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Inference Rules for the Standard Model

Plan

• only consider well-defined functional programs, so that standard model is well-defined
• aim

• derive theorems and inference rules
which are valid in the standard model

• these can be used to formally reason about functional programs
as on slide 1/18 where associativity of append was proven

• examples
• reasoning about constructors

• ∀x, y. Succ(x) =Nat Succ(y)←→ x =Nat y
• ∀x. ¬Succ(x) =Nat Zero

• getting defining equations of functional programs as theorems
• ∀x, xs, ys. append(Cons(x, xs), ys) =List Cons(x, append(xs, ys))

• induction schemes

•
φ(Zero) ∀x. φ(x) −→ φ(Succ(x))

∀x. φ(x)
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Inference Rules for the Standard Model

Notation – The Normal Form

• when speaking about ↪→, we always consider some fixed well-defined functional program

• since every term has a unique normal form w.r.t. ↪→, we can define a function↪→

: T (Σ,V)τ → T (Σ,V)τ which returns this normal form and write it in postfix notation:

t

↪→

:= the unique normal of t w.r.t. ↪→

• using

↪→

, the meaning of symbols in the standard model can concisely be written as

FM(t1, . . . , tn) = F (t1, . . . , tn)

↪→

• proof
• universe of type τ is T (C)τ , so t ∈ T (C)τ implies t ∈ NF (↪→)

• if F ∈ C, then FM(t1, . . . , tn)
def
= F (t1, . . . , tn) = F (t1, . . . , tn)

↪→

• if F ∈ D, then FM(t1, . . . , tn)
def
= F (t1, . . . , tn)

↪→
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Inference Rules for the Standard Model

The Substitution Lemma
• there are two possibilities to plug in objects into variables

• as assignment: α : Vτ → Aτ

result of [[t]]α is an element of Aτ

• as substitution: σ : Vτ → T (Σ,V)τ
result of tσ is an element of T (Σ,V)τ

• substitution lemma: substitutions can be moved into assignment:

[[tσ]]α = [[t]]β

where β(x) := [[σ(x)]]α
• proof by structural induction on t

• [[xσ]]α = [[σ(x)]]α = β(x) = [[x]]β
•

[[F (t1, . . . , tn)σ]]α = [[F (t1σ, . . . , tnσ)]]α

= FM([[t1σ]]α, . . . , [[tnσ]]α)

IH
= FM([[t1]]β , . . . , [[tn]]β)

= [[F (t1, . . . , tn)]]β
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Reverse Substitution Lemma in the Standard Model
• the substitution lemma holds independently of the model
• in case of the standard model, we have the special condition that Aτ = T (C)τ , so

• the universes consist of terms
• hence, each assignment α : Vτ → T (C)τ is a special kind of substitution

(constructor ground substitution)

• consequence: possibility to encode assignment as substitution

• reverse substitution lemma:
[[t]]α = tα

↪→

• proof by structural induction on t

• [[x]]α = α(x)
(∗)
= α(x)

↪→

= xα

↪→

where (∗) holds, since α(x) ∈ T (C)
•

[[F (t1, . . . , tn)]]α = FM([[t1]]α, . . . , [[tn]]α)

IH
= FM(t1α

↪→

, . . . , tnα

↪→

) = F (t1α

↪→

, . . . , tnα

↪→

)

↪→

(confl.)
= F (t1α, . . . , tnα)

↪→

= F (t1, . . . , tn)α

↪→
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Defining Equations are Theorems in Standard Model

• notation: ∀⃗φ means that universal quantification ranges over all free variables that occur
in φ

• example: if φ is append(Cons(x, xs), ys) =List Cons(x, append(xs, ys)) then ∀⃗φ is

∀x, xs, ys. append(Cons(x, xs), ys) =List Cons(x, append(xs, ys))

• theorem: if ℓ = r is defining equation of program (of type τ), then

M |= ∀⃗ ℓ =τ r

• consequence: conversion of well-defined functional programs into equations is now
possible, cf. previous problem on slide 1/20
• proof of theorem

• by definition of |= and =M
τ we have to show [[ℓ]]α = [[r]]α for all α

• via reverse substitution lemma this is equivalent to ℓα

↪→

= rα

↪→

• easily follows from confluence, since ℓα ↪→ rα
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Axiomatic Reasoning

• previous slide already provides us with some theorems that are satisfied in standard model

• axiomatic reasoning:
take those theorems as axioms to show property φ

• added axioms are theorems of standard model, so they are consistent

• example AX = {∀⃗ ℓ =τ r | ℓ = r is def. eqn.}
• show AX |= φ using first-order reasoning in order to proveM |= φ
(and forget standard modelM during the reasoning!)

• question: is it possible to prove every property φ in this way for whichM |= φ holds?
• answer for above example is “no”

• reason: there are models different than the standard model in which all axioms of AX are
satisfied, but where φ does not hold!

• example on next slide
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Inference Rules for the Standard Model

Axiomatic Reasoning – Problematic Model
• consider addition program, then example AX consists of two axioms

∀y. plus(Zero, y) =Nat y

∀x, y. plus(Succ(x), y) =Nat Succ(plus(x, y))

• we want to prove associativity of plus, so let φ be

∀x, y, z. plus(plus(x, y), z) =Nat plus(x, plus(y, z))

• consider the following modelM′

• ANat = N ∪ {x+ 1
2 | x ∈ Z} = {. . . ,−1 1

2 ,−
1
2 , 0,

1
2 , 1, 1

1
2 , 2, 2

1
2 , . . . }

• ZeroM
′
= 0

• SuccM
′
(n) = n+ 1

• plusM
′
(n,m) =

{
n+m, if n ∈ N or m ∈ N
n−m+ 1

2 , otherwise

• =Nat
M = {(n, n) | n ∈ ANat}

• M′ |=
∧
AX, butM′ ̸|= φ: consider α(x) = 19

2 , α(y) =
9
2 , α(z) =

7
2

• problem: values in α do not correspond to constructor ground terms
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Gödel’s Incompleteness Theorem
• taking AX as set of defining equations does not suffice to deduce all valid theorems of
standard model

• obvious approach: add more theorems to axioms AX
(theorems about =τ , induction rules, . . . )

• question: is it then possible to deduce all valid theorems of standard model?

• negative answer by Gödel’s First Incompleteness Theorem

• theorem: consider a well-defined functional program that includes addition and
multiplication of natural numbers;
let AX be a decidable set of valid theorems in the standard model;
then there is a formula φ such thatM |= φ, but AX ̸|= φ

• note: adding φ to AX does not fix the problem, since then there is another formula φ′

such thatM |= φ′ and AX ∪ {φ} ̸|= φ′

• consequence: “proving φ via AX |= φ” is sound, but never complete

• upcoming: add more axioms than just defining equations,
so that still several proofs are possible
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Inference Rules for the Standard Model

Axioms about Equality

• we define decomposition theorems and disjointness theorems in the form of logical
equivalences

• for each c : τ1 × . . .× τn → τ ∈ C we define its decomposition theorem as

∀⃗ c(x1, . . . , xn) =τ c(y1, . . . , yn)←→ x1 =τ1 y1 ∧ . . . ∧ xn =τn yn

and for all d : τ ′1 × . . .× τ ′k → τ ∈ C with c ̸= d we define the disjointness theorem as

∀⃗ c(x1, . . . , xn) =τ d(y1, . . . , yk)←→ false

• proof of validity of decomposition theorem:

M |=α c(x1, . . . , xn) =τ c(y1, . . . , yn)
iff c(α(x1), . . . , α(xn)) = c(α(y1), . . . , α(yn))
iff α(x1) = α(y1) and . . . and α(xn) = α(yn)
iff M |=α x1 =τ1 y1 and . . . andM |=α xn =τn yn
iff M |=α x1 =τ1 y1 ∧ . . . ∧ xn =τn yn
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Inference Rules for the Standard Model

Axioms about Equality – Example

• for the datatypes of natural numbers and lists we get the following axioms

Zero =Nat Zero←→ true

∀x, y.Succ(x) =Nat Succ(y)←→ x =Nat y

Nil =List Nil←→ true

∀x, xs, y, ys.Cons(x, xs) =List Cons(y, ys)←→ x =Nat y ∧ xs =List ys

∀y.Zero =Nat Succ(y)←→ false

∀x.Succ(x) =Nat Zero←→ false

∀y, ys.Nil =List Cons(y, ys)←→ false

∀x, xs.Cons(x, xs) =List Nil←→ false
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Inference Rules for the Standard Model

Induction Theorems
• current axioms are not even strong enough to prove simple theorems, e.g.,
∀x. plus(x,Zero) =Nat x

• problem: proofs by induction are not yet covered in axioms

• since the principle of induction cannot be defined in general in a single first-order formula,
we will add infinitely many induction theorems to the set of axioms, one for each property

• not a problem, since set of axioms stays decidable, i.e., one can see whether some
tentative formula is an element of the axiom set or not
• example: induction over natural numbers

• formula below is general, but not first-order as it quantifies over φ

∀φ(x : Nat). φ(Zero) −→ (∀x. φ(x) −→ φ(Succ(x))) −→ ∀x. φ(x)

• quantification can be done on meta-level instead:
let φ be an arbitrary formula with a free variable of type Nat; then

φ(Zero) −→ (∀x. φ(x) −→ φ(Succ(x))) −→ ∀x. φ(x)

is a valid theorem; quantifying over φ results in induction scheme
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Inference Rules for the Standard Model

Induction Theorems – Example Instances
• induction scheme

φ(Zero) −→ (∀x. φ(x) −→ φ(Succ(x))) −→ ∀x. φ(x)

• example: right-neutral element: φ(x) := plus(x,Zero) =Nat x

plus(Zero,Zero) =Nat Zero

−→ (∀x. plus(x,Zero) =Nat x −→ plus(Succ(x),Zero) =Nat Succ(x))

−→ ∀x. plus(x,Zero) =Nat x

• example with quantifiers and free variables:
φ(x) := ∀y. plus(plus(x, y), z) =Nat plus(x, plus(y, z))

∀y. plus(plus(Zero, y), z) =Nat plus(Zero, plus(y, z))

−→ (∀x. (∀y. plus(plus(x, y), z) =Nat plus(x, plus(y, z)))

−→ (∀y. plus(plus(Succ(x), y), z) =Nat plus(Succ(x), plus(y, z))))

−→ ∀x.∀y. plus(plus(x, y), z) =Nat plus(x, plus(y, z))
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Preparing Induction Theorems – Substitutions in Formulas

• current situation
• substitutions are functions of type V → T (Σ,V)
• lifted to functions of type T (Σ,V)→ T (Σ,V), cf. slide 3/22
• substitution of variables of formulas is not yet defined, but is required for induction formulas,

cf. notation φ(x) −→ φ(Succ(x)) on previous slide

• formal definition of applying a substitution σ to formulas
• trueσ = true
• (¬φ)σ = ¬(φσ)
• (φ ∧ ψ)σ = φσ ∧ ψσ
• P (t1, . . . , tn)σ = P (t1σ, . . . , tnσ)

• (∀x. φ)σ = ∀x. (φσ) if x does not occur in σ, i.e., σ(x) = x and x /∈ Vars(σ(y))
for all y ̸= x

• (∀x. φ)σ = (∀y. φ[x/y])σ if x occurs in σ where
• y is a fresh variable, i.e., σ(y) = y, y /∈ Vars(σ(z)) for all z ̸= y, and y is not a free variable of

φ
• [x/y] is the substitution which just replaces x by y
• effect is α-renaming: just rename universally quantified variable before substitution to avoid

variable capture
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Inference Rules for the Standard Model

Examples

• substitution of formulas
• (∀x. φ)σ = ∀x. (φσ) if x does not occur in σ
• (∀x. φ)σ = (∀y. φ[x/y])σ if x occurs in σ where y is fresh

• example substitution applications
• φ := ∀x.¬x =Nat y
• φ[y/Zero] = ∀x.¬x =Nat Zero no renaming required
• φ[y/Succ(z)] = ∀x.¬x =Nat Succ(z) no renaming required
• φ[y/Succ(x)] = ∀z.¬ z =Nat Succ(x) renaming [x/z] required

without renaming meaning will change: ∀x.¬x =Nat Succ(x)
• φ[x/Succ(y)] = ∀z.¬ z =Nat y renaming [x/z] required

without renaming meaning will change: ∀x.¬ Succ(y) =Nat y

• example theorems involving substitutions

φ[x/Zero] −→ (∀y. φ[x/y] −→ φ[x/Succ(y)]) −→ ∀x. φ
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Substitution Lemma for Formulas

• example induction formula

φ[x/Zero] −→ (∀y. φ[x/y] −→ φ[x/Succ(y)]) −→ ∀x. φ

• proving validity of this formula (in standard model) requires another substitution lemma
about substitutions in formulas

• lemma: M |=α φσ iffM |=β φ where β(x) := [[σ(x)]]α
• proof by structural induction on φ for arbitrary α and σ

• M |=α P (t1, . . . , tn)σ
iffM |=α P (t1σ, . . . , tnσ)
iff ([[t1σ]]α, . . . , [[tnσ]]α) ∈ PM

iff ([[t1]]β , . . . , [[tn]]β) ∈ PM

iffM |=β P (t1, . . . , tn)
where we use the substitution lemma of slide 5 to conclude [[tiσ]]α = [[ti]]β

• M |=α (¬φ)σ iffM |=α ¬(φσ) iffM ̸|=α φσ
iffM ̸|=β φ (by IH) iffM |=β ¬φ

• cases “true” and conjunction are proved in same way as negation
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Inference Rules for the Standard Model

Substitution Lemma for Formulas – Proof Continued

• lemma: M |=α φσ iffM |=β φ where β(x) := [[σ(x)]]α
• proof by structural induction on φ for arbitrary α and σ

• for quantification we here only consider the more complex case where renaming is required
• M |=α (∀x. φ)σ

iffM |=α (∀y. φ[x/y])σ for fresh y
iffM |=α ∀y. (φ[x/y]σ)
iffM |=α[y:=a] φ[x/y]σ for all a ∈ A
iffM |=β′ φ for all a ∈ A where β′(z) := [[([x/y]σ)(z)]]α[y:=a] (by IH)
iffM |=β[x:=a] φ for all a ∈ A only non-automatic step
iffM |=β ∀x. φ

• equivalence of β′ and β[x := a] on variables of φ
• β′(x) = [[([x/y]σ)(x)]]α[y:=a] = [[σ(y)]]α[y:=a] = [[y]]α[y:=a] = a and β[x := a](x) = a
• z is variable of φ, z ̸= x:

by freshness condition conclude z ̸= y and y /∈ Vars(σ(z)); hence
β′(z) = [[([x/y]σ)(z)]]α[y:=a] = [[σ(z)]]α[y:=a] = [[σ(z)]]α and
β[x := a](z) = β(z) = [[σ(z)]]α
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Substitution Lemma in Standard Model

• substitution lemma: M |=α φσ iffM |=β φ where β(x) := [[σ(x)]]α

• lemma is valid for all models

• in standard model, substitution lemma permits to characterize universal quantification by
substitutions, similar to reverse substitution lemma on slide 6
• lemma: let x : τ ∈ V, letM be the standard model

1. M |=α[x:=t] φ iffM |=α φ[x/t]
2. M |=α ∀x. φ iffM |=α φ[x/t] for all t ∈ T (C)τ

• proof

1. first note that the usage of α[x := t] implies t ∈ Aτ = T (C)τ ;
by the substitution lemma obtain
M |=α φ[x/t]
iffM |=β φ for β(z) = [[[x/t](z)]]α = α[x := [[t]]α](z)
iffM |=α[x:=t] φ ([[t]]α = t, since t ∈ T (C))

2. immediate by part 1 of lemma
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Substitution Lemma and Induction Formulas
• substitution lemma (SL) is crucial result to lift structural
induction rule of universe T (C)τ to a structural induction formula

• example: structural induction formula ψ for lists with fresh x, xs

ψ := φ[ys/Nil]︸ ︷︷ ︸
1

−→ (∀x, xs. φ[ys/xs] −→ φ[ys/Cons(x, xs)]︸ ︷︷ ︸
2

) −→ ∀ys. φ

• proof ofM |=α ψ:
assume premises 1 (M |=α φ[ys/Nil]) and 2 and showM |=α ∀ys. φ:
by SL the latter is equivalent to “M |=α φ[ys/ℓ] for all ℓ ∈ T (C)List”;
prove this statement by structural induction on lists
• Nil: showingM |=α φ[ys/Nil] is easy: it is exactly premise 1
• Cons(n, ℓ): use SL on premise 2 to conclude

M |=α (φ[ys/xs] −→ φ[ys/Cons(x, xs)])[x/n, xs/ℓ]

hence
M |=α φ[ys/ℓ] −→ φ[ys/Cons(n, ℓ)]

and with IHM |=α φ[ys/ℓ] concludeM |=α φ[ys/Cons(n, ℓ)]
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Freshness of Variables
• example: structural induction formula for lists with fresh x, xs

φ[ys/Nil] −→ (∀x, xs. φ[ys/xs] −→ φ[ys/Cons(x, xs)]) −→ ∀ys. φ

• why freshness required? isn’t name of quantified variables irrelevant?

• problem: substitution is applied below quantifier!

• example: let us drop freshness condition and “prove” non-theorem

M |= ∀x, xs, ys. ys =List Nil ∨ ys =List Cons(x, xs)

• by semantics of ∀x, xs. . . . it suffices to prove

M |=α ∀ys. ys =List Nil ∨ ys =List Cons(x, xs)︸ ︷︷ ︸
φ

• apply above induction formula and obtain two subgoalsM |=α . . . for
• φ[ys/Nil] which is Nil =List Nil ∨ Nil =List Cons(x, xs)
• ∀x, xs. φ[ys/xs] −→ φ[ys/Cons(x, xs)] which is
∀x, xs. . . . −→ Cons(x, xs) =List Nil ∨ Cons(x, xs) =List Cons(x, xs)

• solution: rename variables in induction formula whenever required
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Structural Induction Formula

• finally definition of induction formula for data structures is possible

• consider data τ = c1 : τ1,1 × . . .× τ1,m1 → τ
| . . .
| cn : τn,1 × . . .× τn,mn → τ

• let x ∈ Vτ , let φ be a formula, let variables x1, x2, . . . be fresh w.r.t. φ

• for each ci define

φi := ∀x1, . . . , xmi .

 ∧
j,τi,j=τ

φ[x/xj ]


︸ ︷︷ ︸
IH for recursive arguments

−→ φ[x/ci(x1, . . . , xmi)]

• the induction formula is ∀⃗ (φ1 −→ . . . −→ φn −→ ∀x. φ)
• theorem: M |= ∀⃗ (φ1 −→ . . . −→ φn −→ ∀x. φ)
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Inference Rules for the Standard Model

Proof of Structural Induction Formula

• to prove: M |= ∀⃗ (φ1 −→ . . . −→ φn −→ ∀x. φ)
• ∀-intro: M |=α (φ1 −→ . . . −→ φn −→ ∀x. φ) for arbitrary α
• −→-intro: assumeM |=α φi for all i and showM |=α ∀x. φ
• ∀-intro via SL: showM |=α φ[x/t] for all t ∈ T (C)τ
• prove this by structural induction on t w.r.t. induction rule of T (C)τ
(for precisely this α, not for arbitrary α)
• induction step for each constructor ci : τi,1 × . . .× τi,mi → τ

• aim: M |=α φ[x/ci(t1, . . . , tmi)] IH:M |=α φ[x/tj ] for all j such that τi,j = τ
• use assumptionM |=α φi, i.e., (here important: same α)

M |=α ∀x1, . . . , xmi . (
∧

j,τi,j=τ

φ[x/xj ]) −→ φ[x/ci(x1, . . . , xmi)]

• use SL as ∀-elimination with substitution [x1/t1, . . . , xmi
/tmi

], obtain

M |=α (
∧

j,τi,j=τ

φ[x/tj ]) −→ φ[x/ci(t1, . . . , tmi)]

• combination with IH yields desiredM |=α φ[x/ci(t1, . . . , tmi)]
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Inference Rules for the Standard Model

Summary: Axiomatic Proofs of Functional Programs

• given a well-defined functional program, define a set of axioms AX consisting of
• equations of defined symbols (slide 7)
• axioms about equality of constructors (slide 11)
• structural induction formulas (slide 22)

• instead of provingM |= φ deduce AX |= φ

• fact: standard model is ignored in previous step

• question: why all these efforts and not just state AX?

• reason:

having provenM |= ψ for all ψ ∈ AX
implies that AX is consistent!

• recall: already just converting functional program equations naively into theorems led to
proof of 0 = 1 on slide 1/20, i.e., inconsistent axioms,
and AX now contains more complex axioms than just equalities
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Example: Attempt to Prove Associativity of Append via AX

• task: prove associativity of append via natural deduction and AX
• define φ := append(append(xs, ys), zs) =List append(xs, append(ys, zs))

1. show ∀xs, ys, zs. φ
2. ∀-intro: show φ where now xs, ys, zs are fresh variables
3. to this end prove intermediate goal: ∀xs. φ
4. applying induction axiom φ[xs/Nil] −→ (∀u, us. φ[xs/us] −→ φ[xs/Cons(u, us)]) −→ ∀xs. φ

in combination with modus ponens yields two subgoals, one of them is φ[xs/Nil], i.e.,
append(append(Nil, ys), zs) =List append(Nil, append(ys, zs))

5. use axiom ∀ys. append(Nil, ys) =List ys
6. ∀-elim: append(Nil, append(ys, zs)) =List append(ys, zs)
7. at this point we would like to simplify the rhs in the goal to obtain obligation

append(append(Nil, ys), zs) =List append(ys, zs)
8. this is not possible at this point: there are missing axioms

• =List is an equivalence relation
• =List is a congruence; required to simplify the lhs append(·, zs) at ·
• . . .

• next step: reconsider the reasoning engine and the available axioms
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Equational Reasoning and Induction

Equational Reasoning and Induction

Reasoning about Functional Programs: Current State

• given well-defined functional program, extract set of axioms AX that are satisfied in
standard modelM
• equations of defined symbols
• equivalences regarding equality of constructors
• structural induction formulas

• for proving propertyM |= φ it suffices to show AX |= φ

• problems: reasoning via natural deduction quite cumbersome
• explicit introduction and elimination of quantifiers
• no direct support for equational reasoning

• aim: equational reasoning
• implicit transitivity reasoning: from a =τ b =τ c =τ d conclude a =τ d
• equational reasoning in contexts: from a =τ b conclude f(a) =τ ′ f(b)

• in general: want some calculus ⊢ such that ⊢ φ impliesM |= φ
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Equational Reasoning and Induction

Equational Reasoning with Universally Quantified Formulas
• for now let us restrict to universally quantified formulas
• we can formulate properties like

• ∀xs. reverse(reverse(xs)) =List xs
• ∀xs, ys. reverse(append(xs, ys)) =List append(reverse(ys), reverse(xs))
• ∀x, y. plus(x, y) =Nat plus(y, x)

but not
• ∀x. ∃y. greater(y, x) =Bool True

• universally quantified axioms
• equations of defined symbols

• ∀y. plus(Zero, y) =Nat y
• ∀x, y. plus(Succ(x), y) =Nat Succ(plus(x, y))
• . . .

• axioms about equality of constructors
• ∀x, y. Succ(x) =Nat Succ(y)←→ x =Nat y
• ∀x. Succ(x) =Nat Zero←→ false
• . . .

• but not: structural induction formulas
• φ[y/Zero] −→ (∀x. φ[y/x] −→ φ[y/Succ(x)]) −→ ∀y. φ
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Equational Reasoning and Induction

Equational Reasoning in Formulas
• so far: ↪→E replaces terms by terms using equations E of program
• upcoming: ⇝ to simplify formulas using universally quantified axioms
• formal definition: let AX be a set of axioms; then ⇝AX is defined as

true ∧ φ⇝AX φ φ ∧ true⇝AX φ false ∧ φ⇝AX false

¬false⇝AX true ¬true⇝AX false

∀⃗ ℓ =τ r ∈ AX s ↪→{ℓ=r} s
′

s =τ t⇝AX s′ =τ t

∀⃗ ℓ =τ r ∈ AX t ↪→{ℓ=r} t
′

s =τ t⇝AX s =τ t
′

∀⃗ (ℓ =τ r ←→ φ) ∈ AX
ℓσ =τ rσ ⇝AX φσ t =τ t⇝AX true

φ⇝AX φ′

φ ∧ ψ ⇝AX φ′ ∧ ψ
ψ ⇝AX ψ′

φ ∧ ψ ⇝AX φ ∧ ψ′
φ⇝AX φ′

¬φ⇝AX ¬φ′

consisting of Boolean simplifications, equations, equivalences and congruences;
often subscript AX is dropped in ⇝AX when clear from context
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Equational Reasoning and Induction

Soundness of Equational Reasoning

• we show that whenever AX is valid in the standard modelM, then
• φ⇝AX ψ impliesM |=α φ←→ ψ for all α
• so in particularM |= ∀⃗φ←→ ψ

• immediate consequence: φ⇝∗
AX true impliesM |= ∀⃗φ

• define calculus: ⊢ ∀⃗φ if φ⇝∗
AX true

• example

plus(Zero,Zero) =Nat times(Zero, x)

⇝ Zero =Nat times(Zero, x)

⇝ Zero =Nat Zero

⇝ true

and thereforeM |= ∀x. plus(Zero,Zero) =Nat times(Zero, x)
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Equational Reasoning and Induction

Proving Soundness of ⇝: φ⇝ ψ implies M |=α φ←→ ψ

by induction on ⇝ for arbitrary α

• case

φ⇝ φ′

φ ∧ ψ ⇝ φ′ ∧ ψ
• IH:M |=α φ←→ φ′ for arbitrary α
• concludeM |=α φ ∧ ψ

iffM |=α φ andM |=α ψ
iffM |=α φ

′ andM |=α ψ (by IH)
iffM |=α φ

′ ∧ ψ
• in total: M |=α φ ∧ ψ ←→ φ′ ∧ ψ

• all other cases for Boolean simplifications and congruences are similar
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Equational Reasoning and Induction

Proving Soundness of ⇝: φ⇝ ψ implies M |=α φ←→ ψ

• case

∀⃗ (ℓ =τ r ←→ φ) ∈ AX
ℓσ =τ rσ ⇝ φσ

• premiseM |= ∀⃗ (ℓ =τ r ←→ φ),
so in particularM |=β ℓ =τ r ←→ φ for β(x) = [[σ(x)]]α

• concludeM |=α ℓσ =τ rσ
iff [[ℓ]]β = [[r]]β (by SL)
iffM |=β φ (by premise)
iffM |=α φσ (by SL)

• in total: M |=α ℓσ =τ rσ ←→ φσ
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Equational Reasoning and Induction

Proving Soundness of ⇝: φ⇝ ψ implies M |=α φ←→ ψ

• case

∀⃗ ℓ =τ r ∈ AX s ↪→{ℓ=r} s
′

s =τ t⇝ s′ =τ t
• premiseM |= ∀⃗ ℓ =τ r, and s = C[ℓσ] and s′ = C[rσ] where C is some context, i.e., term

with one hole which can be filled via [·]
• conclude [[s]]α

= [[C[ℓσ]]]α
= C[ℓσ]α

↪→

(by reverse SL)
= Cα[ℓσα]

↪→

= Cα[ℓσα

↪→

]

↪→

(∗)
= Cα[rσα

↪→

]

↪→

= Cα[rσα]

↪→

= C[rσ]α

↪→

= [[C[rσ]]]α (by reverse SL)
= [[s′]]α

• reason for (∗): premise implies
[[ℓ]]β = [[r]]β for β(x) = [[σ(x)]]α,
hence [[ℓσ]]α = [[rσ]]α (by SL),
and thus, ℓσα

↪→

= rσα

↪→

(by reverse SL)
• in total: M |=α s =τ t←→ s′ =τ t
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Equational Reasoning and Induction

Comparing ⇝ with ↪→
• ↪→ rewrites on terms whereas ⇝ also simplifies Boolean connectives and uses axioms
about equality =τ

• ↪→ uses defining equations of program whereas ⇝AX is parametrized by set of axioms
• in particular proven properties like ∀xs. reverse(reverse(xs)) =List xs can be added to set of

axioms and then be used for ⇝
• this addition of new knowledge greatly improves power, but can destroy both termination

and confluence
example: adding ∀xs. xs =List reverse(reverse(xs)) to AX is bad idea

• heuristics or user input required to select subset of theorems that are used with ⇝
• new equations should be added in suitable direction

• obvious: ∀xs. reverse(reverse(xs)) =List xs is intended direction
• direction sometimes not obvious for distributive laws

∀x, y, z. times(plus(x, y), z) =Nat plus(times(x, z), times(y, z))

reason for left-to-right: more often applicable
reason for right-to-left: term gets smaller
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Equational Reasoning and Induction

Limits of ⇝

• ⇝ only works with universally quantified properties
• defining equations
• equivalences to simplify equalities =τ

• newly derived properties such as ∀xs. reverse(reverse(xs)) =List xs
• ⇝ can not deal with induction axioms such as the one for associativity of append (app)

(∀ys, zs. app(app(Nil, ys), zs) =List app(Nil, app(ys, zs)))

−→ (∀x, xs.(∀ys, zs. app(app(xs, ys), zs) =List app(xs, app(ys, zs))) −→
(∀ys, zs. app(app(Cons(x, xs), ys), zs) =List app(Cons(x, xs), app(ys, zs))))

−→ (∀xs, ys, zs. app(app(xs, ys), zs) =List app(xs, app(ys, zs)))

• in particular, ⇝ often cannot perform any simplification without induction proving

app(app(xs, ys), zs) =List app(xs, app(ys, zs)))

cannot be simplified by ⇝ using the existing axioms
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Equational Reasoning and Induction

Induction in Combination with Equational Reasoning

• aim: prove equality ∀⃗ ℓ =τ r

• approach:
• select induction variable x
• reorder quantifiers such that ∀⃗ ℓ =τ r is written as ∀x.φ
• build induction formula w.r.t. slide 22

φ1 −→ . . . −→ φn −→ ∀x. φ

(no outer universal quantifier, since by construction above formula has no free variables)
• try to prove each φi via ⇝
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Equational Reasoning and Induction

Example: Associativity of Append

• aim: prove equality ∀xs, ys, zs. app(app(xs, ys), zs) =List app(xs, app(ys, zs))
• approach:

• select induction variable xs
• reordering of quantifiers not required
• the induction formula is presented on slide 35
• φ1 is

∀ys, zs. app(app(Nil, ys), zs) =List app(Nil, app(ys, zs))

so we simply evaluate

app(app(Nil, ys), zs) =List app(Nil, app(ys, zs))

⇝ app(ys, zs) =List app(Nil, app(ys, zs))

⇝ app(ys, zs) =List app(ys, zs)

⇝ true
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Equational Reasoning and Induction

Example: Associativity of Append, Continued
• proving ∀xs, ys, zs. app(app(xs, ys), zs) =List app(xs, app(ys, zs))
• approach: . . .

• φ2 is
∀x, xs.(∀ys, zs. app(app(xs, ys), zs) =List app(xs, app(ys, zs))) −→

(∀ys, zs. app(app(Cons(x, xs), ys), zs) =List app(Cons(x, xs), app(ys, zs)))

so we try to prove the rhs of −→ via ⇝

app(app(Cons(x, xs), ys), zs) =List app(Cons(x, xs), app(ys, zs))

⇝ app(Cons(x, app(xs, ys)), zs) =List app(Cons(x, xs), app(ys, zs))

⇝ Cons(x, app(app(xs, ys), zs)) =List app(Cons(x, xs), app(ys, zs))

⇝ Cons(x, app(app(xs, ys), zs)) =List Cons(x, app(xs, app(ys, zs)))

⇝ x =Nat x ∧ app(app(xs, ys), zs) =List app(xs, app(ys, zs))

⇝ true ∧ app(app(xs, ys), zs) =List app(xs, app(ys, zs))

⇝ app(app(xs, ys), zs) =List app(xs, app(ys, zs))

̸= true
• problem: we get stuck, since currently IH is unused
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Equational Reasoning and Induction

Integrating IHs into Equational Reasoning

• recall structure of induction formula for formula φ and constructor ci:

φi := ∀x1, . . . , xmi .

 ∧
j,τi,j=τ

φ[x/xj ]


︸ ︷︷ ︸

IHs for recursive arguments

−→ φ[x/ci(x1, . . . , xmi)]

• idea: for proving φi try to show φ[x/ci(x1, . . . , xmi)] by evaluating it to true via ⇝,
where each IH φ[x/xj ] is added as equality
• append-example

• aim:
app(app(Cons(x, xs), ys), zs) =List app(Cons(x, xs), app(ys, zs))⇝

∗ true

• add IH ∀ys, zs. app(app(xs, ys), zs) =List app(xs, app(ys, zs)) to axioms

• problem IH φ[x/xj ] is not universally quantified equation, since variable xj is free
(in append example, this would be xs)
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Equational Reasoning and Induction

Integrating IHs into Equational Reasoning, Continued

• to solve problem, extend ⇝ to allow evaluation with equations that contain free variables

• add two new inference rules

∀x⃗. ℓ =τ r ∈ AX s ↪→{ℓ=r} s
′

s =τ t⇝AX s′ =τ t

∀x⃗. ℓ =τ r ∈ AX t ↪→{r=ℓ} t
′

s =τ t⇝AX s =τ t
′

where in both inference rules, only the variables of x⃗ may be instantiated in the equation
ℓ = r when simplifying with ↪→; so the chosen substitution σ must satisfy σ(y) = y for
all y /∈ x⃗
• the swap of direction, i.e., the r = ℓ in the second rule is intended and a heuristic

• either apply the IH on some lhs of an equality from left-to-right
• or apply the IH on some rhs of an equality from right-to-left

in both cases, an application will make both sides on the equality more equal

• another heuristic is to apply each IH only once
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Equational Reasoning and Induction

Example: Associativity of Append, Continued
• proving ∀xs, ys, zs. app(app(xs, ys), zs) =List app(xs, app(ys, zs))
• approach: . . .

• φ2 is ∀x, xs.(∀ys, zs. app(app(xs, ys), zs) =List app(xs, app(ys, zs))) −→
(∀ys, zs. app(app(Cons(x, xs), ys), zs) =List app(Cons(x, xs), app(ys, zs)))

so we try to prove the rhs of −→ via ⇝ and add

∀ys, zs. app(app(xs, ys), zs) =List app(xs, app(ys, zs))

to the set of axioms (only for the proof of φ2); then

app(app(Cons(x, xs), ys), zs) =List app(Cons(x, xs), app(ys, zs))

⇝∗ app(app(xs, ys), zs) =List app(xs, app(ys, zs))

⇝ app(xs, app(ys, zs)) =List app(xs, app(ys, zs))

⇝ true

here it is important to apply the IH only once, otherwise one would get

app(xs, app(ys, zs)) =List app(app(xs, ys), zs)
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Equational Reasoning and Induction

Integrating IHs into Equational Reasoning, Soundness

• aim: proveM |= φi for

φi := ∀⃗
∧
j

ψj︸ ︷︷ ︸
IHs

−→ ψ

where we assume that ψ ⇝∗ true with the additional local axioms of the IHs ψj

• hence showM |=α ψ under the assumptionsM |=α ψj for all IHs ψj

• by existing soundness proof of ⇝ we can nearly concludeM |=α ψ from ψ ⇝∗ true

• only gap: proof needs to cover new inference rules on slide 40
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Equational Reasoning and Induction

Soundness of Partially Quantified Equation Application

• case

∀x⃗. ℓ =τ r ∈ AX s ↪→{ℓ=r} s
′

s =τ t⇝ s′ =τ t with σ(y) = y for all y /∈ x⃗
• premise isM |=α ∀x⃗. ℓ =τ r (and notM |= ∀⃗ ℓ =τ r)

and s = C[ℓσ] and s′ = C[rσ] as before
• conclude [[s]]α = [[s′]]α as on slide 33 as main step to deriveM |=α s =τ t←→ s′ =τ t
• only change is how to obtain [[ℓ]]β = [[r]]β for β(x) = [[σ(x)]]α
• new proof

• let x⃗ = x1, . . . , xk

• premise implies [[ℓ]]α[x1:=a1,...,xk:=ak] = [[r]]α[x1:=a1,...,xk:=ak] for arbitrary ai, so in particular
for ai = [[σ(xi)]]α

• it now suffices to prove that α[x1 := a1, . . . , xk := ak] = β
• consider two cases
• for variables xi we have

α[x1 := a1, . . . , xk := ak](xi) = ai = [[σ(xi)]]α = β(xi)

• for all other variables y /∈ x⃗ we have

α[x1 := a1, . . . , xk := ak](y) = α(y) = [[y]]α = [[σ(y)]]α = β(y)
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Equational Reasoning and Induction

Summary

• framework for inductive proofs combined with equational reasoning

• apply induction first

• then prove each case ∀⃗
∧
ψj −→ ψ via evaluation ψ ⇝∗ true where IHs ψj become local

axioms

• free variables in IHs (induction variables) may not be instantiated by ⇝, all the other
variables may be instantiated (“arbitrary” variables)

• heuristic: apply IHs only once

• upcoming: positive and negative examples, guidelines, extensions

RT (DCS @ UIBK) Part 5 – Reasoning about Functional Programs 44/68

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Examples, Guidelines, and Extensions

Examples, Guidelines, and Extensions

Associativity of Append
• program

app(Cons(x, xs), ys) = Cons(x, app(xs, ys))

app(Nil, ys) = ys

• formula
∀⃗ app(app(xs, ys), zs) =List app(xs, app(ys, zs))

• induction on xs works successfully

• what about induction on ys (or zs)?

• base case already gets stuck

app(app(xs,Nil), zs) =List app(xs, app(Nil, zs))

⇝ app(app(xs,Nil), zs) =List app(xs, zs)

• problem: ys is argument on second position of append,
whereas case analysis in lhs of append happens on first argument

• guideline: select variables such that case analysis triggers evaluation
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Examples, Guidelines, and Extensions

Commutativity of Addition
• program

plus(Succ(x), y) = Succ(plus(x, y))

plus(Zero, y) = y

• formula
∀⃗ plus(x, y) =Nat plus(y, x)

• let us try induction on x

• base case already gets stuck

plus(Zero, y) =Nat plus(y,Zero)

⇝ y =Nat plus(y,Zero)

• final result suggests required lemma: Zero is also right neutral

• ∀x. plus(x,Zero) =Nat x can be proven with our approach

• then this lemma can be added to AX and base case of commutativity-proof can be
completed
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Examples, Guidelines, and Extensions

Right-Zero of Addition
• program

plus(Succ(x), y) = Succ(plus(x, y))

plus(Zero, y) = y

• formula
∀⃗ plus(x,Zero) =Nat x

• only one possible induction variable: x

• base case:

plus(Zero,Zero) =Nat Zero⇝ Zero =Nat Zero⇝ true

• step case adds IH plus(x,Zero) =Nat x as axiom and we get

plus(Succ(x),Zero) =Nat Succ(x)

⇝ Succ(plus(x,Zero)) =Nat Succ(x)

⇝ Succ(x) =Nat Succ(x)

⇝ true
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Examples, Guidelines, and Extensions

Commutativity of Addition

• formula

∀⃗ plus(x, y) =Nat plus(y, x)

• step case adds IH ∀y. plus(x, y) =Nat plus(y, x) to axioms and we get

plus(Succ(x), y) =Nat plus(y,Succ(x))

⇝ Succ(plus(x, y)) =Nat plus(y,Succ(x))

⇝ Succ(plus(y, x)) =Nat plus(y,Succ(x))

• final result suggests required lemma: Succ on second argument can be moved outside

• ∀x, y. plus(x,Succ(y)) =Nat Succ(plus(x, y)) can be proven with our approach
(induction on x)

• then this lemma can be added to AX and commutativity-proof can be completed
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Examples, Guidelines, and Extensions

Fast Implementation of Reversal
• program

app(Cons(x, xs), ys) = Cons(x, app(xs, ys))

app(Nil, ys) = ys

rev(Cons(x, xs)) = app(rev(xs),Cons(x,Nil))

rev(Nil) = Nil

r(Cons(x, xs), ys) = r(xs,Cons(x, ys))

r(Nil, ys) = ys

rev fast(xs) = r(xs,Nil)

• aim: show that both implementations of reverse are equivalent, so that the naive
implementation can be replaced by the faster one

∀xs. rev fast(xs) =List rev(xs)

• applying ⇝ first yields desired lemma

∀xs. r(xs,Nil) =List rev(xs)
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Examples, Guidelines, and Extensions

Generalizations Required
• for induction for the following formula there is only one choice: xs

∀xs. r(xs,Nil) =List rev(xs)

• step-case gets stuck

r(Cons(x, xs),Nil) =List rev(Cons(x, xs))

⇝∗ r(xs,Cons(x,Nil)) =List app(rev(xs),Cons(x,Nil))

⇝ r(xs,Cons(x,Nil)) =List app(r(xs,Nil),Cons(x,Nil))

• problem: the second argument Nil of r in formula is too specific

• solution: generalize formula by replacing constants by variables

• naive replacement does not work, since it does not hold

∀xs, ys. r(xs, ys) =List rev(xs)

• creativity required
∀xs, ys. r(xs, ys) =List app(rev(xs), ys)
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Examples, Guidelines, and Extensions

Fast Implementation of Reversal, Continued
• proving main formula by induction on xs, since recursion is on xs

∀xs, ys. r(xs, ys) =List app(rev(xs), ys)

• base-case
r(Nil, ys) =List app(rev(Nil), ys)

⇝∗ ys =List ys ⇝ true

• step-case solved with associativity of append and IH added to axioms

r(Cons(x, xs), ys) =List app(rev(Cons(x, xs)), ys)

⇝ r(xs,Cons(x, ys)) =List app(rev(Cons(x, xs)), ys)

⇝ app(rev(xs),Cons(x, ys)) =List app(rev(Cons(x, xs)), ys)

⇝ app(rev(xs),Cons(x, ys)) =List app(app(rev(xs),Cons(x,Nil)), ys)

⇝ app(rev(xs),Cons(x, ys)) =List app(rev(xs), app(Cons(x,Nil), ys))

⇝ app(rev(xs),Cons(x, ys)) =List app(rev(xs),Cons(x, app(Nil, ys)))

⇝ app(rev(xs),Cons(x, ys)) =List app(rev(xs),Cons(x, ys))⇝ true
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Fast Implementation of Reversal, Finalized
• now add main formula to axioms, so that it can be used by ⇝

∀xs, ys. r(xs, ys) =List app(rev(xs), ys)

• then for our initial aim we get

rev fast(xs) =List rev(xs)

⇝ r(xs,Nil) =List rev(xs)

⇝ app(rev(xs),Nil) =List rev(xs)

• at this point one easily identifies a missing property

∀xs. app(xs,Nil) =List xs

which is proven by induction on xs in combination with ⇝

• afterwards it is trivial to complete the equivalence proof of the two reversal
implementations
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Another Problem
• consider the following program

half(Zero) = Zero

half(Succ(Zero)) = Zero

half(Succ(Succ(x))) = Succ(half(x))

le(Zero, y) = True

le(Succ(x),Zero) = False

le(Succ(x),Succ(y)) = le(x, y)

• and the desired property

∀x. le(half(x), x) =Bool True

• induction on x will get stuck, since the step-case Succ(x) does not permit evaluation
w.r.t. half-equations

• better induction is desirable, namely rule that corresponds to algorithm definition (e.g. of
half) with cases that correspond to patterns in lhss
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Induction w.r.t. Algorithm
• induction w.r.t. algorithm was informally performed on slide 4/36

• select some n-ary function f
• each f -equation is turned into one case
• for each recursive f -call in rhs get one IH

• example: for algorithm

half(Zero) = Zero

half(Succ(Zero)) = Zero

half(Succ(Succ(x))) = Succ(half(x))

the induction rule for half is

φ[y/Zero]

−→ φ[y/Succ(Zero)]

−→ (∀x. φ[y/x] −→ φ[y/Succ(Succ(x))])

−→ ∀y. φ
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Induction w.r.t. Algorithm
• induction w.r.t. algorithm formally defined

• let f be n-ary defined function within well-defined program
• let there be k defining equations for f
• let φ be some formula which has exactly n free variables x1, . . . , xn
• then the induction rule for f is

φind,f := ψ1 −→ . . . −→ ψk −→ ∀x1, . . . , xn. φ

where for the i-th f -equation f(ℓ1, . . . , ℓn) = r we define

ψi := ∀⃗

 ∧
r⊵f(r1,...,rn)

φ[x1/r1, . . . , xn/rn]

 −→ φ[x1/ℓ1, . . . , xn/ℓn]

where ∀⃗ ranges over all variables in the equation

• properties
• M |= φind,f ; reason: pattern-completeness and termination (SN (↪→◦⊵))
• heuristic: good idea to prove properties ∀⃗φ about function f via φf,ind

• reason: structure will always allow one evaluation step of f -invocation
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Back to Example

• consider program

half(Zero) = Zero

half(Succ(Zero)) = Zero

half(Succ(Succ(x))) = Succ(half(x))

le(Zero, y) = True

le(Succ(x),Zero) = False

le(Succ(x),Succ(y)) = le(x, y)

• for property

∀x. le(half(x), x) =Bool True

chose induction for half (and not for le), since half is inner function call; hopefully
evaluation of inner function calls will enable evaluation of outer function calls
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(Nearly) Completing the Proof
• applying induction for half on

∀x. le(half(x), x) =Bool True

turns this problem into three new proof obligations
• le(half(Zero),Zero) =Bool True
• le(half(Succ(Zero)),Succ(Zero)) =Bool True
• le(half(Succ(Succ(x))),Succ(Succ(x))) =Bool True

where le(half(x), x) =Bool True can be assumed as IH

• the first two are easy, the third one works as follows

le(half(Succ(Succ(x))),Succ(Succ(x))) =Bool True

⇝ le(Succ(half(x)),Succ(Succ(x))) =Bool True

⇝ le(half(x),Succ(x)) =Bool True

• here there is another problem, namely that the IH is not applicable

• problem solvable by proving an implication like
le(x, y) =Bool True −→ le(x, Succ(y)) =Bool True;
uses equational reasoning with conditions; covered informally only

RT (DCS @ UIBK) Part 5 – Reasoning about Functional Programs 58/68

Examples, Guidelines, and Extensions

Equational Reasoning with Conditions

• generalization: instead of pure equalities also support implications

• simplifications with ⇝ can happen on both sides of implication,
since ⇝ yields equivalent formulas

• applying conditional equations triggers new proofs: preconditions must be satisfied
• example:

• assume axioms contain conditional equality φ −→ ℓ =τ r, e.g., from IH
• current goal is implication ψ −→ C[ℓσ] =τ t
• we would like to replace goal by ψ −→ C[rσ] =τ t
• but then we must ensure ψ −→ φσ, e.g., via ψ −→ φσ ⇝∗ true

• ⇝ must be extended to perform more Boolean reasoning

• not done formally at this point
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Equational Reasoning with Conditions, Example
• property

le(x, y) =Bool True −→ le(x, Succ(y)) =Bool True

• apply induction on le
• first case

le(Zero, y) =Bool True −→ le(Zero, Succ(y)) =Bool True

⇝ le(Zero, y) =Bool True −→ True =Bool True

⇝ le(Zero, y) =Bool True −→ true

⇝ true

• second case

le(Succ(x),Zero) =Bool True −→ le(Succ(x), Succ(Zero)) =Bool True

⇝ False =Bool True −→ le(Succ(x), Succ(Zero)) =Bool True

⇝ false −→ le(Succ(x),Succ(Zero)) =Bool True

⇝ true
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Equational Reasoning with Conditions, Example
• property

le(x, y) =Bool True −→ le(x, Succ(y)) =Bool True

• third case has IH

le(x, y) =Bool True −→ le(x, Succ(y)) =Bool True

and we reason as follows

le(Succ(x), Succ(y)) =Bool True −→ le(Succ(x), Succ(Succ(y))) =Bool True

⇝ le(x, y) =Bool True −→ le(Succ(x),Succ(Succ(y))) =Bool True

⇝ le(x, y) =Bool True −→ le(x,Succ(y)) =Bool True

⇝ le(x, y) =Bool True −→ True =Bool True

⇝ le(x, y) =Bool True −→ true

⇝ true

• proof of property ∀x. le(half(x), x) =Bool True finished
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Final Example: Insertion Sort

• consider insertion sort

le(Zero, y) = True

le(Succ(x),Zero) = False

le(Succ(x), Succ(y)) = le(x, y)

if(True, xs, ys) = xs

if(False, xs, ys) = ys

insort(x,Nil) = Cons(x,Nil)

insort(x,Cons(y, ys)) = if(le(x, y),Cons(x,Cons(y, ys)),Cons(y, insort(x, ys)))

sort(Nil) = Nil

sort(Cons(x, xs)) = insort(x, sort(xs))

• aim: prove soundness, e.g., result is sorted

• problem: how to express “being sorted”?

• in general: how to express properties if certain primitives are not available?
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Expressing Properties
• solution: express properties via functional programs

. . . = . . .

sort(Cons(x, xs)) = insort(x, sort(xs))

algorithm above, properties for specification below

and(True, b) = b

and(False, b) = False

all le(x,Nil) = True

all le(x,Cons(y, ys)) = and(le(x, y), all le(x, ys))

sorted(Nil) = True

sorted(Cons(x, xs)) = and(all le(x, xs), sorted(xs))

• example properties (where b =Bool True is written just as b)
• sorted(insort(x, xs)) =Bool sorted(xs)
• sorted(sort(xs))

• important: functional programs for specifications should be simple;
they must be readable for validation and need not be efficient
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Example: Soundness of sort
• already assume property of insort:

∀x, xs. sorted(insort(x, xs)) =Bool sorted(xs) (∗)

speculative proofs are risky: conjectures might be wrong

• property ∀xs. sorted(sort(xs)) is shown by induction on xs

• base case:
sorted(sort(Nil))

⇝ sorted(Nil)

⇝ True (recall: syntax omits =Bool True)

⇝ true

• step case with IH sorted(sort(xs)):
sorted(sort(Cons(x, xs)))

⇝ sorted(insort(x, sort(xs)))
(∗)
⇝ sorted(sort(xs))

⇝ True
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Example: Soundness of insort

• prove ∀x, xs. sorted(insort(x, xs)) =Bool sorted(xs) by induction on xs

• base case:

sorted(insort(x,Nil)) =Bool sorted(Nil)

⇝ sorted(Cons(x,Nil)) =Bool sorted(Nil)

⇝ and(all le(x,Nil), sorted(Nil)) =Bool sorted(Nil)

⇝ and(True, sorted(Nil)) =Bool sorted(Nil)

⇝ sorted(Nil) =Bool sorted(Nil)

⇝ true
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Example: Soundness of insort, Step Case

• prove ∀x, xs. sorted(insort(x, xs)) =Bool sorted(xs) by induction on xs

• step case with IH ∀x. sorted(insort(x, ys)) =Bool sorted(ys):

sorted(insort(x,Cons(y, ys))) =Bool sorted(Cons(y, ys))

⇝ sorted(if(le(x, y),Cons(x,Cons(y, ys)),Cons(y, insort(x, ys)))) =Bool . . .

now perform case analysis on first argument of if
• case le(x, y), i.e., le(x, y) =Bool True

sorted(if(le(x, y),Cons(x,Cons(y, ys)),Cons(y, insort(x, ys)))) =Bool . . .

⇝ sorted(if(True,Cons(x,Cons(y, ys)),Cons(y, insort(x, ys)))) =Bool . . .

⇝ sorted(Cons(x,Cons(y, ys))) =Bool sorted(Cons(y, ys))

⇝ and(all le(x,Cons(y, ys)), sorted(Cons(y, ys))) =Bool sorted(Cons(y, ys))

the key to resolve this final formula is the following auxiliary property

∀⃗ le(x, y) −→ sorted(Cons(y, zs)) −→ all le(x,Cons(y, zs))

this property can be proved by induction on zs but it will require a transitivity property for le
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Example: Soundness of insort, Final Part
• prove ∀x, xs. sorted(insort(x, xs)) =Bool sorted(xs) by ind. on xs

• step case with IH ∀x. sorted(insort(x, ys)) =Bool sorted(ys):

sorted(insort(x,Cons(y, ys))) =Bool sorted(Cons(y, ys))

⇝ sorted(if(le(x, y),Cons(x,Cons(y, ys)),Cons(y, insort(x, ys)))) =Bool . . .

• case ¬le(x, y), i.e., le(x, y) =Bool False

sorted(if(le(x, y),Cons(x,Cons(y, ys)),Cons(y, insort(x, ys)))) =Bool . . .

⇝ sorted(if(False,Cons(x,Cons(y, ys)),Cons(y, insort(x, ys)))) =Bool . . .

⇝ sorted(Cons(y, insort(x, ys))) =Bool sorted(Cons(y, ys))

⇝ and(all le(y, insort(x, ys)), sorted(insort(x, ys))) =Bool sorted(Cons(y, ys))

⇝ and(all le(y, insort(x, ys)), sorted(ys)) =Bool sorted(Cons(y, ys))

⇝ and(all le(y, insort(x, ys)), sorted(ys)) =Bool and(all le(y, ys), sorted(ys))

at this point identify further required auxiliary properties
• ∀⃗ all le(y, insort(x, ys)) =Bool all le(y,Cons(x, ys))
• ∀⃗ le(x, y) =Bool False −→ le(y, x) =Bool True

these allow us to complete this case and hence the overall proof for sort
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Summary

• definition of several axioms (inference rules)
• all axioms are satisfied in standard model, so they are consistent

• equational properties can often conveniently be proved via induction and equational
reasoning via ⇝

• induction w.r.t. algorithm preferable whenever algorithms use more complex pattern
structure than ci(x1, . . . , xn) for all constructors ci
• when getting stuck with ⇝ try to detect suitable auxiliary property;
after proving it, add it to set of axioms for evaluation

• not every property can be expressed purely equational;
e.g., Boolean connectives are sometimes required

• specify properties of functional programs (e.g., sort) as functional programs (e.g., sorted)

• Demo05.thy: Isabelle formalization of all example proofs
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