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Inference Rules for the Standard Model Inference Rules for the Standard Model

Plan Notation — The Normal Form
° 0n|y consider well-defined functional programs, so that standard model is well-defined ® when speaking about —, we a|WayS consider some fixed well-defined functional program
¢ aim ® since every term has a unique normal form w.r.t. <, we can define a function
® derive theorems and inference rules L T(E, V) = T(2,V), which returns this normal form and write it in postfix notation:
which are valid in the standard model
® these can be used to formally reason about functional programs ¢ [ := the unique normal of ¢ w.r.t. <
as on slide 1/18 where associativity of append was proven
® examples ® using [, the meaning of symbols in the standard model can concisely be written as
® reasoning about constructors
° Vz,y. Succ(z) =na Succ(y) «— T =nat ¥ FM(ty, . . ty) = F(ty, ... tn) ]
® V. - Succ(z) =nat Zero
® getting defining equations of functional programs as theorems ® proof
® Yz, 1s,ys. append(Cons(x, 7s), ys) =List Cons(x, append(zs, ys)) ® universe of type 7 is T(C),, so t € T(C), implies t € NF (<)
® induction schemes o if FeC then FM(ty,. .. tn) & F(ty,... ty) = F(ts, ... tn) ]

p(Zero) Vz.p(x) — ¢(Succ(x))

. def
o Vz. p(z) ° if F €D, then FM(ty,...,t,) = F(t1,...,t,) ]
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Inference Rules for the Standard Model

The Substitution Lemma
® there are two possibilities to plug in objects into variables

® as assignment: o : V, — A,
result of [t], is an element of A,

® as substitution: ¢ : V. — T(%,V),
result of to is an element of T(X,V),

® substitution lemma: substitutions can be moved into assignment:

ltola = [115

where §(z) := [o(2)]a
® proof by structural induction on ¢
* [zo]a = [o(@)]a = B(x) = [+]s
[E(t1,. .. tn)o]a = [F(ti0,. .. t00)]a
= FM([t10]a;, - - -, [tno]a)

E FM([tads, -, Ttals)
= [F(tr, ..., tn)]s
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L. . . Inference Rules for the Standard Model
Defining Equations are Theorems in Standard Model
® notation: 9@ means that universal quantification ranges over all free variables that occur
in @
e example: if ¢ is append(Cons(z, zs), ys) =List Cons(z, append(xs, ys)) then ggp is

Y, zs, ys. append(Cons(z, z5), ys) =List Cons(x, append(zs, ys))
e theorem: if £ = r is defining equation of program (of type 7), then
MEVl=,r

® consequence: conversion of well-defined functional programs into equations is now
possible, cf. previous problem on slide 1/20
® proof of theorem
® by definition of = and =™ we have to show [(], = [r] for all

2
® via reverse substitution lemma this is equivalent to la [ = ra.[
® easily follows from confluence, since fa — ra
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Inference Rules for the Standard Model

Reverse Substitution Lemma in the Standard Model
® the substitution lemma holds independently of the model
® in case of the standard model, we have the special condition that A, = T(C);, so

® the universes consist of terms
® hence, each assignment a : V. — T(C). is a special kind of substitution
(constructor ground substitution)

® consequence: possibility to encode assignment as substitution
® reverse substitution lemma:
[t]e = taf
® proof by structural induction on ¢
°* [z]a = a(z) © a(z) [ = za [ where (%) holds, since a(z) € T(C)
’ [Ft, . ta)]a = FM([t1]as- - - [tala)
L rMtal,. . taal) = F(tial,.. . taal) ]
) Plta,. .. tea) = F(ty, ... ta)al

RT (DCS @ UIBK) Part 5 — Reasoning about Functional Programs 6/68

Inference Rules for the Standard Model

Axiomatic Reasoning

® previous slide already provides us with some theorems that are satisfied in standard model
® axiomatic reasoning:

take those theorems as axioms to show property ¢
® added axioms are theorems of standard model, so they are consistent
o example AX = {V/=,r|l=ris def. eqn.}
e show AX | ¢ using first-order reasoning in order to prove M = ¢

(and forget standard model M during the reasoning!)
® question: is it possible to prove every property ¢ in this way for which M = ¢ holds?
® answer for above example is “no”

® reason: there are models different than the standard model in which all axioms of AX are

satisfied, but where ¢ does not hold!
® example on next slide
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Inference Rules for the Standard Model

Axiomatic Reasoning — Problematic Model
® consider addition program, then example AX consists of two axioms

Vy.plus(Zero, y) =nat y
Vz,y. plus(Succ(x), y) =nat Succ(plus(z,y))

® we want to prove associativity of plus, so let ¢ be

Va,y, z. plus(plus(z,y), z) =nat plus(z, plus(y, z))
e consider the following model M’
* AN =NU{z+1i|zez}={..,-1},-1 0,1 1,11,2,2L, ..}
® ZeroM' =0
® Succ™'(n) =n+1
n+m, ifneNormeN
n—m+ %, otherwise
° :Nat'/\/1 = {(n,n) ‘ n e ANat}
° M' = NAX, but M’ [~ ¢: consider a(z) = L2, a(y) = 2,0(2) = 2
® problem: values in « do not correspond to constructor ground terms
RT (DCS @ UIBK)
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Inference Rules for the Standard Model
Axioms about Equality
® we define decomposition theorems and disjointness theorems in the form of logical
equivalences

® foreach c: 73 X ... x 1, = 7 € C we define its decomposition theorem as
Ve(ry,..ooxn) =r c(Yi, .., Yn) =21 =1 Y1 A .. ATy, =1, Un

and for all d: 7 x ... x 7, = 7 € C with ¢ # d we define the disjointness theorem as

—

Ve(ar, ..o an) =7 d(yi, ..., yr) <— false

® proof of validity of decomposition theorem:
MEq, (1, mn) = (Y15 Yn)
iff cla(zr),...,a(zn)) = cla(yr), ..., alyn))
iff a(z1) =a(y1) and ...and a(z,) = a(yn)
iff Mg 21 =r y1and...and M =, z, =, Yn
iff M ':a 1 =n Y1 VANANY ;7% =7, Yn
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Inference Rules for the Standard Model

Godel’s Incompleteness Theorem

® taking AX as set of defining equations does not suffice to deduce all valid theorems of
standard model

® obvious approach: add more theorems to axioms AX
(theorems about =7, induction rules, ...)

® question: is it then possible to deduce all valid theorems of standard model?
® negative answer by Godel's First Incompleteness Theorem

® theorem: consider a well-defined functional program that includes addition and
multiplication of natural numbers;
let AX be a decidable set of valid theorems in the standard model;
then there is a formula ¢ such that M = ¢, but AX ¥ ¢

® note: adding ¢ to AX does not fix the problem, since then there is another formula ¢’
such that M = ¢' and AX U {¢} [~ ¢’

® consequence: “proving ¢ via AX = " is sound, but never complete

® upcoming: add more axioms than just defining equations,
so that still several proofs are possible
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Inference Rules for the Standard Model

Axioms about Equality — Example

® for the datatypes of natural numbers and lists we get the following axioms

Zero =gt Zero <— true
YV, y. Succ(x) =nat Succ(y) $— & =Nat ¥
Nil =(jst Nil +— true
Ve, xs,y, ys. Cons(x, zs) =List Cons(y, ys) +— & =Nat Y A TS =List YS

Vy. Zero =g, Succ(y) +— false
V. Succ(z) =nat Zero «— false
Yy, ys. Nil =Ls; Cons(y, ys) +— false
Va, zs. Cons(z, zs) =List Nil «— false
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Inference Rules for the Standard Model

Induction Theorems
® current axioms are not even strong enough to prove simple theorems, e.g.,
V. plus(x, Zero) =nat @
® problem: proofs by induction are not yet covered in axioms

® since the principle of induction cannot be defined in general in a single first-order formula,
we will add infinitely many induction theorems to the set of axioms, one for each property

® not a problem, since set of axioms stays decidable, i.e., one can see whether some
tentative formula is an element of the axiom set or not
® example: induction over natural numbers
® formula below is general, but not first-order as it quantifies over ¢

Vo(z : Nat). p(Zero) — (V. p(z) — ¢(Succ(z))) — Va. p(z)

® quantification can be done on meta-level instead:
let © be an arbitrary formula with a free variable of type Nat; then

p(Zero) — (Vz. p(z) — ¢(Succ(z))) — V. p(x)

is a valid theorem; quantifying over ¢ results in induction scheme
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Inference Rules for the Standard Model

Preparing Induction Theorems — Substitutions in Formulas

® current situation

® substitutions are functions of type ¥V — T (X, V)
® lifted to functions of type 7(X,V) — T (X, V), cf. slide 3/22
® substitution of variables of formulas is not yet defined, but is required for induction formulas,
cf. notation ¢(z) — ¢(Succ(z)) on previous slide
e formal definition of applying a substitution ¢ to formulas
® trueo = true
* (mp)o = ~(go)
* (pAY)o = o Ao
® P(ty,...,tn)o0 = P(t10,...,t,0)
if x does not occur in o, i.e., o(z) = x and & ¢ Vars(o(y))

for all y # =
if © occurs in o where

(V. p)o = V. (po)

(V. p)o = (Vy. elz/yl)o
® y is a fresh variable, i.e., o(y) =y, y & Vars(o(z)) for all z # y, and y is not a free variable of
©
® [z/y] is the substitution which just replaces = by y
® effect is a-renaming: just rename universally quantified variable before substitution to avoid
variable capture
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Inference Rules for the Standard Model

Induction Theorems — Example Instances
® induction scheme

w(Zero) — (Vz. p(x) — ¢(Succ(x))) — V. o(x)

e example: right-neutral element: ¢(x) := plus(x, Zero) =nat @

plus(Zero, Zero) =nat Zero
— (Vz. plus(z, Zero) =nat £ — plus(Succ(z), Zero) =nat Succ(z))
— V. plus(z, Zero) =gt ©

® example with quantifiers and free variables:
¢(x) := Vy.plus(plus(z, y), z) =nat plus(z, plus(y, 2))

Vy. plus(plus(Zero, y), 2) =Nat plus(Zero, plus(y, 2))
— (V. (Vy. plus(plus(x, y), z) =nat plus(z, plus(y, 2)))

— (Vy. plus(plus(Succ(z), y), 2) =nat plus(Succ(z), plus(y, 2))))
— V. Vy. plus(plus(z, v), =) =nat plus(z, plus(y, z))
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Inference Rules for the Standard Model

Examples
® substitution of formulas
® (Vx.p)o = V. (po)
* (Va.p)o = (Vy. plz/y])o
® example substitution applications

if x does not occur in o
if  occurs in o where y is fresh

® p:=Vr.ox =Na ¥y
® ply/Zero] = V.- x =nat Zero
® o[y/Succ(z)] = Va. —x =Nat Succ(z)
® oly/Succ(z)] = Vz. 72 =nat Succ(z)
without renaming meaning will change: Vz. -z =yat Succ(x)
* plr/Succ(y)] = V2. 22 =nar y
without renaming meaning will change: V.- Succ(y) =nat ¥

no renaming required
no renaming required
renaming [z/z] required
renaming [x/z] required
® example theorems involving substitutions
plz/Zero] — (Vy.plx/y] — ¢lz/Succ(y)]) — V. ¢
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Inference Rules for the Standard Model

Substitution Lemma for Formulas

® example induction formula
plz/Zero] — (Vy. p[z/y] — wlx/Succ(y)]) — Vz. ¢

e proving validity of this formula (in standard model) requires another substitution lemma
about substitutions in formulas
® lemma: M |=, o iff M |=5 ¢ where 8(z) := [o(2)]a
® proof by structural induction on ¢ for arbitrary o and o
° M |:o< P(tl,‘..,tn)(f
iff M = P(ti0,...,t,0)
iff ([t10]as- - -, [tnola) € PM
iff ([t1lgs-- -, [tals) € PM
iff M =5 P(ty,. ... tn)
where we use the substitution lemma of slide 5 to conclude [t;0], = [t:]3
* M=, (mp)o iff M=o —(po) iff M o o
iff M g o (by IH) iff M =4 —p
® cases “true” and conjunction are proved in same way as negation
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Inference Rules for the Standard Model

Substitution Lemma in Standard Model
e substitution lemma: M =4 ¢o iff M |=5 ¢ where 8(z) := [o(2)]a

® |emma is valid for all models

in standard model, substitution lemma permits to characterize universal quantification by
substitutions, similar to reverse substitution lemma on slide 6
lemma: let z: 7 € V, let M be the standard model

1. M =y ¢ iff M =4 pln/t]

2. M=o Vo @ iff M =4 ¢[z/t] for all t € T(C),
® proof
1. first note that the usage of afz := t] implies t € A, = T(C),;

by the substitution lemma obtain

M Ea plz/t]

iff M =5 ¢ for B(2) = [[2/t](2)]a = alz := [t]](2)

iff M ':a[z::t] 14

2. immediate by part 1 of lemma

([tla = t, since t € T(C))
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Inference Rules for the Standard Model

Substitution Lemma for Formulas — Proof Continued

® lemma: M =, o iff M [=g ¢ where 8(z) := [o(2)]a
® proof by structural induction on ¢ for arbitrary o and o

® for quantification we here only consider the more complex case where renaming is required
* Ml=q (Va.p)o
iff M=o (Vy. @[z/y])o for fresh y
iff M=o Vy. (¢[z/ylo)
iff M [=qjy:=q) plr/ylo foralla c A
iff M =g @ for all a € A where 8'(z2) := [([z/y]o)(2)]afy:=a) (by IH)
iff M |=g[3:=q) ¢ foralla € A only non-automatic step
iff M =g Vz. @
® equivalence of 3’ and [z := a] on variables of ¢

* B(2) = [([z/v]o)(@)]aw:=a) = [0¥)]ay=a] = [W]aty:=a) = @ and Blz := a](z) = a
® 2z is variable of ¢, z # x:

by freshness condition conclude z # y and y ¢ Vars(o(z)); hence

B,(Z) = H([x/y}a)(z)]]a[y::a] = HU(Z)](X[y::rL] = [[U(Z)]]a and

Bz = al(z) = B(2) = [o(=)]a
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Inference Rules for the Standard Model

Substitution Lemma and Induction Formulas
® substitution lemma (SL) is crucial result to lift structural
induction rule of universe 7(C); to a structural induction formula
® example: structural induction formula 1 for lists with fresh x, zs
¥ 1= @lys/Nil] — (Va, zs. o[ys/xs] — ¢[ys/Cons(z, x5)]) — Vys. ¢
Y 5

e proof of M =, :
assume premises 1 (M =, ¢[ys/Nil]) and 2 and show M =, Vys. ¢:

by SL the latter is equivalent to "M =, ¢[ys//] for all £ € T(C)List";
prove this statement by structural induction on lists

® Nil: showing M =, ¢[ys/Nil] is easy: it is exactly premise 1

® Cons(n,¢): use SL on premise 2 to conclude

M o (plys/zs| — plys/Cons(z, zs)])[x/n, s /]

hence M [Eq olys/t] — ©lys/Cons(n, £)]

and with IH M =, ¢[ys/{] conclude M =, ¢[ys/Cons(n, {)]
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Inference Rules for the Standard Model

Freshness of Variables
® example: structural induction formula for lists with fresh x, xs

elys/Nil] — (Vz, zs. @[ys/xzs] — ¢|ys/Cons(z, zs)]) — Vys. ¢
® why freshness required? isn't name of quantified variables irrelevant?

® problem: substitution is applied below quantifier!

® example: let us drop freshness condition and “prove” non-theorem
M =V, zs, ys. ys =List Nil V ys = Cons(z, zs)

® by semantics of Vz, zs. . .. it suffices to prove

M =q Vys. ys =Lt Nil V ys =15t Cons(z, xs)

7]
® apply above induction formula and obtain two subgoals M =, ... for
® [ys/Nil] which is Nil =it Nil V Nil =Lt Cons(z, zs)
® Vx,zs. plys/zs] — plys/Cons(z, zs)] which is
Ve, xs. ... — Cons(x, zs) =it Nil V Cons(x, zs) =List Cons(z, zs)

® solution: rename variables in induction formula whenever required
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Inference Rules for the Standard Model

Proof of Structural Induction Formula

* to prove: M =V (¢1 — ... — o, — V. )

V-intro: M |Eq (o1 — ... — ¢, — V. ) for arbitrary «
® —-intro: assume M =, ; for all ¢ and show M =, V. p
® V-intro via SL: show M |=, ¢[z/t] for all t € T(C)-

® prove this by structural induction on ¢ w.r.t. induction rule of 7(C),
(for precisely this «, not for arbitrary )
® induction step for each constructor ¢; : 751 X ... X Tym;, = T

® aim: M, pla/ei(ty, ... tm,)]
® use assumption M =, ¢;, i.e.,

Mo Ve, o T, ( /\ olz/z;]) — pla/ci(z1, ..., Tm,)]

IH: M =4 @lz/t;] for all j such that 7, ; =7
(here important: same «)

JyTij =T
® use SL as V-elimination with substitution [z1/t1,. .., Zm, /tm,], obtain
Mo (N ela/ty]) — ele/eiltis. . tn,)]
JiTi =T

® combination with IH yields desired M =4 ¢[z/c;(t1,. .. tm,)]
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Inference Rules for the Standard Model

Structural Induction Formula

e finally definition of induction formula for data structures is possible

® consider dataT=¢1:711 X... X Ty —7T
| ntTn1 X oo X Tnmy, — T
® let x € V;, let ¢ be a formula, let variables =, x5,... be fresh w.r.t. ¢

e for each ¢; define

)
Il

/\ plz/x;]

JiTi,j=T

i = VT, T, — pla/ei(zr, ... Tm,)]

IH for recursive arguments

* the induction formula is V (p1 — ... —> o — V. )

theorem: M |= v (p1 — ... — @ — V2. @)
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Inference Rules for the Standard Model
Summary: Axiomatic Proofs of Functional Programs

® given a well-defined functional program, define a set of axioms AX consisting of

® equations of defined symbols (slide 7)
® axioms about equality of constructors (slide 11)
® structural induction formulas (slide 22)

® instead of proving M = ¢ deduce AX = ¢

e fact: standard model is ignored in previous step

® question: why all these efforts and not just state AX?
® reason:

having proven M = 1) for all ¢ € AX
implies that AX is consistent!
® recall: already just converting functional program equations naively into theorems led to
proof of 0 =1 on slide 1/20, i.e., inconsistent axioms,
and AX now contains more complex axioms than just equalities
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Example: Attempt to Prove Associativity of Append via AX

® task: prove associativity of append via natural deduction and AX
® define ¢ := append(append(zs, ys), zs) =List append(zs, append(ys, zs))

1. show Vzs, ys, zs. ¢

2. V-intro: show ¢ where now zs, ys, zs are fresh variables

3. to this end prove intermediate goal: Vzs. ¢

4. applying induction axiom @[zs/Nil] — (Vu, us. @[zs/us] — p[zs/Cons(u, us)]) — Vas. ¢
in combination with modus ponens yields two subgoals, one of them is p[zs/Nil], i.e.,
append(append(Nil, ys), zs) =List append(Nil, append(ys, zs))
use axiom Vys. append(Nil, ys) =List ys
V-elim: append(Nil, append(ys, zs)) =List append(ys, zs)
7. at this point we would like to simplify the rhs in the goal to obtain obligation

append(append(Nil, ys), zs) =List append(ys, 2s)
8. this is not possible at this point: there are missing axioms
® —|; is an equivalence relation

® —i; is a congruence; required to simplify the Ihs append(, zs) at -
[ ]

oo

® next step: reconsider the reasoning engine and the available axioms
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Equational Reasoning and Induction

Reasoning about Functional Programs: Current State

® given well-defined functional program, extract set of axioms AX that are satisfied in
standard model M
® equations of defined symbols
® equivalences regarding equality of constructors
® structural induction formulas
e for proving property M = ¢ it suffices to show AX | ¢
problems: reasoning via natural deduction quite cumbersome

® explicit introduction and elimination of quantifiers
® no direct support for equational reasoning

® aim: equational reasoning
® implicit transitivity reasoning: from a =, b =, ¢ =, d conclude a =, d
® equational reasoning in contexts: from a =, b conclude f(a) =,/ f(b)

® in general: want some calculus I such that - ¢ implies M = ¢
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Equational Reasoning and Induction

Equational Reasoning with Universally Quantified Formulas

® for now let us restrict to universally quantified formulas

® we can formulate properties like
® Vzs. reverse(reverse(xs)) =pist L8
® Vs, ys. reverse(append(zs, ys)) =List append(reverse(ys), reverse(zs))
® Yz, y. plus(z,y) =nat plus(y, x)

but not

® V. Jy. greater(y, x) =gool True

® universally quantified axioms
® equations of defined symbols

® Vy. plus(Zero,y) =nat ¥
® Vz,y. plus(Succ(z),y) =nat Succ(plus(z,y))

L]
® axioms about equality of constructors
® Vz,y. Succ(x) =nat Succ(y) +— = =nat Y

® Vz. Succ(z) =nat Zero «— false
[ ]

® but not: structural induction formulas
* ¢ly/Zero] — (Va. ply/x] — ¢ly/Succ(z)]) — Vy. ¢
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Equational Reasoning and Induction
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Equational Reasoning and Induction

Equational Reasoning in Formulas
® so far: < ¢ replaces terms by terms using equations £ of program
® upcoming: ~- to simplify formulas using universally quantified axioms
e formal definition: let AX be a set of axioms; then ~~ 4 x is defined as

true A ¢ ~ax @ @ Atrue ~>ax @ false A ¢ ~» 4 x false

—true ~» 4 x false
Ve = reAX t —{e=r} t/

SZTtWAXSZTt/

—false ~~ 4 x true

Vi=,rcAX s (=} &'

SZTtWAXSI:Tt

V(l=rr+—p) e AX
lo =; 10 ~»Ax YO

t =,1t~ax true
W~ ax Y
A~ ax o NP

o ~ax ¢
=@~ ax @

@ ~ax ¢
CAY ~ax @AY

consisting of Boolean simplifications, equations, equivalences and congruences;
often subscript AX is dropped in ~>4x when clear from context

RT (DCS @ UIBK) Part 5 — Reasoning about Functional Programs 29/68

Equational Reasoning and Induction

Proving Soundness of ~~: ¢ ~ ¢ implies M =, ¢ +— ¢
by induction on ~~ for arbitrary «
o~
e case p AP~ @ A
® |H: M =, ¢ «— ¢ for arbitrary «
® conclude M =, o A9
iff M=o p and M =4 ¢
iff M =4 ¢’ and M =, ¢ (by IH)
iff M o o A
® intotal M, oA +— @ A

® all other cases for Boolean simplifications and congruences are similar
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Equational Reasoning and Induction
Soundness of Equational Reasoning

® we show that whenever AX is valid in the standard model M, then
® o ~ax 1 implies M =, ¢ +— o for all
® so in particular M EVp +— ¢

® immediate consequence: ¢ ~~%  true implies M = 9,9
® define calculus: gg& if @ ~% 5 true

® example

plus(Zero, Zero) =ngt times(Zero, x)
~ Zero =g times(Zero, x)
~ Zero =pat Zero

~ true

and therefore M = V. plus(Zero, Zero) =pat times(Zero, x)
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Equational Reasoning and Induction

Proving Soundness of ~: ¢ ~ 1) implies M =, ¢ «— ¢

Q(E:TTH@)EAX
® case lo =; 10 ~ @O
® premise M = 9(6 =, 7+ ),
so in particular M =5 £ =, r <— ¢ for f(z) = [o(2)]a
® conclude M =, lo =; ro
ifF [ = [l (by SL)
iff M =5 ¢ (by premise)
iff M [=q @o (by SL)
® in total: M [z, lo =, 10 +— o
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Equational Reasoning and Induction

Proving Soundness of ~+: ¢ ~ 1) implies M =, p «— ¢

Vi=,reAX s (=} &

® case s=,t~8 =1
* premise M =V{ =, 7, and s = C[lo] and s’ = C[ro] where C is some context, i.e., term
with one hole which can be filled via []
® conclude [s]q
= [Clto]]a
= Cllo)a [ (by reverse SL)
= Calloa] [ = Calloa[] |

© Calroa ] [ = Calroal] [
= Clrolaf °
= [Clro]]a (by reverse SL)
[5']a
® reason for (*): premise implies

[41s = [r]s for 5(z) = [o(2)]a

hence [¢o]s = [ro]a (by SL),

and thus, loa [ = roa [ (by reverse SL)
® intotall M, s=,t+— s =t

RT (DCS @ UIBK) Part 5 — Reasoning about Functional Programs 33/68

. . Equational Reasoning and Induction
Limits of ~
® -~ only works with universally quantified properties
® defining equations
® equivalences to simplify equalities =,
[ ]
[ ]

RT (DCS @ UIBK)

Equational Reasoning and Induction

Comparing ~ with —
® < rewrites on terms whereas ~~ also simplifies Boolean connectives and uses axioms
about equality =,
® < uses defining equations of program whereas ~~ 4 x is parametrized by set of axioms

in particular proven properties like Vzs. reverse(reverse(zs)) =List 2s can be added to set of
axioms and then be used for ~~

this addition of new knowledge greatly improves power, but can destroy both termination
and confluence

example: adding Vzs. zs =5 reverse(reverse(zs)) to AX is bad idea

® heuristics or user input required to select subset of theorems that are used with ~~

new equations should be added in suitable direction

® obvious: Vzs. reverse(reverse(zs)) =vList Zs is intended direction
® direction sometimes not obvious for distributive laws

Ve, y, z. times(plus(z,y), z) =nat plus(times(z, z), times(y, z))
reason for left-to-right: more often applicable

reason for right-to-left: term gets smaller
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Equational Reasoning and Induction

Induction in Combination with Equational Reasoning

newly derived properties such as Vzs. reverse(reverse(zs)) =ist T$ ® aim: prove equality Ve=,r
~- can not deal with induction axioms such as the one for associativity of append (app) e approach:
(Vys, zs. app(app(Nil, ys), zs) =tist app(Nil, app(ys, z5))) ® select induction variable z o
® reorder quantifiers such that V¢ =, r is written as Vz.¢
— (Vo 2s.(Vys, z5. app(app(es, ys), 25) =vist 2PP(23,2PP(ys, 25))) — ® build induction formula w.r.t. slide 22
(Vys, zs. app(app(Cons(z, zs), ys), zs) =List app(Cons(z, zs), app(ys, 25))))
— (Vs, ys, zs. app(app(zs, ys), zs) =List app(zs, app(ys, 2s))) 1= ... o — VX
(no outer universal quantifier, since by construction above formula has no free variables)
°

® in particular, ~» often cannot perform any simplification without induction proving

app(app(@s, ys), zs) =List apP(s, app(ys, 25)))
cannot be simplified by ~> using the existing axioms
RT (DCS @ UIBK)
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try to prove each ¢; via ~~
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Equational Reasoning and Induction

Example: Associativity of Append

® aim: prove equality Vas, ys, zs. app(app(zs, ys), zs) =List app(zs, app(ys, zs))
® approach:

® select induction variable s

® reordering of quantifiers not required

® the induction formula is presented on slide 35

® pris

Vys, zs. app(app(Nil, ys), zs) =vist app(Nil, app(ys, zs))
so we simply evaluate
app(app(Nil, ys), zs) =i app(Nil, app(ys, zs))
~ app(ys, 25) =List app(Nil, app(ys, zs))

~= app(ys, zs) =List apP(ys, 25)
~~ true
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Equational Reasoning and Induction

Integrating IHs into Equational Reasoning

® recall structure of induction formula for formula ¢ and constructor ¢;:

/\ olz/x;]

JiTi =T

— pla/ei(zr, .., Tm,)]

IHs for recursive arguments

® idea: for proving ; try to show p[x/ci(x1,...,Tm,)] by evaluating it to true via ~,
where each IH ¢[z/z;] is added as equality
® append-example
® aim:
app(app(Cons(z, zs), ys), zs) =List app(Cons(z, zs), app(ys, zs)) ~" true
® add IH Vys, zs. app(app(zs, ys), 28) =List app(xs,app(ys, zs)) to axioms
® problem IH p[x/x;] is not universally quantified equation, since variable z; is free
(in append example, this would be zs)
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Equational Reasoning and Induction

Example: Associativity of Append, Continued
® proving Vs, ys, zs. app(app(zs, ys), z5) =List app(zs, app(ys, 25))
® approach: ...

° i
@2 is
Va, xs.(Vys, zs. app(app(zs, ys), 28) =List app(xs, app(ys, 25))) —

(Vys, zs. app(app(Cons(x, zs), ys), z) —Li: app(Cons(, zs), app(ys, 5)))

so we try to prove the rhs of — via ~»

app(app(Cons(z, z5), ys), zs) =vist app(Cons(, zs), app(ys, 25))
~ app(Cons(z, app(zs, ys)), zs) =List app(Cons(x, xs), app(ys, 25))
~ Cons(z, app(app(zs, ys), zs)) =List app(Cons(x, xs), app(ys, 25))
~> Cons(z, app(app(zs, ys), z5)) =Lis: Cons(z,app(s, app(ys, 25)))
~ & =Nat A app(app(s, ys), zs) =vist app(xs, app(ys, 2s))
~ true A app(app(zs, ys), zs) =List app(xs, app(ys, zs))
~+ app(app(zs, ys), zs) =List app(zs, app(ys, 25))
# true
® problem: we get stuck, since currently IH is unused
RT (DCS @ UIBK) Part 5 — Reasoning about Functional Programs 38/68

Equational Reasoning and Induction
Integrating IHs into Equational Reasoning, Continued
® to solve problem, extend ~~ to allow evaluation with equations that contain free variables
® add two new inference rules

Vi l=,reAX s —{e=r} s’ Vi l=rreAX t =0} v

SZTtWAXsl:Tt SITtWAXSZTtl

where in both inference rules, only the variables of Z may be instantiated in the equation
£ = r when simplifying with <; so the chosen substitution o must satisfy o(y) = y for
ally ¢ &

® the swap of direction, i.e., the = £ in the second rule is intended and a heuristic

® either apply the IH on some lhs of an equality from left-to-right
® or apply the IH on some rhs of an equality from right-to-left

in both cases, an application will make both sides on the equality more equal
® another heuristic is to apply each IH only once
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Equational Reasoning and Induction

Example: Associativity of Append, Continued
® proving Vs, ys, zs. app(app(zs, ys), zs) =List app(zs, app(ys, 25))
® approach: ...
® s Ve, zs.(Vys, zs. app(app(zs, ys), zs) =List app(zs,app(ys, zs))) —
(Vys, zs. app(app(Cons(z, zs), ys), zs) =List app(Cons(x, zs), app(ys, 2s)))

so we try to prove the rhs of — via ~» and add

Vys, zs. app(app(zs, ys), 2s) =List app(zs, app(ys, 25))

to the set of axioms (only for the proof of (2); then

app(app(Cons(x, z5), ys), 2s) =List app(Cons(x, zs), app(ys, 25))
~" app(app(zs, ys), 2s) =List app(zs, app(ys, 25))
~~ app(zs, app(ys, z5)) =List app(zs, app(ys, zs))
~~ true

here it is important to apply the IH only once, otherwise one would get

app(zs,app(ys, zs)) =List app(app(zs, ys), zs)
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Equational Reasoning and Induction

Soundness of Partially Quantified Equation Application
Vi A =rr€AX sy s

® case S=,t~ 8 =1
® premise is M =, VZ. 0=, 1
and s = C[lo] and s’ = C[ro] as before
® conclude [s]o = [s'] as on slide 33 as main step to derive M |5y s =, t +— s’ =, t
® only change is how to obtain [(]z = [r]s for 5(z) = [o(z)]a
® new proof

with o(y) =y for all y ¢ &
(and not M =V 0=, )

® letZ=ux1,...,7k

® premise implies [(]a(or:=ay,....0p:=ar] = ["]afe1:=a1,...,0x:=ax] fOF arbitrary a;, so in particular
for a; = [o(xi)]a

® it now suffices to prove that afz1 :=as,..., 2k = ax] =

® consider two cases
for variables z; we have

alzy = a1, ..., xk = ag)(xi) = a; = [o(xi)]o = B(zs)
® for all other variables y ¢ ¥ we have

afer = ay, .. zk= a](y) = ay) = [W]a = [0(W)]a = B(y)
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Equational Reasoning and Induction

Integrating IHs into Equational Reasoning, Soundness

® aim: prove M = ; for
pi=V \v; — v
J

——
IHs

where we assume that ¥ ~~* true with the additional local axioms of the IHs );
® hence show M =, ¢ under the assumptions M |=, 9; for all IHs ¢);
® by existing soundness proof of ~» we can nearly conclude M |=, ¢ from ¢ ~~* true

® only gap: proof needs to cover new inference rules on slide 40
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Equational Reasoning and Induction

Summary
e framework for inductive proofs combined with equational reasoning
® apply induction first

® then prove each case V A 1); — 1) via evaluation 1 ~»* true where IHs v; become local
axioms

e free variables in IHs (induction variables) may not be instantiated by ~-, all the other
variables may be instantiated (“arbitrary” variables)

® heuristic: apply IHs only once

® upcoming: positive and negative examples, guidelines, extensions
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Commutativity of Addition

® program

Examples, Guidelines, and Extensions

Examples, Guidelines, and Extensions

plus(Succ(z), y) = Succ(plus(z, y))
plus(Zero,y) =y
formula -
Vplus(z,y) =nat plus(y, z)
let us try induction on =

base case already gets stuck

plus(Zero, y) =nat plus(y, Zero)
~ Yy =pat plus(y, Zero)

final result suggests required lemma: Zero is also right neutral
V. plus(x, Zero) =nat © can be proven with our approach

then this lemma can be added to AX and base case of commutativity-proof can be
completed
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Examples, Guidelines, and Extensions

Associativity of Append

® program
app(Cons(z, zs), ys) = Cons(z, app(zs, ys))

app(Nil, ys) = ys

e formula ~
Vapp(app(zs, ys), 2s) =List app(zs, app(ys, 2s))

® induction on xs works successfully
® what about induction on ys (or zs)?
® base case already gets stuck

app(app(s, Nil), zs) =List app(zs, app(Nil, zs))

~> app(app(as, Nil), zs) =vist app(as, 2s)
® problem: ys is argument on second position of append,
whereas case analysis in lhs of append happens on first argument

® guideline: select variables such that case analysis triggers evaluation
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Examples, Guidelines, and Extensions

Right-Zero of Addition

® program
plus(Succ(z),y) = Succ(plus(z,y))

plus(Zero,y) =y

e formula .
V plus(x, Zero) =nat @
® only one possible induction variable: x

® base case:

plus(Zero, Zero) =nat Zero ~> Zero =y,¢ Zero ~- true

® step case adds IH plus(x, Zero) =nat « as axiom and we get
plus(Succ(z), Zero) =nat Succ(z)
~ Succ(plus(z, Zero)) =Nat Succ(z)
~ Succ(x) =Nat Succ(z)

~> true
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Examples, Guidelines, and Extensions
Commutativity of Addition
e formula

Vplus(z, y) =nat plus(y, )
® step case adds IH Vy. plus(z,y) =nat plus(y, ) to axioms and we get
plus(Succ(z), y) =nat plus(y, Succ(z))

~ Succ(plus(z,y)) =nat plus(y, Succ(zx))
~~ Succ(plus(y, 2)) =nat plus(y, Succ(z))

final result suggests required lemma: Succ on second argument can be moved outside

Va,y. plus(z, Succ(y)) =nat Succ(plus(z,y)) can be proven with our approach
(induction on x)

then this lemma can be added to AX and commutativity-proof can be completed

RT (DCS @ UIBK) Part 5 — Reasoning about Functional Programs 49/68

Examples, Guidelines, and Extensions

Generalizations Required
e for induction for the following formula there is only one choice: zs

Vas. r(zs, Nil) =|js rev(zs)

® step-case gets stuck
r(Cons(z, zs), Nil) =(ist rev(Cons(z, zs))
~* r(zs, Cons(z, Nil)) =(ist app(rev(zs), Cons(z, Nil))
~> r(zs, Cons(x, Nil)) =List app(r(zs, Nil), Cons(z, Nil))

problem: the second argument Nil of r in formula is too specific
® solution: generalize formula by replacing constants by variables

® naive replacement does not work, since it does not hold
Vs, ys. r(zs, ys) =List rev(ws)
® creativity required
Vas, ys. r(zs, ys) =List app(rev(zs), ys)
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Examples, Guidelines, and Extensions

Fast Implementation of Reversal

® program
app(Cons(z, zs), ys) = Cons(z, app(zs, ys))

app(Nil, ys) = ys
rev(Cons(x, zs)) = app(rev(zs), Cons(z, Nil))

rev(Nil) = Nil
r(Cons(z, zs), ys) = r(zs, Cons(z, ys))
r(Nil, ys) = ys

rev_fast(zs) = r(xs, Nil)

® aim: show that both implementations of reverse are equivalent, so that the naive
implementation can be replaced by the faster one

Vzs. rev_fast(zs) =g rev(zs)

® applying ~ first yields desired lemma
Vzs. r(zs, Nil) =(is rev(zs)
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Examples, Guidelines, and Extensions

Fast Implementation of Reversal, Continued

® proving main formula by induction on zs, since recursion is on zs
Vs, ys. r(zs, ys) =List app(rev(zs), ys)
® base-case ) )
r(Nil, ys) =List app(rev(Nil), ys)
~* s =|ist Ys ~ true

® step-case solved with associativity of append and IH added to axioms
r(Cons(z, zs), ys) =List app(rev(Cons(z, zs)), ys)
~ r(zs, Cons(z, ys)) =List app(rev(Cons(z, zs)), ys)
,ys)) =List app(rev(Cons(z, zs)), ys)
z,ys)) =List app(app(rev(xs), Cons(z, Nil)), ys)
,ys)) =List app(rev(zs), app(Cons(z, Nil), ys))
x,ys)) =List app(rev(xs), Cons(x, app(Nil, ys)))

~~ app(rev(zs), Cons(z, ys)) =List app(rev(ws), Cons(x, ys)) ~> true

Part 5 — Reasoning about Functional Programs 52/68

~~ app(rev(zs), Cons
~ app(rev(zs), Cons

~~ app(rev(zs), Cons

A~ N~

(
(

~ app(rev(zs), Cons
(
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Fast Implementation of Reversal, Finalized
® now add main formula to axioms, so that it can be used by ~~

Vs, ys. r(zs, ys) =List app(rev(xs), ys)
® then for our initial aim we get

rev_fast(zs) =pist rev(zs)
~ r(ws, Nil) =g rev(zs)

~ app(rev(zs), Nil) =|js rev(zs)
® at this point one easily identifies a missing property
Vas. app(zs, Nil) =| s @s

which is proven by induction on zs in combination with ~

® afterwards it is trivial to complete the equivalence proof of the two reversal

implementations
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Induction w.r.t. Algorithm

e induction w.r.t. algorithm was informally performed on slide 4/36

® select some n-ary function f
® each f-equation is turned into one case
® for each recursive f-call in rhs get one IH

® example: for algorithm

half(Zero) = Zero
half (Succ(Zero)) = Zero
half (Succ(Succ(z))) = Succ(half(z))

the induction rule for half is

ly/Zero]
— @[y/Succ(Zero)]

— (V. ly/z] — @|y/Succ(Suce(x))])
— Yy. ¢
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Examples, Guidelines, and Extensions
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Examples, Guidelines, and Extensions
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Another Problem
® consider the following program

half(Zero) = Zero
half (Succ(Zero)) = Zero
half (Succ(Succ(x))) = Succ(half(z))
le(Zero, y) = True
le(Succ(x), Zero) = False

)

le(Succ(z), Succ(y)) = le(z,y)

® and the desired property
V. le(half(z), ) =gool True

¢ induction on x will get stuck, since the step-case Succ(z) does not permit evaluation

w.r.t. half-equations

Examples, Guidelines, and Extensions

e better induction is desirable, namely rule that corresponds to algorithm definition (e.g. of

half) with cases that correspond to patterns in lhss
RT (DCS @ UIBK) Part 5 — Reasoning about Functional Programs
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Examples, Guidelines, and Extensions

Induction w.r.t. Algorithm
® induction w.r.t. algorithm formally defined

® let f be m-ary defined function within well-defined program
® let there be k defining equations for f
® let p be some formula which has exactly n free variables z1,...,z,
® then the induction rule for f is
Gind,f = WP1 —> ... —> Yp —> VI, .., Ty P
where for the i-th f-equation f({1,...,¢,) = r we define
P; =V /\ oler/r1, .y xn/ra] | — lz1/l, ...,
> f(r1,rn)

where V ranges over all variables in the equation
® properties

® M |= Qing,s; reason: pattern-completeness and termination (SN (< o >))

® heuristic: good idea to prove properties 94,0 about function f via ¢f ing

® reason: structure will always allow one evaluation step of f-invocation
RT (DCS @ UIBK) Part 5 — Reasoning about Functional Programs
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Examples, Guidelines, and Extensions

Back to Example

® consider program

half(Zero) = Zero

e for property

RT (DCS @ UIBK)

chose induction for half (and not for le), since half is inner function call; hopefully
evaluation of inner function calls will enable evaluation of outer function calls

V. le(half(z), ) =gool True

Part 5 — Reasoning about Functional Programs
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Examples, Guidelines, and Extensions

Equational Reasoning with Conditions

RT (DCS @ UIBK)

generalization: instead of pure equalities also support implications

simplifications with ~~ can happen on both sides of implication,
since ~ yields equivalent formulas

applying conditional equations triggers new proofs: preconditions must be satisfied
example:

® assume axioms contain conditional equality ¢ — ¢ =, r, e.g., from IH

® current goal is implication v — C[lo] =, ¢

® we would like to replace goal by ) — Clro] =, t

® but then we must ensure 1) — @0, e.g., via ) — pao ~* true

~~ must be extended to perform more Boolean reasoning

not done formally at this point

Part 5 — Reasoning about Functional Programs
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(Nearly) Completing the Proof
® applying induction for half on

V. le(half(z), ) =gool True

turns this problem into three new proof obligations
® le(half(Zero), Zero) =gool True
® le(half(Succ(Zero)), Succ(Zero)) =gool True
® le(half(Succ(Succ(z))), Succ(Succ(x))) =gool True
where le(half(z), ) =gool True can be assumed as |H

® the first two are easy, the third one works as follows

le(half (Succ(Succ(z))), Succ(Succ(x))) =gool True

® here there is another problem, namely that the IH is not applicable

~> le(Succ(half(x)), Succ(Succ(z))) =pool True

~ le(half(z), Succ(z)) =gool True

® problem solvable by proving an implication like
le(z,y) =Bool True — le(x, Succ(y)) =gool True;

uses equational reasoning with conditions; covered informally only

RT (DCS @ UIBK)
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Equational Reasoning with Conditions, Example

® property

le(z,y) =Bool True —> le(x, Succ(y)) =gool True

® apply induction on le

e first case

® second case
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le(Zero, y) =gool True — le(Zero, Succ(y)) =gool True

~ le(Zero, y) =gool True — True =pool True

~> le(Zero, y) =gool True — true

~> true
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le(Succ(z), Zero) =pool True — le(Succ(x), Succ(Zero)) =goo True

~~ False =pool True — le(Succ(z), Succ(Zero)) =gool True

~ false — le(Succ(z), Succ(Zero)) =gool True

~> true
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. . . P Examples, Guidelines, and Extensions
Equational Reasoning with Conditions, Example
® property

le(z,y) =Bool True — le(x, Succ(y)) =gool True
® third case has |H

le(z,y) =gool True — le(x, Succ(y)) =gool True

and we reason as follows

le(Suce(z), Succ(y)) =gool True — le(Succ(x), Succ(Succ(y))) =gool True
~ le(x, y) =Bool True — le(Succ(z), Succ(Succ(y))) =gool True
~ le(z,y) =Bool True — le(z, Succ(y)) =gool True
~ le(x, y) =Bool True — True =gool True
~ le(z, y) =Bool True —» true

~> true

® proof of property Vz. le(half(x), 2) =pgool True finished
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Expressing Properties

® solution: express properties via functional programs

sort(Cons(z, zs)) = insort(x, sort(zs))

algorithm above, properties for specification below

and(True,b) = b
and(False, b) = False
all_le(z, Nil) = True
all_le(z, Cons(y, ys)) = and(le(x, y), all_le(x, ys))
sorted(Nil) = True
sorted(Cons(z, zs)) = and(all_le(z, zs), sorted(zs))

® example properties (where b =pgoo| True is written just as b)

® sorted(insort(x, zs)) =gool sorted(zs)
® sorted(sort(zs))

® important: functional programs for specifications should be simple;
they must be readable for validation and need not be efficient
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Final Example: Insertion Sort

® consider insertion sort

le(Zero,y) = True
le(Succ(z), Zero) = False
le(Succ(z), Succ(y)) = le(z, y)
if (True, zs, ys) = xs
if(False, zs, ys) = ys
insort(z, Nil) = Cons(z, Nil)
insort(z, Cons(y, ys)) = if(le(z, y), Cons(x, Cons(y, ys)), Cons(y, insort(z, ys)))
sort(Nil) = Nil
)

sort(Cons(z, zs)) = insort(x, sort(zs))

aim: prove soundness, e.g., result is sorted

® problem: how to express “being sorted”?

® in general: how to express properties if certain primitives are not available?
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Example: Soundness of sort

Part 5 — Reasoning about Functional Programs

® already assume property of insort:

Y, xs. sorted(insort(x, xs)) =gool Sorted(ws)

speculative proofs are risky: conjectures might be wrong

® property Vzs. sorted(sort(zs)) is shown by induction on zs

® base case:

sorted(sort(Nil))
~ sorted (Nil)
~> True (recall: syntax omits =pgoo True)

~ true

® step case with IH sorted(sort(xs)):
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sorted(sort(Cons(z, xs)))
~~ sorted(insort(z, sort(zs)))
¢ sorted (sort(zs))

~ True
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Example: Soundness of insort

® prove Yz, zs. sorted(insort(z, zs)) =pgool sorted(zs) by induction on zs
® base case:
sorted(insort(x, Nil)) =pgoor sorted(Nil)
~= sorted(Cons(z, Nil)) =go0 sorted(Nil)
~ and(all_le(z, Nil), sorted(Nil)) =gool sorted(Nil)
~» and(True, sorted(Nil)) =gool sorted(Nil)
~= sorted(Nil) =gl sorted(Nil)

~> true
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Example: Soundness of insort, Final Part
® prove Yz, zs. sorted(insort(z, zs)) =pgool sorted(zs) by ind. on zs
® step case with IH Vz. sorted(insort(z, ys)) =pgool Sorted(ys):

sorted(insort(z, Cons(y, ¥s))) =gool sorted(Cons(y, ys))
~ sorted(if (le(z, y), Cons(z, Cons(y, ys)), Cons(y, insort(z, ¥s)))) =gool - - -

® case —le(x,y), i.e., le(z,y) =pool False

sorted(if (le(z, y), Cons(z, Cons(y, ys)), Cons(y, insort(x, ys)))) =sool - - -
~ sorted(if (False, Cons(z, Cons(y, ys)), Cons(y, insort(z, ys)))) =gool - - -
~ sorted(Cons(y, insort(x, ys))) =gool sorted(Cons(y, ys))
~ and(all_le(y, insort(z, ys)), sorted(insort(z, ys))) =gool sorted(Cons(y, ys))
~ and(all_le(y, insort(z, ys)), sorted(ys)) =gool sorted(Cons(y, ys))
~ and(all_le(y, insort(z, ys)), sorted(ys)) =goo and(all_le(y, ys), sorted(ys))

at this point identify further required auxiliary properties
® Vallle(y, insort(z, ys)) =gool all_le(y, Cons(z, ys))
° gle(z,y) =gool False — le(y, x) =gool True
these allow us to complete this case and hence the overall proof for sort
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Example: Soundness of insort, Step Case

® prove Vx, zs. sorted(insort(x, xs)) =pool sorted(zs) by induction on xs
® step case with IH Vz. sorted(insort(x, ys)) =pool sorted(ys):
sorted(insort(z, Cons(y, ¥s))) =gool sorted(Cons(y, ys))
~ sorted(if (le(z, y), Cons(z, Cons(y, ys)), Cons(y, insort(z, ¥s)))) =gool - - -
now perform case analysis on first argument of if
® case le(z,y), i.e., le(z,y) =pool True

sorted(if (le(z, y), Cons(z, Cons(y, ys)), Cons(y, insort(z, ys)))) =sool - - -
~> sorted(if (True, Cons(z, Cons(y, ys)), Cons(y, insort(x, ys)))) =gool - - -
~ sorted(Cons(z, Cons(y, ¥s))) =gool sorted(Cons(y, ys))
~+ and(all_le(z, Cons(y, ys)), sorted(Cons(y, ys))) =gool sorted(Cons(y, ys))

the key to resolve this final formula is the following auxiliary property
Vle(x,y) —> sorted(Cons(y, zs)) — all_le(z, Cons(y, 2s))

this property can be proved by induction on zs but it will require a transitivity property for le

RT (DCS @ UIBK) Part 5 — Reasoning about Functional Programs 66/68

Examples, Guidelines, and Extensions

Summary
e definition of several axioms (inference rules)
® all axioms are satisfied in standard model, so they are consistent

® equational properties can often conveniently be proved via induction and equational
reasoning via ~~

® induction w.r.t. algorithm preferable whenever algorithms use more complex pattern
structure than ¢;(z1,. .., z,) for all constructors ¢;

® when getting stuck with ~~ try to detect suitable auxiliary property;
after proving it, add it to set of axioms for evaluation

® not every property can be expressed purely equational;
e.g., Boolean connectives are sometimes required

e specify properties of functional programs (e.g., sort) as functional programs (e.g., sorted)

® Demo05.thy: Isabelle formalization of all example proofs
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