

Summer Term 2024

Program Verification

Part 6 – Verification of Imperative Programs

René Thiemann

Department of Computer Science

Imperative Programs

Imperative Programs

- we here consider a small imperative programming language
- it consists of
 - arithmetic expressions ${\mathcal A}$ over some set of variables ${\mathcal V}$

$$\frac{n \in \mathbb{Z}}{n \in \mathcal{A}} \qquad \qquad \frac{x \in \mathcal{V}}{x \in \mathcal{A}} \qquad \qquad \frac{\{e_1, e_2\} \subseteq \mathcal{A} \quad \odot \in \{+, -, *\}}{e_1 \odot e_2 \in \mathcal{A}}$$

• Boolean expressions ${\cal B}$

$$\begin{array}{l} \displaystyle \frac{c \in \{\texttt{true},\texttt{false}\}}{c \in \mathcal{B}} & \qquad \displaystyle \underbrace{\{e_1, e_2\} \subseteq \mathcal{A} \quad \odot \in \{\texttt{=},\texttt{<},\texttt{<=},\texttt{!=}\}}{e_1 \odot e_2 \in \mathcal{B}} \\ \\ \displaystyle \frac{b \in \mathcal{B}}{\texttt{!}b \in \mathcal{B}} & \qquad \displaystyle \underbrace{\{b_1, b_2\} \subseteq \mathcal{B} \quad \odot \in \{\texttt{kk}, \texttt{||}\}}{b_1 \odot b_2 \in \mathcal{B}} \end{array}$$

• commands ${\cal C}$

Commands and Programs

- \bullet commands ${\mathcal C}$ consist of
 - assignments

$$\frac{x \in \mathcal{V} \quad e \in \mathcal{A}}{x := e \in \mathcal{C}}$$

• if-then-else

$$\frac{b \in \mathcal{B} \quad \{C_1, C_2\} \subseteq \mathcal{C}}{\texttt{if } b \texttt{ then } C_1 \texttt{ else } C_2 \in \mathcal{C}}$$

sequential execution

$$\frac{\{C_1, C_2\} \subseteq \mathcal{C}}{C_1; C_2 \in \mathcal{C}}$$

while-loops

$$\frac{b \in \mathcal{B} \quad C \in \mathcal{C}}{\texttt{while } b \ \{C\} \in \mathcal{C}}$$

no-operation

$$\texttt{skip} \in \mathcal{C}$$

- curly braces are added for disambiguation, e.g. consider while x < 5 { x := x + 2 } ; y := y 1
- a program P is just a command C

RT (DCS @ UIBK)

Verification

- partial correctness predicate via Hoare-triples: $\models (|\varphi|) P(|\psi|)$
 - semantic notion
 - meaning: whenever initial state satisfies φ ,
 - and execution of P terminates,
 - then final state satisfies ψ
 - φ is called precondition, ψ is postcondition
 - here, formulas may range over program variables and logical variables
 - clearly, \models requires semantic of commands
- Hoare calculus: $\vdash (\! | \varphi |\!) P (\! | \psi |\!)$
 - syntactic calculus (similar to natural deduction)
 - sound: whenever $\vdash (|\varphi|) P (|\psi|)$ then $\models (|\varphi|) P (|\psi|)$

Semantics – Expressions

- state is evaluation $\alpha: \mathcal{V} \to \mathbb{Z}$
- · semantics of arithmetic and Boolean expressions are defined as
 - $\llbracket \cdot \rrbracket_{\alpha} : \mathcal{A} \to \mathbb{Z}$ e.g., if $\alpha(x) = 5$ then $\llbracket 6 * x + 1 \rrbracket_{\alpha} = 31$ • $\llbracket \cdot \rrbracket_{\alpha} : \mathcal{B} \to \{ \text{true, false} \}$ e.g., if $\alpha(x) = 5$ then $\llbracket 6 * x + 1 < 20 \rrbracket_{\alpha} = \text{false}$
- we omit the straight-forward recursive definitions of $[\![\cdot]\!]_{\alpha}$ here

Semantics – Commands

• semantics of commands is given via small-step-semantics defined as relation $\hookrightarrow \subseteq (\mathcal{C} \times (\mathcal{V} \to \mathbb{Z}))^2$

• (\texttt{skip}, α) is normal form

RT (DCS @ UIBK)

Part 6 - Verification of Imperative Programs

Semantics – **Programs**

• we can formally define \models ($|\varphi|$) $P(|\psi|)$ as

$$\forall \alpha, \beta. \; \alpha \models \varphi \longrightarrow (P, \alpha) \hookrightarrow^* (\mathtt{skip}, \beta) \longrightarrow \beta \models \psi$$

- example specification: $(|x > 0|) P (|y \cdot y < x|)$
 - if initially x > 0, after running the program P, the final values of x and y must satisfy $y \cdot y < x$
 - nothing is required if initially $x \leq 0$
 - nothing is required if program does not terminate
 - specification is satisfied by program P defined as
 y := 0
 - specification is satisfied by program ${\cal P}$ defined as

```
y := 0;
while (y * y < x) {
   y := y + 1
};
y := y - 1
```

Program Variables and Logical Variables

• consider program *Fact*

```
y := 1;
while (x != 0) {
   y := y * x;
   x := x - 1
}
```

- specification for factorial: does \models ($x \ge 0$) Fact (y = x!) hold?
 - if $\alpha(x) = 6$ and $(Fact, \alpha) \hookrightarrow^* (\text{skip}, \beta)$ then $\beta(y) = 720 = 6!$
 - problem: $\beta(x) = 0$, so y = x! does not hold for final values
 - hence $\not\models$ ($x \ge 0$)) Fact (y = x!), since specification is wrong
- solution: store initial values in logical variables
- in example: introduce logical variable x_0

$$\models (|x = x_0 \land x \ge 0|) Fact (|y = x_0!|)$$

via logical variables we can refer to initial values

RT (DCS @ UIBK)

Hoare Calculus

A Calculus for Program Verification

- aim: syntax directed calculus to reason about programs
- Hoare calculus separates reasoning on programs from logical reasoning (arithmetic, ...)
- present calculus as overview now, then explain single rules

$$\begin{array}{c} \vdash (\!\left|\varphi\right|\!\right) C_1 \left(\!\left|\eta\right|\!\right) \vdash (\!\left|\eta\right|\!\right) C_2 \left(\!\left|\psi\right|\!\right) \\ \hline \vdash (\!\left|\varphi\right|\!\right) C_1; C_2 \left(\!\left|\psi\right|\!\right) \\ \hline \vdash (\!\left|\varphi\right|\!\right) C_1; C_2 \left(\!\left|\psi\right|\!\right) \\ \hline \vdash (\!\left|\varphi\right|\!\right) C_1; C_2 \left(\!\left|\psi\right|\!\right) \\ \hline \vdash (\!\left|\varphi\right|\!\right) C_1 \left(\!\left|\psi\right|\!\right) \vdash (\!\left|\varphi\wedge\wedge\neg\!b\right|\!\right) C_2 \left(\!\left|\psi\right|\!\right) \\ \hline \vdash (\!\left|\varphi\right|\!\right) C_1 \left(\!\left|\psi\right|\!\right) \vdash (\!\left|\varphi\wedge\wedge\neg\!b\right|\!\right) C_2 \left(\!\left|\psi\right|\!\right) \\ \hline \vdash (\!\left|\varphi\right|\!\right) C_1 \left(\!\left|\psi\right|\!\right) \vdash (\!\left|\varphi\wedge\wedge\neg\!b\right|\!\right) C_2 \left(\!\left|\psi\right|\!\right) \\ \hline \vdash (\!\left|\varphi\right|\!\right) C_1 \left(\!\left|\psi\right|\!\right) \vdash (\!\left|\varphi\wedge\wedge\neg\!b\right|\!\right) C_2 \left(\!\left|\psi\right|\!\right) \\ \hline \vdash (\!\left|\varphi\right|\!\right) C_1 \left(\!\left|\psi\right|\!\right) \vdash (\!\left|\varphi\wedge\wedge\neg\!b\right|\!\right) C_2 \left(\!\left|\psi\right|\!\right) \\ \hline \vdash (\!\left|\varphi\right|\!\right) C_1 \left(\!\left|\varphi\right|\!\right) \\ \hline \vdash (\!\left|\varphi\right|\!\right) C_1 \left(\!\left|\psi\right|\!\right) \\ \hline \vdash (\!\left|\varphi\right|\!\right) \\ \hline \vdash (\!\left|\varphi\right|\!\right) \\ \hline \vdash (\!\left|\varphi\right|\!\right) C_1 \left(\!\left|\psi\right|\!\right) \\ \hline \vdash (\!\left|\varphi\right|\!\right) \\ \hline \vdash (\!\left|\varphi\right|\!\right)$$

• read rules bottom up: in order to get lower part, prove upper part RT (DCS @ UIBK) Part 6 - Verification of Imperative Programs

Composition Rule

$$\frac{\vdash (\!\!| \varphi |\!\!|) C_1 (\!\!| \eta |\!\!|) \vdash (\!\!| \eta |\!\!|) C_2 (\!\!| \psi |\!\!|)}{\vdash (\!\!| \varphi |\!\!|) C_1; C_2 (\!\!| \psi |\!\!|)} \text{ composition}$$

- applicability: whenever command is sequential composition $C_1; C_2$
- precondition is φ and aim is to show that ψ holds after execution
- rationale: find some midcondition η such that execution of C_1 guarantees η , which can then be used as precondition to conclude ψ after execution of C_2
- automation: finding suitable η is usually automatic, see later slides

Assignment Rule

$$\frac{}{\vdash \left(\!\left|\varphi[x/e]\right|\!\right)x := e\left(\!\left|\varphi\right|\!\right)} \text{ assignment}$$

- applicability: whenever command is an assignment x := e
- to prove φ after execution, show $\varphi[x/e]$ before execution
- substitution seems to be on wrong side
 - effect of assignment is substitution x/e, so shouldn't rule be $\vdash ([\varphi]) x := e ([\varphi[x/e]])$? No, this reversed rule would be wrong
 - assume before executing x := 5, the value of x is 6
 - before execution $\varphi = (x = 6)$ is satisfied, but after execution $\varphi[x/e] = (5 = 6)$ is not satisfied
- correct argumentation works as follows
 - if we want to ensure φ after the assignment then we need to ensure that the resulting situation ($\varphi[x/e]$) holds before
 - correct examples

•
$$\vdash (|2 = 2|) x := 2 (|x = 2|)$$

•
$$\vdash (2 = 4) x := 2 (x = 4)$$

•
$$\vdash (2 - y > 2^2) x := 2 (|x - y > x^2|)$$

• applying rule is easy when read from right to left: just substitute

RT (DCS @ UIBK)

If-Then-Else Rule

$$\frac{\vdash (\! \left[\varphi \land b \right] C_1 (\! \left[\psi \right] \!) \vdash (\! \left[\varphi \land \neg b \right] C_2 (\! \left[\psi \right] \!)}{\vdash (\! \left[\varphi \right] \!) \text{ if } b \text{ then } C_1 \text{ else } C_2 (\! \left[\psi \right] \!)} \text{ if then-else }$$

• applicability: whenever command is an if-then-else

• effect:

- the preconditions in the two branches are strengthened by adding the corresponding (negated) condition b of the if-then-else
- often the addition of b and $\neg b$ is crucial to be able to perform the proofs for the Hoare-triples of C_1 and C_2 , respectively
- rationale: if b is true in some state, then the execution will choose C_1 and we can add b as additional assumption; similar for other case
- applying rule is trivial from right to left

While Rule

$$\frac{\vdash (\! \left| \varphi \wedge b \right|\!) C (\! \left| \varphi \right|\!)}{\vdash (\! \left| \varphi \right|\!) \text{ while } b C (\! \left| \varphi \wedge \neg b \right|\!)} \text{ while }$$

- applicability: only rule that handles while-loop
- key ingredient: loop invariant φ
- rationale
 - φ is precondition, so in particular satisfied before loop execution
 - \vdash $(|\varphi \land b|) C (|\varphi|)$ ensures, that when entering the loop, φ will be satisfied after one execution of the loop body C
 - in total, φ will be satisfied after each loop iteration
 - hence, when leaving the loop, φ and $\neg b$ are satisfied
 - while-rule does not enforce termination, partial correctness!
- automation
 - not automatic, since usually φ is not provided and postcondition is not of form φ ∧ ¬b;
 example: ⊢ (|x = x₀ ∧ x ≥ 0|) Fact (|y = x₀!)
 - finding suitable φ is hard and needs user guidance

Implication Rule

$$\frac{\models \varphi \longrightarrow \varphi' \quad \vdash (\!\!| \varphi' \!\!|) C (\!\!| \psi' \!\!|) \quad \models \psi' \longrightarrow \psi}{\vdash (\!\!| \varphi \!\!|) C (\!\!| \psi \!\!|)} \text{ implication}$$

- applicability: every command; does not change command
- rationale: weakening precondition or strengthening postcondition is sound
- remarks
 - only rule which does not decompose commands
 - application relies on prover for underlying logic, i.e., one which can prove implications
 - three main applications
 - simplify conditions that arise from applying other rules in order to get more readable proofs, e.g., replace x+1=y-2 by x=y-3
 - prepare invariants, e.g., change postcondition from ψ to some formula ψ' of form $\chi \wedge \neg b$
 - core reasoning engine when closing proofs for while-loops in proof tableaux, see later slides

Hoare Calculus

Example Proof

$$\frac{\vdash ((y \cdot x) \cdot (x - 1)! = x_0! \land x - 1 \ge 0) y := y * x (y \cdot (x - 1)! = x_0! \land x - 1 \ge 0)}{\vdash (y \cdot x! = x_0! \land x \ge 0 \land x \ne 0) y := y * x (y \cdot (x - 1)! = x_0! \land x - 1 \ge 0)} prf_2} prf_2$$

$$\frac{\vdash (y \cdot x! = x_0! \land x \ge 0 \land x \ne 0) y := y * x; x := x - 1 (y \cdot x! = x_0! \land x \ge 0)}{\vdash (y \cdot x! = x_0! \land x \ge 0) \text{ while } x != 0 \{y := y * x; x := x - 1\} (y \cdot x! = x_0! \land x \ge 0)}$$

$$\frac{prf_1}{\vdash (x = x_0 \land x \ge 0) y := 1; \text{while } x != 0 \{y := y * x; x := x - 1\} (y = x_0!)}{\vdash (y = x_0!)}$$

where prf_1 is the following proof

$$\begin{array}{l} \vdash (|1 \cdot x| = x_0! \land x \ge 0|) \ \mathbf{y} \ := \ \mathbf{1} \ (|y \cdot x| = x_0! \land x \ge 0|) \\ \hline \vdash (|x = x_0 \land x \ge 0|) \ \mathbf{y} \ := \ \mathbf{1} \ (|y \cdot x| = x_0! \land x \ge 0|) \end{array}$$

and prf_2 is the following proof

 $\boxed{ \mid (|y \cdot (x-1)| = x_0! \land x - 1 \ge 0) | \mathbf{x} := \mathbf{x} - 1 (|y \cdot x| = x_0! \land x \ge 0) }$

- only creative step: invention of loop invariant $y \cdot x! = x_0! \wedge x \ge 0$
- quite unreadable, introduce proof tableaux

RT (DCS @ UIBK)

Part 6 - Verification of Imperative Programs

Proof Tableaux

Problems in Presentation of Hoare Calculus

- proof trees become quite large even for small examples
- reason: lots of duplication, e.g., in composition rule

$$\frac{\vdash (\!|\varphi|\!) C_1(\!|\eta|\!) \vdash (\!|\eta|\!) C_2(\!|\psi|\!)}{\vdash (\!|\varphi|\!) C_1; C_2(\!|\psi|\!)} \text{ composition}$$

every formula φ , η , ψ occurs twice

• aim: develop better representation of Hoare-calculus proofs

Proof Tableaux

- main ideas
 - write program commands line-by-line
 - interleave program commands with midconditions
- structure

```
(|\varphi_0|)
C_1;
       (\varphi_1)
C_2:
       (|\varphi_2|)
  . . .
 C_n
       (|\varphi_n|)
```

where none of the C_i is a sequential execution

• idea: each midcondition φ_i should hold after execution of C_i

RT (DCS @ UIBK)

Part 6 – Verification of Imperative Programs

Weakest Preconditions

 $([\varphi_i])$ $C_{i+1};$ $([\varphi_{i+1}])$

- problem: how to find all the midconditions φ_i ?
- solution
 - assume φ_{i+1} (and of course C_{i+1}) is given
 - then try to compute φ_i as weakest precondition,
 i.e., φ_i should be logically weakest formula satisfying

 $\models (\!|\varphi_i|\!) C_i (\!|\varphi_{i+1}|\!)$

• we will see, that such weakest preconditions can for many commands be computed automatically

Constructing the Proof Tableau

- aim: verify $\vdash (\varphi'_0) C_1; \ldots; C_n (\varphi_n)$
- approach: compute formulas $arphi_{n-1},\ldots,arphi_0$, e.g., by taking weakest preconditions

```
(\varphi_0)
    C_1:
         (\varphi_1)
     . . .
C_{n-1}:
        (\varphi_{n-1})
    C_n
         (\varphi_n)
```

and check $\models \varphi'_0 \longrightarrow \varphi_0$

this last check corresponds to an application of the implication-rule

• next: consider the various commands how to compute a suitable formula φ_i given C_{i+1} and φ_{i+1}

RT (DCS @ UIBK)

Constructing the Proof Tableau – Assignment

• for the assignment, the weakest precondition is computed via

 $\begin{array}{c} \left(\left| \varphi[x/e] \right| \right) \\ x := e \\ \left(\left| \varphi \right| \right) \end{array}$

• application is completely automatic: just substitute

Constructing the Proof Tableau – Implication

represent implication-rule by writing two consecutive formulas

whenever
$$\models \psi \longrightarrow \varphi$$

- application
 - simplify formulas
 - close proof tableau at the top, to turn given precondition into computed formula at top of program, e.g., $\models \varphi'_0 \longrightarrow \varphi$ on slide 22

 $(|\psi|)$ $(|\varphi|)$

• example proof of $\vdash (|y = 2|)$ y := y * y; x := y + 1 (|x = 5|)

$$(|y = 2|)$$

$$(|y \cdot y = 4|)$$
(closing proof tableau at top)
$$y := y * y$$

$$(|y = 4|)$$

$$(y + 1 = 5|)$$

$$x := y + 1$$

$$(|x = 5|)$$
(prove the formula of the star of the

RT (DCS @ UIBK)

Part 6 – Verification of Imperative Programs

Example with Destructive Updates

• assume we want to calculate u = x + y via the following program P

 $(|\mathsf{true}|)$ (x + y = x + y|)z := x(|z + y = x + y|)z := z + y(|z = x + y|)u := z(|u = x + y|)

- the midconditions have been inserted fully automatic
- hence we easily conclude $\vdash (|true|) P (|u = x + y|)$
- note: although the tableau is constructed bottom-up, it also makes sense to read it top-down

An Invalid Example

• consider the following invalid tableau

```
(|\mathsf{true}|) (|x+1=x+1|) x := x + 1 (|x=x+1|)
```

- if the tableau were okay, then the result would be the arithmetic property x = x + 1, a formula that does not hold for any number x
- problem in tableau
 - assignment rule was not applied correctly
 - reason: substitution has to replace all variables
- corrected version

$$\label{eq:x} \begin{array}{l} (|x+1| = (x+1) + 1|) \\ {\bf x} \ := \ {\bf x} \ + \ {\bf 1} \\ (|x=x+1|) \end{array}$$

Constructing the Proof Tableau – If-Then-Else

• aim: calculate φ such that

 \vdash (| φ) if b then C_1 else C_2 (| ψ)

can be derived

- applying our procedure recursively, we get
 - formula φ_1 such that $\vdash (\!|\varphi_1|\!| C_1 (\!|\psi|\!)$ is derivable
 - formula φ_2 such that $\vdash (|\varphi_2|) C_2 (|\psi|)$ is derivable
- then weakest precondition for if-then-else is formula

$$\varphi := (b \longrightarrow \varphi_1) \land (\neg b \longrightarrow \varphi_2)$$

- formal justification that φ is sound

$$\frac{\vdash (|\varphi_1|) C_1 (|\psi|)}{\vdash (|\varphi \wedge b|) C_1 (|\psi|)} \xrightarrow{\vdash (|\varphi_2|) C_2 (|\psi|)}{\vdash (|\varphi \wedge b|) C_2 (|\psi|)}$$

Example with If-Then-Else

• consider non-optimal code to compute the successor

```
(true)
             \left(\left((x+1)-1=0\longrightarrow 1=x+1\right)\wedge\left((x+1)-1\neq 0\longrightarrow x+1=x+1\right)\right)
a := x + 1;
              ((a-1=0 \longrightarrow 1=x+1) \land (a-1 \neq 0 \longrightarrow a=x+1)) 
if (a - 1 = 0) then {
             (1 = x + 1)
  v := 1
             (y = x + 1) (formula copied to end of then-branch)
} else {
             (a = x + 1)
  v := a
             (|y = x + 1|) (formula copied to end of else-branch)
}
             (u = x + 1)
```

- insertion of midconditions is completely automatic
- large formula obtained in 2nd line must be proven in underlying logic
 RT (DCS @ UIBK)
 Part 6 Verification of Imperative Programs

Applying the While Rule

$$\frac{\vdash (\eta \land b) C (\eta)}{\vdash (\eta) \text{ while } b C (\eta \land \neg b)} \text{ while }$$

• let us consider applicability in combination with implication-rule for arbitrary setting: how to derive the following?

$$dash$$
 (| $arphi$) while $b \mathrel{C}$ (| ψ |)

solution: find invariant η such that

- $\begin{array}{ll} \bullet \models \varphi \longrightarrow \eta & \text{precondition implies invariant} \\ \bullet \models (\gamma) C (\eta) & \text{handle loop body recursively, produces } \gamma \\ \bullet \models \eta \land b \longrightarrow \gamma & \eta \text{ is indeed invariant} \\ \bullet \models \eta \land \neg b \longrightarrow \psi & \text{invariant and } \neg b \text{ implies postcondition} \end{array}$
- notes
 - invariant η has to be satisfied at beginning and end of loop-body, but not in between
 - invariant often captures the core of an algorithm: it describes connection between variables throughout execution
 - finding invariant is not automatic, but for seeing the connection it often helps to execute the loop a few rounds

Applying the While Rule – Soundness

$$\frac{\vdash (\eta \land b) C (\eta)}{\vdash (\eta) \text{ while } b \ C (\eta \land \neg b)} \text{ while }$$

• let us consider applicability in combination with implication-rule for arbitrary setting: how to derive the following?

- (|
$$arphi$$
) while $b \mathrel{C}$ (| ψ)

solution: find invariant η such that

•
$$\models \varphi \longrightarrow \eta$$

•
$$\vdash$$
 (η) C (η)

•
$$\models \eta \land b \longrightarrow \gamma$$

•
$$\models \eta \land \neg b \longrightarrow \psi$$

precondition implies invariant handle loop body recursively, produces γ η is indeed invariant invariant and $\neg b$ implies postcondition

soundness proof

$$\frac{ \begin{array}{c} \vdash (\!\left|\gamma\right|\!\right) C (\!\left|\eta\right|) }{ \vdash (\!\left|\eta \wedge b\right|\!\right) C (\!\left|\eta\right|) } \\ \hline \\ \hline \left| \left|\left|\eta\right|\right| \text{ while } b \ C (\!\left|\eta \wedge \neg b\right|\!\right) \\ \hline \\ \vdash (\!\left|\varphi\right|\!\right) \text{ while } b \ C (\!\left|\psi\right|\!\right) \end{array}$$

Schema to Find Loop Invariant

• to create a Hoare-triple for a while-loop

 $\vdash (\!|\varphi|\!) \text{ while } b \mathrel{C} (\!|\psi|\!)$

find η such that

- $\bullet \ \models \varphi \longrightarrow \eta$
- $\vdash (\eta) C (\eta)$
- $\bullet \ \models \eta \wedge b \longrightarrow \gamma$
- $\bullet \models \eta \land \neg b \longrightarrow \psi$

- precondition implies invariant handle loop body recursively, produces γ η is invariant
 - invariant and $\neg b$ implies postcondition

- approach to find η
 - 1. guess initial $\eta,$ e.g., based on a few loop executions
 - 2. check $\models \varphi \longrightarrow \eta$ and $\models \eta \land \neg b \longrightarrow \psi$; if not successful modify η
 - 3. compute γ by bottom-up generation of \vdash ([γ [) C ([η])
 - 4. check $\models \eta \land b \longrightarrow \gamma$
 - 5. if last check is successful, proof is done
 - 6. otherwise, adjust η
- note: if φ is not known for checking $\models \varphi \longrightarrow \eta$, then instead perform bottom-up propagation of commands before while-loop (starting with η) and then use precondition of whole program

Verification of Factorial Program – Initial Invariant

- program P: y := 1; while x > 0 {y := y * x; x := x 1}
- aim: $\vdash (x = x_0 \land x \ge 0) P(y = x_0!)$
- for guessing initial invariant, execute a few iterations to compute 6!

iteration	x_0	x	y	x!
0	6	6	1	720
1	6	5	6	120
2	6	4	30	24
3	6	3	120	6
4	6	2	360	2
5	6	1	720	1

observations

- column x! was added since computing x! is aim
- multiplication of y and x! stays identical: $y \cdot x! = x_0!$
- hence use $y \cdot x! = x_0!$ as initial candidate of invariant
- alternative reasoning with symbolic execution
 - in y we store $x_0 \cdot (x_0 1) \cdot \ldots \cdot (x + 1) = x_0!/x!$,
 - so multiplying with x! we get $y \cdot x! = x_0!$

RT (DCS @ UIBK)

Verification of Factorial Program – Testing Initial Invariant

• initial invariant:
$$\eta = (y \cdot x! = x_0!)$$

• potential proof tableau

```
(|x = x_0 \land x > 0|)
                                           (1 \cdot x! = x_0!)
                                                                               (implication verified)
                        y := 1;
                                           (\eta)
                        while (x > 0) {
                                           (n \wedge x > 0)
                           v := v * x;
                           x := x - 1
                                            (\eta)
                        }
                                           (\eta \land \neg x > 0)
                                           (y = x_0!)
                                                                              (implication does not hold)
     • problem: condition \neg x > 0 (x \le 0) does not enforce x = 0 at end
RT (DCS @ UIBK)
                                              Part 6 - Verification of Imperative Programs
```

Proof Tableaux

Verification of Factorial Program – Strengthening Invariant

- strengthened invariant: $\eta = (y \cdot x! = x_0! \land x \ge 0)$
- potential proof tableau

 $(x = x_0 \land x > 0)$ $(1 \cdot x! = x_0! \land x > 0)$ (implication verified) y := 1; (η) while (x > 0) { $(n \wedge x > 0)$ $((y \cdot x) \cdot (x - 1)) = x_0! \land x - 1 > 0)$ (implication verified) v := v * x; $(|y \cdot (x-1)| = x_0! \land x-1 > 0)$ x := x - 1 (η) } $(n \wedge \neg x > 0)$ $(|y = x_0!|)$ (implication verified) proof completed, since all implications verified (e.g. by SMT solver)

RT (DCS @ UIBK)

Part 6 – Verification of Imperative Programs

Larger Example – Minimal-Sum Section

- assume extension of programming language: read-only arrays (writing into arrays requires significant extension of calculus)
- user is responsible for proper array access
- problem definition
 - given array $a[0], \ldots, a[n-1]$ of length n, a section of a is a continuous block $a[i], \ldots, a[j]$ with $0 \le i \le j < n$
 - define $S_{i,j}$ as sum of section

$$S_{i,j} := a[i] + \dots + a[j]$$

- section (i, j) is minimal, if $S_{i,j} \leq S_{i',j'}$ for all sections (i', j') of a
- example: consider array [-7, 15, -1, 3, 15, -6, 4, -5]
 - $\left[3,15,-6\right]$ and $\left[-6\right]$ are sections, but $\left[3,-6,4\right]$ is not
 - there are two minimal-sum sections: $\left[-7\right]$ and $\left[-6,4,-5\right]$

Minimal-Sum Section – Tasks

- write a program that computes sum of minimal section
- write a specification that makes "compute sum of minimal section" formal
- show that program satisfies the formal specification

Minimal-Sum Section – Challenges

- trivial algorithm
 - compute all sections $(O(n^2))$
 - compute all sums of these sections and find the minimum
 - results in $O(n^3)$ algorithm
- aim: O(n)-algorithm which reads the array only once
- consequence: proof required that it is not necessary to explicitly compute all ${\cal O}(n^2)$ sections
- example: consider array [-8, 3, -65, 20, 45, -100, -8, 17, -4, -14]
 - when reading from left-to-right a promising candidate might be [-8,3,-65], but there also is the later [-100,-8], so how to decide what to take?

Minimal-Sum Section – Algorithm

- idea of algorithm
 - k: index that traverses array from left-to-right
 - s: minimal-sum of all sections seen so far
 - t: minimal-sum of all sections that end at position k-1
- algorithm Min_Sum

```
k := 1;
t := a[0];
s := a[0];
while (k != n) {
   t := min(t + a[k], a[k]);
   s := min(s, t);
   k := k + 1
}
```

correctness not obvious, so let us better prove it

Minimal-Sum Section – Specification

- we split the specification in two parts via two Hoare-triples
 - Sp_1 specifies that the value of s is smaller than the sum of any section

 $(|\mathsf{true}|) \operatorname{Min}_{\mathsf{Sum}} (|\forall i, j. \ 0 \le i \le j < n \longrightarrow s \le S_{i,j}))$

• Sp₂ specifies that there exists some section whose sum is s

 $(|\mathsf{true}|) \operatorname{\mathit{Min}}_{\mathsf{Sum}} (|\exists i, j. \ 0 \le i \le j < n \land s = S_{i,j})$

Minimal-Sum Section – Proving Sp_1

```
k := 1;
t := a[0];
s := a[0];
while (k != n) {
t := min(t + a[k], a[k]);
s := min(s, t);
k := k + 1
}
```

```
Sp_1: (\texttt{true}) \textit{ Min_Sum} (\forall i, j. \ 0 \leq i \leq j < n \longrightarrow s \leq S_{i,j})
```

- find candidate invariant
 - invariant often similar to postcondition
 - invariant expresses relationships that are valid at beginning of each loop-iteration
- suitable invariant is $Inv_1(s,k)$ defined as

$$\forall i, j. \ 0 \le i \le j < k \longrightarrow s \le S_{i,j}$$

 $(|Inv_1(a[0], 1)|)$ (true statement) k := 1; $(|Inv_1(a[0], k)|)$ t := a[0]; $(|Inv_1(a[0], k)|)$ s := a[0]; $(|Inv_1(s,k)|)$ while (k != n) $(Inv_1(s,k) \land k \neq n)$ $(|Inv_1(\min(s,\min(t+a[k],a[k])),k+1)|)$ (does not hold, no info on t) t := min(t + a[k], a[k]); $(|Inv_1(\min(s,t),k+1)|)$ s := min(s, t); $(|Inv_1(s, k+1)|)$ k := k + 1; $(|Inv_1(s,k)|)$ } $(|Inv_1(s,k) \land \neg k \neq n|)$ $(|Inv_1(s,n)|)$ (implication verified) Part 6 – Verification of Imperative Programs RT (DCS @ UIBK)

uх

41/66

Minimal-Sum Section – Strengthening Invariant

```
k := 1;
t := a[0];
s := a[0];
while (k != n) {
   t := min(t + a[k], a[k]);
   s := min(s, t);
   k := k + 1
}
```

$$Sp_1: (|\mathsf{true}|) \operatorname{\mathit{Min}}_{\operatorname{\mathsf{-Sum}}} (|\forall i, j. \ 0 \le i \le j < n \longrightarrow s \le S_{i,j}|)$$

• suitable invariant for s is $Inv_1(s,k)$ defined as

$$\forall i, j. \ 0 \le i \le j < k \longrightarrow s \le S_{i,j}$$

• define similar invariant for t: $Inv_2(t,k)$ defined as

$$\forall i. \ 0 \le i < k \longrightarrow t \le S_{i,k-1}$$

• now try strengthened invariant $Inv_1(s,k) \wedge Inv_2(t,k)$

RT (DCS @ UIBK)

```
(|Inv_1(a[0], 1) \land Inv_2(a[0], 1)|)
                                                                             (true statement)
       k := 1:
            (|Inv_1(a[0], k) \land Inv_2(a[0], k)|)
       t := a[0]:
            (|Inv_1(a[0],k) \wedge Inv_2(t,k)|)
       s := a[0]:
            ([Inv_1(s,k) \land Inv_2(t,k)])
       while (k != n) {
            (Inv_1(s,k) \land Inv_2(t,k) \land k \neq n)
            (|Inv_1(\min(s,\min(t+a[k],a[k])),k+1) \land Inv_2(\min(t+a[k],a[k]),k+1))| (implication verified)
          t := min(t + a[k], a[k]):
            (|Inv_1(\min(s,t),k+1) \wedge Inv_2(t,k+1)|)
          s := min(s, t);
            (|Inv_1(s, k+1) \land Inv_2(t, k+1)|)
          k := k + 1;
            (Inv_1(s,k) \land Inv_2(t,k))
            (|Inv_1(s,k) \land Inv_2(t,k) \land \neg k \neq n|)
                                                                             (implication verified)
            (Inv_1(s,n))
RT (DCS @ UIBK)
                                                Part 6 - Verification of Imperative Programs
```

43/66

ПX

Minimal-Sum Section – Proving the Implications

- invariants
 - $Inv_1(s,k) := \forall i, j. \ 0 \le i \le j < k \longrightarrow s \le S_{i,j}$
 - $Inv_2(t,k) := \forall i. \ 0 \le i < k \longrightarrow t \le S_{i,k-1}$
- implications
 - true $\longrightarrow \mathit{Inv}_1(a[0], 1) \land \mathit{Inv}_2(a[0], 1)$
 - because of the conditions of the quantifiers, by fixing k=1 we only have to consider section (0,0), i.e, we show $a[0]\leq S_{0,0}=a[0]$
 - let 0 < k < n where n is length of array a; then $Inv_1(s,k) \land Inv_2(t,k) \land k \neq n$ implies both $Inv_2(\min(t + a[k], a[k]), k + 1)$ and $Inv_1(\min(s, \min(t + a[k], a[k])), k + 1)$; proof
 - pick any $0 \le i < k + 1$; we show $\min(t + a[k], a[k])) \le S_{i,k}$; if i < k then $S_{i,k} = S_{i,k-1} + a[k]$, so we use $Inv_2(t,k)$ to get $t \le S_{i,k-1}$ and thus $\min(t + a[k], a[k])) \le t + a[k] \le S_{i,k-1} + a[k] = S_{i,k}$; otherwise, i = k and we have $\min(t + a[k], a[k]) \le a[k] = S_{i,k}$
 - pick any $0 \le i \le j < k + 1$; we need to show $\min(s, \min(t + a[k], a[k])) \le S_{i,j}$; if j = k then the result follows from the previous statement; otherwise j < k and the result follows from $Inv_1(s, k)$

Proof Tableaux – Summary

- we have proven soundness of non-trivial algorithm Min_Sum
- with gaps
 - we only proved Sp_1 , but not Sp_2
 - lemma on previous slide demanded 0 < k < n which does not follow from loop-condition $k \neq n$; a proper fix would require a strengthened invariant which includes bounds on k
- main reasoning (proving the implications on previous slide) was done purely in logic with no reference to program

Verification Condition Generation

Verification Condition Generator – VCG

- previous part: find suitable invariants, propagate formulas via substitution, etc., and check implication
- a VCG automates this process
 - input is annotated program with pre- and post-conditions and invariants
 - VCG generates implications automatically (verification conditions)
 - verification conditions are passed to SMT-solver, theorem prover, etc., to finally show correctness
- VCG simplifies reasoning a lot, more automation
- still: in case SMT-solver or theorem prover fails, user needs to understand failure to adapt invariants, assertions, or perform manual proofs, etc.

IMP2 – A VCG Implementation in Isabelle

- IMP2 is an Isabelle formalization of our small imperative language while-language
- it includes a VCG; the verification conditions have to be proven using the Isabelle system
 - the conditions can be forwarded to an SMT solver (sledgehammer)
 - the conditions can be solved by Isabelle's automation (simp, \dots)
 - manual proofs are possible
- example: Demo06.thy

```
(note that x_0 in IMP2 refers to initial value of x without explicit assumption x_0 = x)
```

```
procedure_spec (partial) fact_prog(x)
returns v
```

Modular Verification via VCGs

- specifications via Hoare-triple ($|\varphi|$) $P(|\psi|)$ may be seen as a contract between supplier and consumer of program P
 - supplier insists that consumer invokes P only on states satisfying φ
 - supplier promises that after execution of P formula ψ holds
- validation of Hoare-triples with Hoare-calculus can be seen as validation of contracts for method- or procedure-calls
- once contracts have been verified for algorithm f, during verification one can replace program invocations of f by its contract

Example

assume we want to write method for binomial coefficients

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

to compute chance of lotto-jackpot 1 : $\binom{49}{6}$

example program

```
procedure_spec (partial) binom_prog(n,k)
returns r
assumes <n ≥ 0 ∧ k ≥ 0 ∧ n ≥ k>
ensures "r = binom_int n<sub>0</sub> k<sub>0</sub>"
defines <
    a = fact_prog(n);
    b = fact_prog(k);
    c = fact_prog (n - k);
    r = a / (b * c)
    apply vcg</pre>
```

- in example, we need to ensure that preconditions of factorial program are met
- generated verification conditions then use post-conditions for factorial

RT (DCS @ UIBK)

Programming by Contract – Advantages

- in the same way as methods help to structure larger programs, contracts for these methods help to verify larger programs
- reason: for verifying code invoking method m, it suffices to look at contract of m- without looking at implementation of m
- positive effects
 - add layer of abstraction
 - easy to change implementation of m as long as contract stays identical
 - verification becomes more modular
- example: for invocation of min in minimal-sum section it does not matter whether
 - min is built-in operator which is substituted as such, or
 - min is user-defined method that according to the contract computes the mathematical min-operation

Termination of Imperative Programs

Adding Termination to Calculus

• since while-loops are only source of non-termination in presented imperative language, it suffices to adjust the while-rule in the Hoare-calculus

all other Hoare-calculus rules can be used as before

- recall: total correctness = partial correctness + termination
- previous while-rule already proved partial correctness
- only task: extend existing while-rule to additionally prove termination
- idea of ensuring termination: use variants
 - a variant (or measure) is an integer expression;
 - this integer expression strictly decreases in every loop iteration and
 - at the same time the variant stays non-negative;
 - conclusion: there cannot be infinitely many loop iterations
- in IMP2, termination is proved by omitting "(partial)" in procedure definitions, and by providing a variant for every while-loop, cf. fact_total_prog in Demo06.thy

A While-Rule For Total Correctness

• while-rule for partial correctness

$$\frac{ \left| \left(\varphi \wedge b \right) C \left(\varphi \right) \right|}{- \left(\left| \varphi \right| \right) \text{ while } b \ C \left(\left| \varphi \wedge \neg b \right| \right)} \text{ while }$$

extended while-rule for total correctness

$$\frac{\vdash (|\varphi \land b \land e_0 = e \ge 0) C (|\varphi \land e_0 > e \ge 0)}{\vdash (|\varphi \land e \ge 0) \text{ while } b C (|\varphi \land \neg b)} \text{ while-tota}$$

where

- e is variant expression with values before execution of C
- e is (the same) variant expression with values after execution of C
- e_0 is fresh logical variable, used to store the value of e before: $e_0 = e$
- hence, postcondition $e_0 > e$ enforces decrease of e when executing C
- non-negativeness is added three times, even in precondition of while
- e is of type integer so that $SN \ \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x > y \ge 0\}$ can be used as underlying terminating relation: each loop iteration corresponds to a step $(\llbracket e \rrbracket_{\alpha_{\text{after}}}, \llbracket e \rrbracket_{\alpha_{\text{after}}})$ in this relation

RT (DCS @ UIBK)

Applying While-Total

$$\frac{\vdash (\!(\varphi \land b \land e_0 = e \ge 0)\!) C (\!(\varphi \land e_0 > e \ge 0)\!)}{\vdash (\!(\varphi \land e \ge 0)\!) \text{ while } b \ C (\!(\varphi \land \neg b)\!)} \text{ while-total}$$

application

- e_0 is fresh logical variable, so nothing to choose
- variant e has to be chosen, but this is often easy
 - while $(x < 5) \{ \dots x := x + 1 \dots \}$ is same as while $(5 - x > 0) \{ \dots x := x + 1 \dots \}$, so e = 5 - x
 - while (y >= x) { ... y := y 2 ...} is same as while (y - x >= 0) { ... y := y - 2 ...}, so e = y - x (+2)
 - while (x != y) { ... y := y + 1 ...} is same as while (x - y != 0) { ... y := y + 1 ...}, so e = x - y
- checking the condition is then easily possible via proof tableau, in the same way as for the while-rule for partial correctness
- all side-conditions $e \ge 0$ can completely be eliminated by choosing $e = \max(0, e')$ for some e', but then proving $e_0 > e$ will become harder as it has to deal with max
- invariant φ can be taken unchanged from partial correctness proof

Total Correctness of Factorial Program

• red parts have been added for termination proof with variant x - z

 $(|\mathsf{true} \wedge x > 0|)$ (new termination condition on x) $(1 = 0! \land x - 0 > 0)$ v := 1; $(y = 0! \land x - 0 > 0)$ z := 0; $(|y = z| \land x - z > 0)$ (new condition added) while (x != z) { $(|y = z| \land x \neq z \land e_0 = x - z > 0)$ (new condition added) $(|y \cdot (z+1) = (z+1)! \land e_0 > x - (z+1) > 0)$ (more reasoning) z := z + 1; $(|y \cdot z = z| \land e_0 > x - z > 0)$ v := v * z; $(|u| = z! \land e_0 > x - z > 0)$ (new condition added) } $(u = z! \land \neg x \neq z)$ (|u| = x!)

RT (DCS @ UIBK)

Part 6 - Verification of Imperative Programs

Remarks on Total Correctness of Factorial Program

- precondition $x \ge 0$ was added automatically from termination proof
- in fact, the program does not terminate on negative inputs
- for factorial program (and other imperative programs) Hoare-calculus permits to prove local termination, i.e., termination on certain inputs
- in contrast, for functional program we always considered universal termination, i.e., termination of all inputs
- termination proofs can also be performed stand-alone (without partial correctness proof): just prove postcondition "true" with while-total-rule:

 $\vdash \left(\!\left|\varphi\right|\!\right) P\left(\!\left|\mathsf{true}\right|\!\right)$

implies termination of P on inputs that satisfy $\varphi,$ so

 $\vdash (|\mathsf{true}|) P (|\mathsf{true}|)$

```
shows universal termination of P
```

RT (DCS @ UIBK)

Soundness of Hoare-Calculus

Soundness of Hoare-Calculus

- so far, we have two notions of soundness
 - \models ($|\varphi|$) P ($|\psi|$): via semantic of imperative programs, i.e., whenever $\alpha \models \varphi$ and $(P, \alpha) \hookrightarrow^*$ (skip, β) then $\beta \models \psi$ must hold
 - \vdash $(|\varphi|) P (|\psi|)$: syntactic, what can be derived via Hoare-calculus rules
- missing: soundness of calculus, i.e.,

 $\vdash (\! | \varphi |\!) P (\! | \psi |\!) \text{ implies } \models (\! | \varphi |\!) P (\! | \psi |\!)$

- formal proof is based on big-step semantics \rightarrow (see exercises): $(P, \alpha) \hookrightarrow^* (\texttt{skip}, \beta)$ is turned into $(P, \alpha) \rightarrow \beta$
- soundness of the calculus is then established by the following property, which is proven by induction w.r.t. the Hoare-calculus rules for arbitrary α, β :

$$\vdash (\![\varphi]\!] C (\![\psi]\!] \longrightarrow \alpha \models \varphi \longrightarrow (C, \alpha) \rightarrow \beta \longrightarrow \beta \models \psi$$

$$\mathbf{Proving} \vdash (\![\varphi]\!] C (\![\psi]\!] \longrightarrow \alpha \models \varphi \longrightarrow (C, \alpha) \rightarrow \beta \longrightarrow \beta \models \psi$$

Case 1: implication-rule

 $\vdash (\! | \varphi |\!) C (\! | \psi |\!) \text{ since } \models \varphi \longrightarrow \varphi', \vdash (\! | \varphi' |\!) C (\! | \psi' |\!) \text{ , and } \models \psi' \longrightarrow \psi$

- IH: $\forall \alpha, \beta. \alpha \models \varphi' \longrightarrow (C, \alpha) \rightarrow \beta \longrightarrow \beta \models \psi'$
- assume $\alpha \models \varphi$ and $(C, \alpha) \rightarrow \beta$
- then by $\models \varphi \longrightarrow \varphi'$ conclude $\alpha \models \varphi'$
- in combination with IH get $\beta \models \psi'$
- with $\models \psi' \longrightarrow \psi$ conclude $\beta \models \psi$

$$\mathbf{Proving} \vdash (\![\varphi]\!] C (\![\psi]\!] \longrightarrow \alpha \models \varphi \longrightarrow (C, \alpha) \rightarrow \beta \longrightarrow \beta \models \psi$$

Case 2: composition-rule

 $\vdash \left(\!\left|\varphi\right|\!\right) C_1; C_2\left(\!\left|\psi\right|\!\right) \text{ since } \vdash \left(\!\left|\varphi\right|\!\right) C_1\left(\!\left|\eta\right|\!\right) \text{ and } \vdash \left(\!\left|\eta\right|\!\right) C_2\left(\!\left|\psi\right|\!\right)$

- IH-1: $\forall \alpha, \beta, \alpha \models \varphi \longrightarrow (C_1, \alpha) \rightarrow \beta \longrightarrow \beta \models \eta$
- IH-2: $\forall \alpha, \beta, \alpha \models \eta \longrightarrow (C_2, \alpha) \rightarrow \beta \longrightarrow \beta \models \psi$
- assume $\alpha \models \varphi$ and $(C_1; C_2, \alpha) \rightarrow \beta$
- from the latter and the definition of \rightarrow , there must be γ such that $(C_1, \alpha) \rightarrow \gamma$ and $(C_2, \gamma) \rightarrow \beta$
- by using IH-1 (choose α and γ in \forall), obtain $\gamma \models \eta$
- by using IH-2 (choose γ and β in \forall), obtain $\beta \models \psi$

$$\mathbf{Proving} \vdash (\![\varphi]\!] C (\![\psi]\!] \longrightarrow \alpha \models \varphi \longrightarrow (C, \alpha) \rightarrow \beta \longrightarrow \beta \models \psi$$

Case 3: if-then-else-rule

 $\vdash (|\varphi|) \text{ if } b \text{ then } C_1 \text{ else } C_2 (|\psi|)$ since $\vdash (|\varphi \land b|) C_1 (|\psi|) \text{ and } \vdash (|\varphi \land \neg b|) C_2 (|\psi|)$

• IH-1: $\forall \alpha, \beta, \alpha \models \varphi \land b \longrightarrow (C_1, \alpha) \rightarrow \beta \longrightarrow \beta \models \psi$

• IH-2:
$$\forall \alpha, \beta, \alpha \models \varphi \land \neg b \longrightarrow (C_2, \alpha) \to \beta \longrightarrow \beta \models \psi$$

- assume $\alpha \models \varphi$ and (if b then C_1 else $C_2, \alpha) \rightarrow \beta$
- perform case analysis on $\llbracket b \rrbracket_{\alpha}$
- w.l.o.g. we only consider the case $\llbracket b \rrbracket_{\alpha} =$ true where
 - from $\alpha \models \varphi$ conclude $\alpha \models \varphi \land b$
 - from (if b then C_1 else $C_2, \alpha) \rightarrow \beta$ conclude $(C_1, \alpha) \rightarrow \beta$
 - by using IH-1 get $\beta \models \psi$

$$\mathbf{Proving} \vdash (\![\varphi]\!] C (\![\psi]\!] \longrightarrow \alpha \models \varphi \longrightarrow (C, \alpha) \rightarrow \beta \longrightarrow \beta \models \psi$$

Case 4: assignment-rule

$$\vdash \left(\!\left| \varphi \right|\!\right) x := e \left(\!\left| \psi \right|\!\right) \text{ since } \varphi = \psi[x/e]$$

- assume $\alpha \models \varphi$ and $(x := e, \alpha) \rightarrow \beta$
- by definition of \rightarrow , conclude $\beta = \alpha[x := \llbracket e \rrbracket_{\alpha}]$
- hence assumption $\alpha \models \varphi$ is equivalent to

•
$$\alpha \models \psi[x/e]$$

• $\alpha[x := \llbracket e \rrbracket_{\alpha}] \models \psi$
• $\beta \models \psi$

by unrolling φ -equality by substitution lemma for formulas by unrolling β -equality

$$\mathbf{Proving} \vdash (\![\varphi]\!] C (\![\psi]\!] \longrightarrow \alpha \models \varphi \longrightarrow (C, \alpha) \rightarrow \beta \longrightarrow \beta \models \psi$$

Case 5: while-rule

- $\vdash (\! | \varphi |\!) \text{ while } b \ C' \left(\! | \psi |\! \right) \text{ since } \vdash (\! | \varphi \wedge b |\!) \ C' \left(\! | \varphi |\! \right) \text{ and } \psi = \varphi \wedge \neg b$
 - (outer) IH: $\forall \alpha, \beta, \alpha \models \varphi \land b \longrightarrow (C', \alpha) \rightarrow \beta \longrightarrow \beta \models \varphi$
 - we now prove $\alpha \models \varphi \longrightarrow (\text{while } b \ C', \alpha) \rightarrow \beta \longrightarrow \beta \models \psi$ by an inner induction on α w.r.t. \rightarrow , but for fixed b, C', β , φ , ψ
 - case 1: (while $b \ C', \alpha) \to \beta$ since $[\![b]\!]_{\alpha} = \mathsf{false} \text{ and } \beta = \alpha$
 - in this case conclude $\beta = \alpha \models \varphi \wedge \neg b = \psi$
 - case 2: (while $b \ C', \alpha) \to \beta$ since $\llbracket b \rrbracket_{\alpha} = \text{true}, \ (C', \alpha) \to \gamma$ and (while $b \ C', \gamma) \to \beta$
 - inner IH: $\gamma \models \varphi \longrightarrow \beta \models \psi$
 - assume $\alpha \models \varphi$
 - hence $\alpha \models \varphi \wedge b$
 - by outer IH (choose α and γ in \forall) get $\gamma \models \varphi$
 - then inner IH yields $\beta \models \psi$

Summary of Soundness of Hoare-Calculus

- since Hoare-calculus rules and semantics are formally defined, it is possible to verify soundness of the calculus
- proof requires inner induction for while-loop, since big-step semantics of while-command refers to itself
- here: only soundness of Hoare-calculus for partial correctness
- possible extension: total correctness
 - define semantic notion $\models_{total} (|\varphi|) C (|\psi|)$ stating total correctness
 - prove that Hoare-calculus with while-total is sound w.r.t. \models_{total}

Summary – Verification of Imperative Programs

- covered
 - syntax and semantic of small imperative programming language
 - Hoare-calculus to verify Hoare-triples (| φ |) P (| ψ |)
 - proof tableaux and automation: use VCG that converts program logic into implications (verification conditions) that must be shown in underlying logic
 - proofs are often automatic, given good pre- and post-conditions and (in)variants
 - soundness of Hoare-calculus
 - programming by contracts: abstract from concrete method-implementations, use contracts
 - example VCG for core language: IMP2, based on Isabelle
- not covered
 - heap-access, references, arrays, etc.: extension to separation logic, memory model
 - bounded integers: reasoning engine for bit-vector-arithmetic
 - multi-threading