programs (e.g., sort) as functional programs (e.g., sorted) Demo05.thy: Isabelle formalization of all example proofs 			
	this case and hence the overall proof for sort and 5 - Reasoning about Functional Programs	67/68	RT (DCS @ UIBK)	Part 5 – Reasoning about Functional Programs	68/68	