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Imperative Programs



Imperative Programs

Imperative Programs

® we here consider a small imperative programming language
® it consists of
® arithmetic expressions A over some set of variables V

nez reV fer,ea} CA ©€ {+,-,%}
neA re A e1®e e A

® Boolean expressions B

¢ € {true,false} {e1,e2} CTA ©e{=,<,<=,1=}
cebB e1®exy €B
beB {b1,02} CB © € {&&, |1}
beB b1 ©by € B

® commands C
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Commands and Programs

® commands C consist of

assignments

if-then-else

sequential execution

while-loops

no-operation

reY e A
z=ecC

beB {C,C}CC

if b then C; else Cy € C

{C1,C} CC
01;02 eC

beB CelC
while b {C} €C

skip e C

curly braces are added for disambiguation, e.g. consider

while x < 5 { x :=

x+2};y:i=y-1

® a program P is just a command C'
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Verification

® partial correctness predicate via Hoare-triples: |= (¢|) P (v

semantic notion

meaning: whenever initial state satisfies ¢,

and execution of P terminates,

then final state satisfies v

o is called precondition, 1 is postcondition

here, formulas may range over program variables and logical variables
clearly, |= requires semantic of commands

® Hoare calculus: F (@) P (v)

RT (DCS @ UIBK)
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Imperative Programs

Semantics — Expressions

® state is evaluation a: V — Z
® semantics of arithmetic and Boolean expressions are defined as
® [Ja:A—=Z
e.g. if a(x) =5 then [6xz+ 1], =31
® []a: B — {true, false}
e.g., if a(x) =5 then [6 x 2 + 1 < 20], = false

® we omit the straight-forward recursive definitions of [-], here
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Imperative Programs

Semantics — Commands

® semantics of commands is given via small-step-semantics
defined as relation — C (C x (V — Z))?

(x :=e,a) — (skip, a[z := [e]a])

[b] o = true
(if b then C] else Cy, ) — (C1, )
[b]o = false

(if b then C) else Cy, ) — (Ca, )
(C1, @) = (C1, B)
(C1;Ca, ) = (C1;C2, ) (skip; O o) = (Ca)

[b] o = true
(while b C,a) — (C;while b C, «)
[b]o = false

(while b C,a) — (skip, @)

® (skip, ) is normal form
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Imperative Programs

Semantics — Programs
® we can formally define |= (¢|) P (¢) as

Va,B. a e — (P,a) =" (skip, 8) — B =9

® example specification: (z > 0) P (y -y < x|
® if initially > 0, after running the program P,
the final values of x and y must satisfy y -y < z
® nothing is required if initially x <0
® nothing is required if program does not terminate
® specification is satisfied by program P defined as

y :=0

® specification is satisfied by program P defined as

y := 0;

while (y * y < x) {
y =y +1

3

y =y -1
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Program Variables and Logical Variables

Imperative Programs

consider program Fact

y :=1;

while (x != 0) {
y =y o*x;
x :=x -1

}

specification for factorial: does = (x > 0]) Fact (y = =!]) hold?
® if a(x) =6 and (Fact,a) —* (skip, ) then 3(y) = 720 = 6!
® problem: () =0, so y = z! does not hold for final values
® hence [~ (|« > 0]) Fact (jy = =!]), since specification is wrong

solution: store initial values in logical variables

in example: introduce logical variable xg
E (x =xo Az > 0)) Fact (y = zo!|

via logical variables we can refer to initial values
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Hoare Calculus

A Calculus for Program Verification

® aim: syntax directed calculus to reason about programs

¢ Hoare calculus separates reasoning on programs from logical reasoning (arithmetic, ... )

® present calculus as overview now, then explain single rules

(@) Cr(nd  F (n) C2 (9]
F () C1; C2 ()

= (ple/e]) = = e(¢)
e Ab)Cr()  F (oA —b) Ca(9)
F (@) if b then C; else O (9)
E (e Ab) C ()
F () while b C (o A —b))

Fe—¢ FlNCW) EY —v.

composition

assignment

if-then-else

while

— (2D C () implication

® read rules bottom up: in order to get lower part, prove upper part

RT (DCS @ UIBK)
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Hoare Calculus

Composition Rule

F(e)Ci(n)  F (n) C2(¥)
F () C1; Ca ()

composition

e applicability: whenever command is sequential composition C1; Cs
® precondition is ¢ and aim is to show that ¢ holds after execution

® rationale: find some midcondition 7 such that execution of C'y guarantees 7, which can
then be used as precondition to conclude v after execution of Cs

® automation: finding suitable 7 is usually automatic, see later slides
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Hoare Calculus

Assignment Rule

assignment

= plz/el) 2 = e (gl

applicability: whenever command is an assignment x :=¢

® to prove ¢ after execution, show ¢|[x/e] before execution

substitution seems to be on wrong side
® effect of assignment is substitution z/e, so shouldn’t rule be - (|  := e (p[z/e]|) ?
No, this reversed rule would be wrong

® assume before executing x := 5, the value of z is 6
® before execution ¢ = (x = 6) is satisfied, but after execution p[z/e] = (5 = 6) is not satisfied

® correct argumentation works as follows

® if we want to ensure ¢ after the assignment then we need to ensure that the resulting
situation (@[z/€e]) holds before
® correct examples
*H(2=2)z:=2(z=2)
°* FH(2=4)x:=2(x=4)
°*F(2—y>2})x:=2(x—y > 2?)

® applying rule is easy when read from right to left: just substitute
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Hoare Calculus
If-Then-Else Rule

Flenb)Cr(e) F (e A —b)Ca(9)
F () if b then C; else Cs (9)))

if-then-else

e applicability: whenever command is an if-then-else
o effect:

® the preconditions in the two branches are strengthened by adding the corresponding
(negated) condition b of the if-then-else

® often the addition of b and —b is crucial to be able to perform the proofs for the
Hoare-triples of C; and Cj, respectively

® rationale: if b is true in some state, then the execution will choose 'y and we can add b
as additional assumption; similar for other case

® applying rule is trivial from right to left
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. Hoare Calculus
While Rule

FleAb) Cle)
F (o] while b C (o A —b)) W

hile

applicability: only rule that handles while-loop

® key ingredient: loop invariant ¢
® rationale
® o is precondition, so in particular satisfied before loop execution
® - (eAb)C () ensures, that when entering the loop, ¢ will be satisfied after one execution
of the loop body C'
® in total, ¢ will be satisfied after each loop iteration
® hence, when leaving the loop, ¢ and —b are satisfied
® while-rule does not enforce termination, partial correctness!
® automation

® not automatic, since usually ¢ is not provided and postcondition is not of form ¢ A —b;
example: F (z = zg A x > 0|) Fact (jy = z0!)
® finding suitable ¢ is hard and needs user guidance
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Hoare Calculus
Implication Rule

Fe—¢ FNCW) ¢ —v
Fle) C ()

implication

® applicability: every command; does not change command

® rationale: weakening precondition or strengthening postcondition is sound
® remarks

® only rule which does not decompose commands
® application relies on prover for underlying logic, i.e., one which can prove implications
® three main applications
® simplify conditions that arise from applying other rules in order to get more readable proofs,
eg.,replacex+1=y—2byx=y—3
® prepare invariants, e.g., change postcondition from ) to some formula 1)’ of form x A —b
® core reasoning engine when closing proofs for while-loops in proof tableaux, see later slides
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Hoare Calculus

Example Proof

FQ(y o) (-1l =20! Ae—1>0)y =y * xy-(z— 1! = 20! Az — 1> 0)
Fly-z!=z9! Az >0ANz#0)y :=y*x(y-(z—1)!=zp!Az—12>0) prfg
Fly-az!=20! Az >0Ax#0)y :=y *x; x :=x - 1(y-z! =x0! Az > 0))
FQy-a!=z0! ANz >0)while x =0 {y :=y *x; x :=x - 1} (y-z! =zo! Az > 0A -z #0)
prf1 F(y-z!=z9! Az > 0f)while x '=0 {y :=y * x; x := x - 1} (y = zo!))

F(Qz=z0Ax >0y := 1;while x != 0 {y :=y * x; x := x - 1} (y = zo!|

where prf; is the following proof

Fl-z!=zp!Axz>0)y :=1(y-z! =z0! Az >0
F(z=zo ANz >0)y :=1(y-z! =z9! Az > 0|

and prf, is the following proof

Fly - (z—1)!'=xzp! Az —1>0)x :=x-1(y-z! ==zo! Az >0)

® only creative step: invention of loop invariant y - x! = 2! Az >0

® quite unreadable, introduce proof tableaux
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Proof Tableaux



Proof Tableaux

Problems in Presentation of Hoare Calculus

e proof trees become quite large even for small examples

e reason: lots of duplication, e.g., in composition rule

F(p)Crn) (0D Ca (¥D
= (¢l C1; C ()

composition

every formula ¢, 7, ¥ occurs twice

® aim: develop better representation of Hoare-calculus proofs
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Proof Tableaux

Proof Tableaux

® main ideas

® write program commands line-by-line
® interleave program commands with midconditions

® structure

(=)
Ch;

le1d
Cy;

(2]

Cn
(ln)

where none of the C; is a sequential execution

® idea: each midcondition ¢; should hold after execution of C;
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Proof Tableaux

Weakest Preconditions

(i)
Citv1;

(pit1)

® problem: how to find all the midconditions ;7
® solution

® assume ;11 (and of course C;11) is given
® then try to compute ; as weakest precondition,
i.e., p; should be logically weakest formula satisfying

E (i) Ci (pit1)

® we will see, that such weakest preconditions can for many commands be computed
automatically
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Proof Tableaux

Constructing the Proof Tableau
e aim: verify - (o)) C1; ... Ch (@n))
® approach: compute formulas ¢, _1,..., 0, e.g., by taking weakest preconditions
(o)
Cr;
(1)

Cn-1;
(lon-1)
Ch
(on)
and check |= ¢, — ¢o
this last check corresponds to an application of the implication-rule
® next: consider the various commands how to compute a suitable formula ¢; given C;1

and ;1
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Proof Tableaux

Constructing the Proof Tableau — Assignment

e for the assignment, the weakest precondition is computed via

(elz/el)

(D

® application is completely automatic: just substitute
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Proof Tableaux

Constructing the Proof Tableau — Implication

® represent implication-rule by writing two consecutive formulas

(R
(e

whenever =1 — ¢
® application
® simplify formulas
® close proof tableau at the top, to turn given precondition into computed formula at top of
program, e.g., = ¢, —  on slide 22

e example proof of - [y =2))y :=y * y; x 1=y + 1(z=5)

(y=2)
(y-y=4) (closing proof tableau at top)
yi=y*y
(y =4) (optional simplification step)
(y+1=5)
x =y +1
(= =5)
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Example with Destructive Updates oot et

® assume we want to calculate u = x + y via the following program P

(true|)
(z+y=z+y)
Z = X
lz+y=z+y)
z =z +y
(z=2+y)
u = zZ
(u=2+vy)

® the midconditions have been inserted fully automatic
® hence we easily conclude I (true|) P (u = x + y|)

® note: although the tableau is constructed bottom-up, it also makes sense to read it
top-down
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Proof Tableaux

An Invalid Example
e consider the following invalid tableau

(true|)

(z+1=2x+1)
x :=x +1

(x=241)

e if the tableau were okay, then the result would be the arithmetic property x = x + 1,
a formula that does not hold for any number x
® problem in tableau

® assignment rule was not applied correctly
® reason: substitution has to replace all variables

® corrected version
(z+1=(x+1)+1)
X :=x +1

le=a+1)
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Proof Tableaux

Constructing the Proof Tableau — If-Then-Else
® aim: calculate ¢ such that

F (¢)) if b then C; else Cy (9)

can be derived
e applying our procedure recursively, we get

® formula o1 such that  (¢1]) C1 (9] is derivable
® formula @2 such that F (2| C2 (9)) is derivable

® then weakest precondition for if-then-else is formula
@ = (b— 1) A (=b — ¢2)

e formal justification that ¢ is sound

(1) C (%) = (pal) C2 (9]
FlpAB)Cr (9D F (oA —b) Co (¥)
F (¢)) if b then C; else Cs (9)
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Proof Tableaux

Example with If-Then-Else
® consider non-optimal code to compute the successor
(true)
(((z+1)-1=0—1=z+ DA (z+1)—1#0—z+1=2+1))
a :=x + 1;
(a=1=0—1=2z+1)A(a—1#0—a=z+1))
if (a - 1 = 0) then {

(1==z+1)
y :=1
(ly==z+1) (formula copied to end of then-branch)
} else {
(a=z+1)
y = a
(ly=z+1) (formula copied to end of else-branch)
}

ly==z+1)
® insertion of midconditions is completely automatic

® large formula obtained in 2nd line must be proven in underlying logic
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Proof Tableaux

Applying the While Rule

= (n A D) C ()
F (n) while b C (n A —b)

while

® |et us consider applicability in combination with implication-rule for arbitrary setting: how

to derive the following?
F (¢)) while b C ()

solution: find invariant i such that

° Ep— precondition implies invariant

° = (y)C(n) handle loop body recursively, produces =

® =EnpAb— 1~ 7 is indeed invariant

*e =EpA-b— invariant and —b implies postcondition
® notes

® invariant 77 has to be satisfied at beginning and end of loop-body, but not in between
® invariant often captures the core of an algorithm:

it describes connection between variables throughout execution
® finding invariant is not automatic, but for seeing the connection

it often helps to execute the loop a few rounds
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Proof Tableaux

Applying the While Rule — Soundness

= (nAb)C (n)
- (n)while b C (n A —b) "

hile

® |et us consider applicability in combination with implication-rule for arbitrary setting: how

to derive the following?
F (o)) while b C (¢)

solution: find invariant 7 such that

° Ep—1 precondition implies invariant
° = (y)C(n) handle loop body recursively, produces
® =npAb—~ 7 is indeed invariant
°* EnpA-b— invariant and —b implies postcondition

® soundness proof
E (D C(n)

F(nAb)C(n)
F (n) while b C (n A —b)

F (¢)) while b C ()
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Proof Tableaux

Schema to Find Loop Invariant

® to create a Hoare-triple for a while-loop

F (¢)) while b C ()
find n such that

*Eeo—n precondition implies invariant
* F(v)C(nd handle loop body recursively, produces ~
® =EnpAb— 1~ 7 is invariant
e =EpA-b— invariant and —b implies postcondition

® approach to find 7

guess initial 7, e.g., based on a few loop executions

check = ¢ — n and = n A —=b — 9; if not successful modify n
compute 7 by bottom-up generation of - (v]) C (n)

check EnAb — v

if last check is successful, proof is done

6. otherwise, adjust n

ARl

® note: if ¢ is not known for checking = ¢ — 7, then instead perform bottom-up
propagation of commands before while-loop (starting with 1) and then use precondition
of whole program
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Proof Tableaux

Verification of Factorial Program — Initial Invariant
® program P:y := 1; while x > 0 {y :=y * x; x := x - 1}
° aim: F (x =29 Az >0) P(y=xo!)
e for guessing initial invariant, execute a few iterations to compute 6!

iteration xg = y x!
0 6 6 1 720
1 6 5 6 120
2 6 4 30 24
3 6 3 120 6
4 6 2 360 2
5 6 1 720 1

observations
® column z! was added since computing z! is aim
® multiplication of y and x! stays identical: y - z! = x!
® hence use y - ! = xg! as initial candidate of invariant
® alternative reasoning with symbolic execution
® inywestore zg- (g —1) ...  (z+ 1) =z!/2!,

so multiplying with x! we get y - z! = x!
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Proof Tableaux

Verification of Factorial Program — Testing Initial Invariant
e initial invariant: n = (y - z! = x¢!)
® potential proof tableau
(z=z0Nz>0)

(12! = z0!) (implication verified)
y :=1;
(nd
while (x > 0) {
(nAzx>0)
y 1=y % x;
x :=x -1
(n)
}
(nA—z>0)
(y = zo!) (implication does not hold)

e problem: condition =2 > 0 (z < 0) does not enforce x = 0 at end
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Proof Tableaux

Verification of Factorial Program — Strengthening Invariant
e strengthened invariant: = (y - 2! = zo! Az > 0)
® potential proof tableau
(z=z0Nx >0

(1 -zl =z! Az >0 (implication verified)
y :=1;
(nD
while (x > 0) {
(nAz>0)
(y-z) - (z=—1)!=z! Az —12>0) (implication verified)
y o=y o*kx;
ly-(z—D==zo! Az —12>0)
x :=x -1
(nD
}
(nA—x> 0]
(y = zo!) (implication verified)

e proof completed, since all implications verified (e.g. by SMT solver)
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Proof Tableaux

Larger Example — Minimal-Sum Section

® assume extension of programming language: read-only arrays
(writing into arrays requires significant extension of calculus)
® user is responsible for proper array access
® problem definition
® given array al0],...,a[n — 1] of length n,
a section of a is a continuous block ali],...,a[j] with 0 <i < j<n
® define 5; ; as sum of section
Si,j = G[Z] + -4 a[j}
® section (7,7) is minimal, if S; ; < Sy j» for all sections (i’, j') of a
® example: consider array [—7,15,—1,3,15, —6, 4, —5]
® [3,15,—6] and [—6] are sections, but [3,—6,4] is not
® there are two minimal-sum sections: [—7] and [—6,4, —5]
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Proof Tableaux

Minimal-Sum Section — Tasks

® write a program that computes sum of minimal section
® write a specification that makes “compute sum of minimal section” formal

® show that program satisfies the formal specification
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Proof Tableaux

Minimal-Sum Section — Challenges

® trivial algorithm

® compute all sections (O(n?))
® compute all sums of these sections and find the minimum
® results in O(n?) algorithm

e aim: O(n)-algorithm which reads the array only once

® consequence: proof required that it is not necessary to explicitly compute all O(n?)
sections
e example: consider array [—8, 3, —65, 20,45, —100, —8,17, —4, —14]
® when reading from left-to-right a promising candidate might be [—8, 3, —65],
but there also is the later [-100, —8], so how to decide what to take?
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Proof Tableaux

Minimal-Sum Section — Algorithm

® idea of algorithm
® [ index that traverses array from left-to-right
® 5: minimal-sum of all sections seen so far
® {: minimal-sum of all sections that end at position &k — 1

e algorithm Min_Sum

k :=1;
t := al0];
s := al0];

while (k != n) {

t := min(t + alk], alkl);
min(s, t);
k+ 1

s
k

3

® correctness not obvious, so let us better prove it

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 38/66


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Proof Tableaux

Minimal-Sum Section — Specification

® we split the specification in two parts via two Hoare-triples
® Sp; specifies that the value of s is smaller than the sum of any section

(true) Min_Sum (¥i,j. 0 <i<j<n— s<8;;)
® Sps specifies that there exists some section whose sum is s

(true) Min_Sum (3i,j. 0 <i < j<nAs=28;|
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Proof Tableaux

Minimal-Sum Section — Proving Sp,

k :=
t
s :=

1;
al0];
al0];

while (k '=n) {

t

s

k
}

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs

:= min(t + alk], alk]);
:= min(s, t);
=k + 1

Sp1 @ (true) Min_Sum (Vi,j. 0 <i < j<n— s < 5;5)

find candidate invariant

® invariant often similar to postcondition
® invariant expresses relationships that are valid at beginning of each loop-iteration

suitable invariant is Inv; (s, k) defined as
Vi,j. 0<i<j<k—s< SQJ
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ux

(Inv1(al0], 1)) (true statement)

k :=1;

(Inv1(a[0], k)))
t := al[0];

(Inv1(al0], )]
s := al0];

(Inva(s, k)

while (k !=n) {
(Invi(s, k) ANk #nl
(Invy (min(s, min(¢ + a[k], a[k])), &k + 1)) (does not hold, no info on t)

t := min(t + alk], alk]);
(/nvi(min(s,t),k + 1))
s := min(s, t);
(Invi(s, k+1))
k :=k + 1;

(Invi (s, k)

(Invi(s, k) A =k # nl)

(Invi(s,n))) (implication verified)
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Proof Tableaux

Minimal-Sum Section — Strengthening Invariant

k :=1;
t := al[0];
s := al[0];

while (k !'= n) {
t := min(t + alk], alk]);
s := min(s, t);
k =k +1

}

Sp1 @ (true) Min_Sum (Vi,j. 0 <i < j<n— s < 5;5)
e suitable invariant for s is Invy(s, k) defined as
Vi, 0<i<j<k—5<5;;
e define similar invariant for ¢t: Invy(t, k) defined as
Vi.0<i<k—1t<S;51

® now try strengthened invariant Invy(s, k) A Invs(t, k)
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ux

(Inv1(al0], 1) A Inva(a[0], 1)) (true statement)

k :=1;

(Inv1(al0], k) A Inva(al0], k)))
t := al[0];

(Inv1(al0], k) A Inva(t, k)
s := al[0];

(Invi(s, k) A Inva(t, k)
while (k !=n) {
(Invi(s, k) Alnva(t, k) Ak # nl)
(Invy (min(s, min(t + a[k], a[k])), k + 1) A Inva(min(¢ + alk], alk]), k + 1)) (implication verified)
t := min(t + alk], alkl);
(Invi(min(s,t),k + 1) A Inva(t, k + 1))

s := min(s, t);
(Invi(s,k 4+ 1) Alnva(t, k + 1))
k =k + 1;

(Invi(s, k) A Inva(t, k)

(Invi(s, k) A Inva(t, k) A =k # n))

(Invi(s,m))) (implication verified)
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Minimal-

Proof Tableaux

Sum Section — Proving the Implications

® invariants
® Invi(s,k) =V1,7.0<i<j<k—5<5;,
i Invg(t, k) =Vi.0<i<k —t< Si,k—l

® implications
® true — Invi(a[0], 1) A Invy(a[0], 1)

® because of the conditions of the quantifiers, by fixing k = 1 we only have to consider section
(0,0), i.e, we show a[0] < Sp,0 = a[0]

® let 0 < k < n where n is length of array a; then Invy(s, k) A Inva(t, k) A k # n implies both
Invy(min(t + alk], alk]), k + 1) and Invy (min(s, min(¢ + a[k], a[k])), k + 1);
proof

RT (DCS @ UIBK)

® pick any 0 < ¢ < k + 1; we show min(¢ + a[k], a[k])) < Sik; if ¢ < k then
Sik = Si,k—1 + alk], so we use Inva(t, k) to get t < S; x—1 and thus
min(t + alk], alk])) <t + a[k] < Sik—1 + alk] = Sik;
otherwise, ¢ = k and we have min(¢ + a[k], a[k]) < alk] = Sk

® pickany 0<:<j<k+1;
we need to show min(s, min(t + alk], a[k])) < Si;;
if j = k then the result follows from the previous statement;
otherwise j < k and the result follows from Invi (s, k)
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Proof Tableaux

Proof Tableaux — Summary

® we have proven soundness of non-trivial algorithm Min_Sum
® with gaps
® we only proved Spp, but not Sps

® |emma on previous slide demanded 0 < k < n which does not follow from loop-condition
k # n; a proper fix would require a strengthened invariant which includes bounds on k

® main reasoning (proving the implications on previous slide) was done purely in logic with
no reference to program
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Verification Condition Generation



Verification Condition Generation

Verification Condition Generator — VCG

® previous part: find suitable invariants, propagate formulas via substitution, etc., and
check implication

® 3 VCG automates this process

® input is annotated program with pre- and post-conditions and invariants

® VCG generates implications automatically (verification conditions)

® verification conditions are passed to SMT-solver, theorem prover, etc.,

to finally show correctness

e VCG simplifies reasoning a lot, more automation

e still: in case SMT-solver or theorem prover fails, user needs to understand failure to
adapt invariants, assertions, or perform manual proofs, etc.
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. . Verification Condition Generation
IMP2 — A VCG Implementation in Isabelle

e IMP2 is an Isabelle formalization of our small imperative language while-language

e it includes a VCG; the verification conditions have to be proven using the Isabelle system

® the conditions can be forwarded to an SMT solver (sledgehammer)
® the conditions can be solved by Isabelle’'s automation (simp, ...)
® manual proofs are possible

® example: Demo0O6.thy

(note that x in IMP2 refers to initial value of = without explicit assumption xy = x)

procedure_spec (partial) fact prog(x)
returns y
assumes <x > 0>
ensures "y = fact_int xo"
defines <
y=1;
while (x > 0)
@invariant <y * fact_int x = fact_int xo>
{
y=y*x;
X x -1

}

>
apply veoll
apply simp
apply simp
oops
RT (DCS @ UIBK)
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Verification Condition Generation

Modular Verification via VCGs
* specifications via Hoare-triple (| P (7)) may be seen as a contract between supplier
and consumer of program P

® supplier insists that consumer invokes P only on states satisfying ¢
® supplier promises that after execution of P formula ¢ holds

e validation of Hoare-triples with Hoare-calculus can be seen as
validation of contracts for method- or procedure-calls

® once contracts have been verified for algorithm f, during verification one can replace
program invocations of f by its contract
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Verification Condition Generation

Example

® assume we want to write method for binomial coefficients

W)=mon

to compute chance of lotto-jackpot 1 : (469)

® example program

procedure_spec (partial) binom prog(n,k)
returns r
assumes <n > 0 A k >0 An > k>
ensures "r = binom_int no Ko"
defines <
a = fact prog(n);
b = fact prog(k);
[¢ fact_prog (n - k);
r=a/ (b * c)

>
apply vedll
® in example, we need to ensure that preconditions of factorial program are met

® generated verification conditions then use post-conditions for factorial
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Verification Condition Generation

Programming by Contract — Advantages

® in the same way as methods help to structure larger programs, contracts for these
methods help to verify larger programs

® reason: for verifying code invoking method m, it suffices to look at contract of m —
without looking at implementation of m
® positive effects
® add layer of abstraction
® easy to change implementation of m as long as contract stays identical
® verification becomes more modular
® example: for invocation of min in minimal-sum section it does not matter whether
® min is built-in operator which is substituted as such, or
® min is user-defined method that according to the contract computes the mathematical
min-operation
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Termination of Imperative Programs



Termination of Imperative Programs

Adding Termination to Calculus

® since while-loops are only source of non-termination in presented imperative language, it
suffices to adjust the while-rule in the Hoare-calculus

all other Hoare-calculus rules can be used as before
® recall: total correctness = partial correctness + termination
® previous while-rule already proved partial correctness
® only task: extend existing while-rule to additionally prove termination

® idea of ensuring termination: use variants
® a variant (or measure) is an integer expression;
® this integer expression strictly decreases in every loop iteration and
® at the same time the variant stays non-negative;
® conclusion: there cannot be infinitely many loop iterations

® in IMP2, termination is proved by omitting “(partial)” in procedure definitions, and by
providing a variant for every while-loop, cf. fact_total_prog in Demo06.thy
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Termination of Imperative Programs

A While-Rule For Total Correctness

® while-rule for partial correctness

F e AB) C (e
F () while b C (p A —b)) W

hile

e extended while-rule for total correctness

FleAbAeg=e>0)C(pAey>e>0)
F (e Ae>0)while b C (o A b))

while-total

where

® ¢ is variant expression with values before execution of C

e is (the same) variant expression with values after execution of C'

eg is fresh logical variable, used to store the value of e before: ey = e

hence, postcondition ey > ¢ enforces decrease of e when executing C

non-negativeness is added three times, even in precondition of while

e is of type integer so that SN {(x,y) € Z X Z | x > y > 0} can be used as underlying
terminating relation: each loop iteration corresponds to a step ([€]apuoes [€]au) iN this

relation ]
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Applying While-Total
FleAbANeg=e>0)C(pAeg>e>0)

Termination of Imperative Programs

F(phe>0)while b C (pn—b)  “Whiletotal
® application
® ¢ is fresh logical variable, so nothing to choose
® variant e has to be chosen, but this is often easy
® while (x <5) { ... x:=x+ 1 ...}issameas
while (5 - x>0 { ... x:=x+1 ...},soe=5—=z
® while (y >=x) { ... y:=y -2 ...} issameas
while (y ~ x>0 { ... y:=y -2 ...},soe=y—x (+2)
® yhile (x !'=y) { ... y:=y+1 ...}issameas
while (x ~y =0 { ... y:=y+1...},soe=z—y

® checking the condition is then easily possible via proof tableau, in the same way as for the
while-rule for partial correctness

® all side-conditions e > 0 can completely be eliminated by choosing e = max(0, ¢’) for some
€', but then proving ¢y > ¢ will become harder as it has to deal with max

® invariant ¢ can be taken unchanged from partial correctness proof

RT (DCS @ UIBK)
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Termination of Imperative Programs

Total Correctness of Factorial Program
® red parts have been added for termination proof with variant z — z

(true A z > 0)) (new termination condition on x)
(1=0lAz—02>0)

y :=1;
(y=0'Ax—0>0)
z := 0;
(ly==z2lAaz—22>0) (new condition added)
while (x != z) {
ly=zlAz#zNeg=x—2>0) (new condition added)
(ly-(z+1)=(+1)!Aeg>x—(2+1)>0) (more reasoning)
z =z + 1;
(ly-z=2'ANep >a—22>0)
yi=yoxoz;
(ly=2z'Neo>a—2>0) (new condition added)
}

(y =2l Az # 2|

(y==!)
RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 56/66


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination of Imperative Programs

Remarks on Total Correctness of Factorial Program
e precondition x > 0 was added automatically from termination proof
® in fact, the program does not terminate on negative inputs

e for factorial program (and other imperative programs) Hoare-calculus permits to prove
local termination, i.e., termination on certain inputs

® in contrast, for functional program we always considered
universal termination, i.e., termination of all inputs

® termination proofs can also be performed stand-alone
(without partial correctness proof):
just prove postcondition “true” with while-total-rule:

= (¢l P (true)

implies termination of P on inputs that satisfy ¢, so

F (true)) P (true))

shows universal termination of P
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Soundness of Hoare-Calculus

Soundness of Hoare-Calculus

® so far, we have two notions of soundness
® = (o) P (v): via semantic of imperative programs, i.e., whenever a |= ¢ and

(P, o) <™ (skip, ) then 8 =1 must hold
® | (¢)) P (%] : syntactic, what can be derived via Hoare-calculus rules

® missing: soundness of calculus, i.e.,

= (e) P () implies = (@) P ()

e formal proof is based on big-step semantics — (see exercises):
(P, o)) —* (skip, B) is turned into (P, «) —

® soundness of the calculus is then established by the following property, which is proven by
induction w.r.t. the Hoare-calculus rules for arbitrary «, 5:

Fle) C () —makFe—(Ca) =8 —BEY
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Soundness of Hoare-Calculus

Proving - (@) C (¢) —akEp— (C,a) = 8 — BV
Case 1: implication-rule
F () C(¢]) since = — ¢, F () C(¥'), and E 9" — o

e IH:Va,B.aE¢ — (Cia) 58— B EY

® assume a = ¢ and (C,a) —

® then by = ¢ — ¢ conclude a = ¢

® in combination with IH get 8 E ¢/

e with =4’ — 1 conclude § = ¢
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Soundness of Hoare-Calculus

Proving F (| C (|
Case 2: composition-rule
= () C1; C2 () since = (o)) C1 (n) and F (n) Co (4]
¢ |H-1: Vo, B.a o — (Cr,a) = — B =7
¢ |H-2: Vo,B.aEn— (Cy,a) > B — B EY
® assume a = ¢ and (C1;Ca, ) = 3
from the latter and the definition of —, there must be ~ such that (C1,«) — v and
(Ca,7) = B
by using IH-1 (choose a and 7 in V), obtain v =17
by using IH-2 (choose v and 5 in V), obtain 8 = ¢

W) —make—(Ca)=f—0FV
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Soundness of Hoare-Calculus

Proving - (o) C (¢Y) — alF¢ — (C,a) = — B
Case 3: if-then-else-rule
F (¢)) if b then C; else Cs (¢)
since F (@ A b)) C1 (¢) and F (o A =b) Co (9]
¢ |H-1: Vo, B.alF oAb — (Cr,a) > 8 — B EY
IH-2: Vo, B.a = o A—b — (Cy,a) = B — B
assume « = ¢ and (if b then C) else Cy, ) — 3
e perform case analysis on [b],
® w.l.o.g. we only consider the case [b], = true where

® from « |= ¢ conclude oo = o A'D
® from (if b then C) else C,a) — S conclude (C1, o) —

® by using IH-1 get 8 =
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Soundness of Hoare-Calculus

Proving - (o) C(¢)) —akFe— (Cia)=— B¢
Case 4: assignment-rule
F(p) @ :=e(y) since o =[z/e]

® assume a = and (z:=e€,a) =

® by definition of —, conclude 8 = a[z := [e]4]

® hence assumption « |= ¢ is equivalent to

* afEz/e by unrolling w-equality
° afz:=[e]a] EY by substitution lemma for formulas
°* BEY by unrolling 8-equality
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Soundness of Hoare-Calculus
Proving - (o) C (¢Y) — alF¢ — (Cia) = — S

Case 5: while-rule
F (@) while b C’ () since - (o Ab) C' (@) and p =@ A —b

® (outer) IH: Vo,B.aF oAb — (C',a) = 8 — BE

® we now prove o = ¢ — (while b C' ) = 3 — B E¢
by an inner induction on a w.r.t. —, but for fixed b, C’, 8, ¢, ¥
® case 1: (while b C',a) = 8
since [b], = false and = «
® in this case conclude f=aEpA-b=1v¢
® case 2: (while b C',a) —» 3
since [b], = true, (C',a) — v and (while b C’',v) —

inner IH: vy Ep — B EY
assume a = ¢

°

[ ]

® hencea = ADb

® by outer IH (choose o and v in V) get v E ¢
® then inner IH yields 8 &= ¢
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Soundness of Hoare-Calculus

Summary of Soundness of Hoare-Calculus

® since Hoare-calculus rules and semantics are formally defined, it is possible to verify
soundness of the calculus

® proof requires inner induction for while-loop,
since big-step semantics of while-command refers to itself

® here: only soundness of Hoare-calculus for partial correctness

® possible extension: total correctness

® define semantic notion =¢otar (¢|) C (] stating total correctness
® prove that Hoare-calculus with while-total is sound w.r.t. =0t
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Summary — Verification of Imperative Programs

® covered

® syntax and semantic of small imperative programming language

® Hoare-calculus to verify Hoare-triples (| P (1))

® proof tableaux and automation:

use VCG that converts program logic into implications (verification conditions) that must be
shown in underlying logic

proofs are often automatic, given good pre- and post-conditions and (in)variants

soundness of Hoare-calculus

programming by contracts: abstract from concrete method-implementations, use contracts
example VCG for core language: IMP2, based on Isabelle

® not covered

® heap-access, references, arrays, etc.: extension to separation logic, memory model
® bounded integers: reasoning engine for bit-vector-arithmetic
® multi-threading
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