

Summer Term 2024



# **Program Verification**

Part 6 – Verification of Imperative Programs

René Thiemann

Department of Computer Science

## **Imperative Programs**

## **Imperative Programs**

- we here consider a small imperative programming language
- it consists of
  - arithmetic expressions  $\mathcal{A}$  over some set of variables  $\mathcal{V}$

$$\frac{n \in \mathbb{Z}}{n \in \mathcal{A}} \qquad \frac{x \in \mathcal{V}}{x \in \mathcal{A}} \qquad \frac{\{e_1, e_2\} \subseteq \mathcal{A} \quad \odot \in \{\texttt{+,-,*}\}}{e_1 \odot e_2 \in \mathcal{A}}$$

• Boolean expressions  $\mathcal{B}$ 

$$\begin{array}{c} \underline{c \in \{\texttt{true}, \texttt{false}\}} \\ \hline c \in \mathcal{B} \\ \hline \\ \underline{b \in \mathcal{B}} \\ \underline{b \in \mathcal{B}} \\ \end{array} \begin{array}{c} \underline{\{e_1, e_2\} \subseteq \mathcal{A}} & \odot \in \{\texttt{=}, <, <\texttt{=}, \texttt{!=}\} \\ \hline \\ e_1 \odot e_2 \in \mathcal{B} \\ \hline \\ e_1 \odot e_2 \in \mathcal{B} \\ \hline \\ \underline{b_1, b_2\} \subseteq \mathcal{B}} & \odot \in \{\texttt{\&\&, \texttt{!}\,\texttt{!}\,\texttt{!}\} \\ \hline \\ b_1 \odot b_2 \in \mathcal{B} \end{array} \end{array}$$

#### • commands C

RT (DCS @ UIBK)

Part 6 - Verification of Imperative Programs

3/66

Imperative Programs

**Commands and Programs** 

- commands  $\mathcal C$  consist of
  - assignments  $\frac{x \in \mathcal{V} \quad e \in \mathcal{A}}{x := e \in \mathcal{C}}$
  - if-then-else  $\frac{b \in \mathcal{B} \quad \{C_1, C_2\} \subseteq \mathcal{C}}{\texttt{if } b \texttt{ then } C_1 \texttt{ else } C_2 \in \mathcal{C}}$ 
    - - $\frac{\{C_1, C_2\} \subseteq \mathcal{C}}{C_1; C_2 \in \mathcal{C}}$
      - $b \in \mathcal{B} \quad C \in \mathcal{C}$ while  $b \{C\} \in \mathcal{C}$
  - no-operation

• while-loops

• sequential execution

- $\overline{\texttt{skip} \in \mathcal{C}}$
- curly braces are added for disambiguation, e.g. consider while  $x < 5 \{ x := x + 2 \}$ ; y := y - 1

```
• a program P is just a command C
RT (DCS @ UIBK)
```

```
Part 6 - Verification of Imperative Programs
```

Imperative Programs

### Verification

- partial correctness predicate via Hoare-triples:  $\models (|\varphi|) P (|\psi|)$ 
  - semantic notion
  - meaning: whenever initial state satisfies  $\varphi$ ,
  - and execution of P terminates,
  - then final state satisfies  $\psi$
  - $\varphi$  is called precondition,  $\psi$  is postcondition
  - here, formulas may range over program variables and logical variables
  - clearly,  $\models$  requires semantic of commands
- Hoare calculus:  $\vdash (|\varphi|) P (|\psi|)$ 
  - syntactic calculus (similar to natural deduction)
  - sound: whenever  $\vdash (|\varphi|) P(|\psi|)$  then  $\models (|\varphi|) P(|\psi|)$

#### **S**emantics – **E**xpressions

Semantics – Programs

- state is evaluation  $\alpha: \mathcal{V} \to \mathbb{Z}$
- · semantics of arithmetic and Boolean expressions are defined as
  - $\llbracket \cdot \rrbracket_{\alpha} : \mathcal{A} \to \mathbb{Z}$ e.g., if  $\alpha(x) = 5$  then  $\llbracket 6 * x + 1 \rrbracket_{\alpha} = 31$ •  $\llbracket \cdot \rrbracket_{\alpha} : \mathcal{B} \to \{ \text{true, false} \}$ e.g., if  $\alpha(x) = 5$  then  $\llbracket 6 * x + 1 < 20 \rrbracket_{\alpha} = \text{false}$
- we omit the straight-forward recursive definitions of  $\llbracket \cdot \rrbracket_{\alpha}$  here

| RT (DCS @ UIBK) | Part 6 – Verification of Imperative Programs | 5/66 | RT (DCS @ UIBK) | Part 6 – Verification of Imperative Programs | 6/66 |
|-----------------|----------------------------------------------|------|-----------------|----------------------------------------------|------|
|                 |                                              |      |                 |                                              |      |

Imperative Programs

7/66

Semantics – Commands

$$\label{eq:constraint} \begin{array}{l} \hline (x:=e,\alpha) \hookrightarrow (\texttt{skip}, \alpha[x:=\llbracket e \rrbracket_{\alpha}]) \\ \hline \llbracket b \rrbracket_{\alpha} = \texttt{true} \\ \hline (\texttt{if } b \texttt{ then } C_1 \texttt{ else } C_2, \alpha) \hookrightarrow (C_1, \alpha) \\ \hline \llbracket b \rrbracket_{\alpha} = \texttt{false} \\ \hline (\texttt{if } b \texttt{ then } C_1 \texttt{ else } C_2, \alpha) \hookrightarrow (C_2, \alpha) \\ \hline (C_1,\alpha) \hookrightarrow (C_1',\beta) \\ \hline (C_1;C_2,\alpha) \hookrightarrow (C_1';C_2,\beta) \\ \hline \hline (\texttt{skip};C,\alpha) \hookrightarrow (C,\alpha) \\ \hline \llbracket b \rrbracket_{\alpha} = \texttt{true} \\ \hline (\texttt{while } b \ C,\alpha) \hookrightarrow (C;\texttt{while } b \ C,\alpha) \\ \hline \llbracket b \rrbracket_{\alpha} = \texttt{false} \\ \hline (\texttt{while } b \ C,\alpha) \hookrightarrow (\texttt{skip},\alpha) \end{array}$$

•  $(skip, \alpha)$  is normal form

RT (DCS @ UIBK)

Part 6 – Verification of Imperative Programs

 $\forall \alpha, \beta. \ \alpha \models \varphi \longrightarrow (P, \alpha) \hookrightarrow^* (\text{skip}, \beta) \longrightarrow \beta \models \psi$ • example specification:  $(|x > 0|) P (|y \cdot y < x|)$ • if initially x > 0, after running the program P, the final values of x and y must satisfy  $y \cdot y < x$ • nothing is required if initially  $x \le 0$ • nothing is required if program does not terminate
• specification is satisfied by program P defined as y := 0• specification is satisfied by program P defined as y := 0;

• we can formally define  $\models (|\varphi|) P(|\psi|)$  as

Part 6 - Verification of Imperative Programs

**Program Variables and Logical Variables** 

• consider program *Fact* v := 1; while (x != 0) { y := y \* x;x := x - 1} • specification for factorial: does  $\models (|x \ge 0|)$  Fact (|y = x!|) hold? • if  $\alpha(x) = 6$  and  $(Fact, \alpha) \hookrightarrow^* (\text{skip}, \beta)$  then  $\beta(y) = 720 = 6!$ • problem:  $\beta(x) = 0$ , so y = x! does not hold for final values • hence  $\not\models (x > 0)$  Fact (y = x!), since specification is wrong • solution: store initial values in logical variables • in example: introduce logical variable  $x_0$  $\models (|x = x_0 \land x > 0|) Fact (|y = x_0!)$ via logical variables we can refer to initial values RT (DCS @ UIBK) Part 6 - Verification of Imperative Programs

A Calculus for Program Verification

- aim: syntax directed calculus to reason about programs
- Hoare calculus separates reasoning on programs from logical reasoning (arithmetic, ...)
- present calculus as overview now, then explain single rules

$$\begin{array}{c} \displaystyle \frac{\vdash (\!\left|\varphi\right|\!\right) C_1\left(\!\left|\eta\right|\!\right) \ \vdash \left(\!\left|\eta\right|\!\right) C_2\left(\!\left|\psi\right|\!\right)}{\vdash \left(\!\left|\varphi\right|\!\right) C_1; C_2\left(\!\left|\psi\right|\!\right)} \quad \text{composition} \\ \hline \\ \displaystyle \frac{\vdash (\!\left|\varphi\right|\!\left|\varphi\right|\!\right) C_1; (\varphi) \ \vdash (\varphi \land \varphi) \ \text{assignment}}{\vdash (\!\left|\varphi\right|\!\right) \left(\!\left|\varphi\right|\!\right) \ \vdash (\varphi \land \varphi) \ C_2\left(\!\left|\psi\right|\!\right)} \quad \text{if-then-else} \\ \displaystyle \frac{\vdash (\!\left|\varphi\right|\!\right) \text{ if } b \text{ then } C_1 \text{ else } C_2\left(\!\left|\psi\right|\!\right)}{\vdash (\!\left|\varphi\right|\!\right) \text{ if } b \text{ then } C_1 \text{ else } C_2\left(\!\left|\psi\right|\!\right)} \quad \text{while} \\ \displaystyle \frac{\vdash (\!\left|\varphi\right|\!\right) \mathbb{C}\left(\!\left|\varphi\right|\!\right)}{\vdash (\!\left|\varphi\right|\!\right) \text{ while } b \ C\left(\!\left|\varphi\right|\!\right) - \left(\!\left|\varphi\right|\!\right)} \quad \text{while} \\ \displaystyle \frac{\vdash \varphi \longrightarrow \varphi' \ \vdash (\!\left|\varphi'\right|\!\right) C\left(\!\left|\psi'\!\right|\!\right)}{\vdash (\!\left|\varphi\!\right|\!\right) C\left(\!\left|\psi\!\right|\!\right)} \quad \text{implication} \end{array}$$

Imperative Programs

9/66

Hoare Calculus

11/66

**Hoare Calculus** 

**Composition Rule** 

$$\frac{\vdash (\! \left| \varphi \right|\!) C_1 (\! \left| \eta \right|\!) \vdash (\! \left| \eta \right|\!) C_2 (\! \left| \psi \right|\!)}{\vdash (\! \left| \varphi \right|\!) C_1; C_2 (\! \left| \psi \right|\!)} \text{ composition }$$

- applicability: whenever command is sequential composition  $C_1; C_2$
- precondition is  $\varphi$  and aim is to show that  $\psi$  holds after execution
- rationale: find some midcondition  $\eta$  such that execution of  $C_1$  guarantees  $\eta$ , which can then be used as precondition to conclude  $\psi$  after execution of  $C_2$
- $\bullet\,$  automation: finding suitable  $\eta$  is usually automatic, see later slides

Hoare Calculus

**Assignment Rule** 

Hoare Calculus

Hoare Calculus

$$\overline{\vdash \left( \left| \varphi[x/e] \right| \right) x := e \left( \left| \varphi \right| \right)} \text{ assignment}$$

- applicability: whenever command is an assignment x := e
- to prove  $\varphi$  after execution, show  $\varphi[x/e]$  before execution
- substitution seems to be on wrong side
  - effect of assignment is substitution x/e, so shouldn't rule be  $\vdash (\! [\varphi]) x := e (\! [\varphi[x/e]]) ?$ No, this reversed rule would be wrong
    - assume before executing x := 5, the value of x is 6
    - before execution  $\varphi = (x = 6)$  is satisfied, but after execution  $\varphi[x/e] = (5 = 6)$  is not satisfied
- correct argumentation works as follows
  - if we want to ensure  $\varphi$  after the assignment then we need to ensure that the resulting situation ( $\varphi[x/e]$ ) holds before
  - correct examples
    - $\vdash (|2 = 2|) x := 2 (|x = 2|)$
    - $\vdash (|2 = 4|) x := 2 (|x = 4|)$
    - $\vdash (2 y > 2^2) x := 2(x y > x^2)$

applying rule is easy when read from right to left: just substitute
 Part 6 - Verification of Imperative Programs

While Rule

$$\frac{\vdash (|\varphi \land b|) C (|\varphi|)}{\vdash (|\varphi|) \text{ while } b C (|\varphi \land \neg b|)} \text{ while}$$

- applicability: only rule that handles while-loop
- key ingredient: loop invariant  $\varphi$
- rationale
  - $\varphi$  is precondition, so in particular satisfied before loop execution
  - $\vdash (\varphi \land b) C (\varphi)$  ensures, that when entering the loop,  $\varphi$  will be satisfied after one execution of the loop body C
  - in total,  $\varphi$  will be satisfied after each loop iteration
  - hence, when leaving the loop,  $\varphi$  and  $\neg b$  are satisfied
  - while-rule does not enforce termination, partial correctness!
- automation
  - not automatic, since usually φ is not provided and postcondition is not of form φ ∧ ¬b;
     example: ⊢ (|x = x<sub>0</sub> ∧ x ≥ 0|) Fact (|y = x<sub>0</sub>!)

finding suitable 
$$\varphi$$
 is hard and needs user guidance

RT (DCS @ UIBK)

Part 6 – Verification of Imperative Programs

If-Then-Else Rule

$$\frac{\vdash (\varphi \land b) C_1 (\psi) \quad \vdash (\varphi \land \neg b) C_2 (\psi)}{\vdash (\varphi) \text{ if } b \text{ then } C_1 \text{ else } C_2 (\psi)} \text{ if then-else}$$

- applicability: whenever command is an if-then-else
- effect:
  - the preconditions in the two branches are strengthened by adding the corresponding (negated) condition b of the if-then-else
  - often the addition of b and  $\neg b$  is crucial to be able to perform the proofs for the Hoare-triples of  $C_1$  and  $C_2$ , respectively
- rationale: if b is true in some state, then the execution will choose  $C_1$  and we can add b as additional assumption; similar for other case
- applying rule is trivial from right to left
- 13/66 RT (DCS @ UIBK)

Part 6 – Verification of Imperative Programs

Hoare Calculus

14/66

Implication Rule

$$\frac{\models \varphi \longrightarrow \varphi' \quad \vdash (\!\!| \varphi' |\!\!) C (\!\!| \psi' |\!\!) \quad \models \psi' \longrightarrow \psi}{\vdash (\!\!| \varphi |\!\!) C (\!\!| \psi |\!\!)} \text{ implication}$$

- applicability: every command; does not change command
- rationale: weakening precondition or strengthening postcondition is sound
- remarks
  - only rule which does not decompose commands
  - application relies on prover for underlying logic, i.e., one which can prove implications
  - three main applications
    - simplify conditions that arise from applying other rules in order to get more readable proofs, e.g., replace x + 1 = y - 2 by x = y - 3
    - prepare invariants, e.g., change postcondition from  $\psi$  to some formula  $\psi'$  of form  $\chi \wedge \neg b$
    - core reasoning engine when closing proofs for while-loops in proof tableaux, see later slides

### Example Proof

$$\frac{ \begin{array}{c} \vdash \left( \left(y \cdot x\right) \cdot \left(x - 1\right) \right! = x_{0}! \land x - 1 \ge 0 \right) \texttt{y} := \texttt{y} * \texttt{x} \left( \texttt{y} \cdot \left(x - 1\right) \right! = x_{0}! \land x - 1 \ge 0 \right) }{ \vdash \left( \texttt{y} \cdot x! = x_{0}! \land x \ge 0 \land x \ne 0 \right) \texttt{y} := \texttt{y} * \texttt{x} \left( \texttt{y} \cdot \left(x - 1\right) \right! = x_{0}! \land x - 1 \ge 0 \right) } \\ prf_{2} \\ \hline \left( \texttt{y} \cdot x! = x_{0}! \land x \ge 0 \land x \ne 0 \right) \texttt{y} := \texttt{y} * \texttt{x} : \texttt{x} := \texttt{x} - 1 \left( \texttt{y} \cdot x! = x_{0}! \land x \ge 0 \right) \\ \hline \left( \texttt{y} \cdot x! = x_{0}! \land x \ge 0 \right) \texttt{while} \texttt{x} != \texttt{0} \left\{ \texttt{y} := \texttt{y} * \texttt{x} : \texttt{x} := \texttt{x} - 1 \left( \texttt{y} \cdot x! = x_{0}! \land x \ge 0 \right) \\ \hline \left( \texttt{y} \cdot x! = x_{0}! \land x \ge 0 \right) \texttt{while} \texttt{x} != \texttt{0} \left\{ \texttt{y} := \texttt{y} * \texttt{x} : \texttt{x} := \texttt{x} - 1 \right\} \left( \texttt{y} \cdot x! = x_{0}! \land x \ge 0 \land \neg x \ne 0 \right) \\ \hline \begin{array}{c} prf_{1} \\ \hline \left( \texttt{y} \cdot x! = x_{0}! \land x \ge 0 \right) \texttt{while} \texttt{x} != \texttt{0} \left\{ \texttt{y} := \texttt{y} * \texttt{x} : \texttt{x} := \texttt{x} - 1 \right\} \left( \texttt{y} = x_{0}! \land x \ge 0 \land \neg x \ne 0 \right) \\ \hline \left( \texttt{y} = x_{0} \land x \ge 0 \right) \texttt{y} := \texttt{1} \texttt{while} \texttt{x} != \texttt{0} \left\{ \texttt{y} := \texttt{y} * \texttt{x} : \texttt{x} := \texttt{x} - 1 \right\} \left( \texttt{y} = x_{0}! \right) \end{aligned}$$

where  $prf_1$  is the following proof

 $\boxed{ \begin{array}{c} \displaystyle \overbrace{\vdash (1 \cdot x! = x_0! \land x \geq 0) | \mathbf{y} \ := \ \mathbf{1} \left( y \cdot x! = x_0! \land x \geq 0 \right) \\ \displaystyle \vdash (x = x_0 \land x \geq 0) | \mathbf{y} \ := \ \mathbf{1} \left( y \cdot x! = x_0! \land x \geq 0 \right) \end{array}}$ 

and  $pr\!f_2$  is the following proof

 $\overline{ \vdash (\! \mid y \cdot (x-1)! = x_0! \land x - 1 \ge 0)\!) \, \mathtt{x} \, := \, \mathtt{x} \, - \, \mathtt{1} \, (\! \mid \! y \cdot x! = x_0! \land x \ge 0)\!)}$ 

- only creative step: invention of loop invariant  $y \cdot x! = x_0! \wedge x \ge 0$
- quite unreadable, introduce proof tableaux RT (DCS @ UIBK) Part 6 - Verification of Imperative Programs

17/66

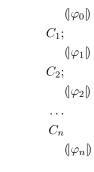
Hoare Calculus

**Proof Tableaux** 

Proof Tableaux

#### Proof Tableaux

- main ideas
  - write program commands line-by-line
  - interleave program commands with midconditions
- structure



where none of the  $C_i$  is a sequential execution

### **Problems in Presentation of Hoare Calculus**

- proof trees become quite large even for small examples
- reason: lots of duplication, e.g., in composition rule

$$\frac{\vdash (\!\!| \varphi |\!\!|) C_1(\!\!| \eta |\!\!|) \vdash (\!\!| \eta |\!\!|) C_2(\!\!| \psi |\!\!|)}{\vdash (\!\!| \varphi |\!\!|) C_1; C_2(\!\!| \psi |\!\!|)} \text{ composition}$$

every formula  $\varphi$ ,  $\eta$ ,  $\psi$  occurs twice

• aim: develop better representation of Hoare-calculus proofs

19/66

Proof Tableaux

 $(\varphi_i) \\ C_{i+1}; \\ (\varphi_{i+1})$ 

- problem: how to find all the midconditions  $\varphi_i$ ?
- solution
  - assume  $\varphi_{i+1}$  (and of course  $C_{i+1}$ ) is given
  - then try to compute φ<sub>i</sub> as weakest precondition,
     i.e., φ<sub>i</sub> should be logically weakest formula satisfying

$$\models (\!|\varphi_i|\!) C_i (\!|\varphi_{i+1}|\!)$$

• we will see, that such weakest preconditions can for many commands be computed automatically

RT (DCS @ UIBK)

Part 6 – Verification of Imperative Programs

```
Constructing the Proof Tableau
```

RT (DCS @ UIBK)

- aim: verify  $\vdash (|\varphi'_0|) C_1; \ldots; C_n (|\varphi_n|)$
- approach: compute formulas  $\varphi_{n-1},\ldots,\varphi_0$  , e.g., by taking weakest preconditions

| $(\varphi_0)$                                 |
|-----------------------------------------------|
| $C_1;$                                        |
| $( \varphi_1 )$                               |
|                                               |
| $C_{n-1};$                                    |
| $\left( \left  \varphi_{n-1} \right  \right)$ |
| $C_n$                                         |
| $( \varphi_n )$                               |

and check  $\models \varphi'_0 \longrightarrow \varphi_0$ this last check corresponds to an application of the implication-rule

- next: consider the various commands how to compute a suitable formula  $\varphi_i$  given  $C_{i+1}$  and  $\varphi_{i+1}$
- 21/66

Proof Tableaux

Proof Tableaux

Part 6 – Verification of Imperative Programs

Proof Tableaux

24/66

22/66

- Constructing the Proof Tableau Implication • represent implication-rule by writing two consecutive formulas

whenever  $\models \psi \longrightarrow \varphi$ 

application

• simplify formulas

y := y \* y

x := y + 1

• close proof tableau at the top, to turn given precondition into computed formula at top of program, e.g.,  $\models \varphi'_0 \longrightarrow \varphi$  on slide 22

 $(|\psi|)$ 

 $(\varphi)$ 

• example proof of 
$$\vdash (|y = 2|)$$
 y := y \* y; x := y + 1 (|x = 5|)  
(|y = 2|)

 $(|y \cdot y = 4|)$ 

(|y| = 4)

(|x = 5|)

(|y+1| = 5|)

= 5) Part 6 – Verification of Imperative Programs

Constructing the Proof Tableau – Assignment

• for the assignment, the weakest precondition is computed via

$$\begin{array}{c} \left( \varphi[x/e] \right) \\ x := e \\ \left( \left| \varphi \right| \right) \end{array}$$

• application is completely automatic: just substitute

RT (DCS @ UIBK)

RT (DCS @ UIBK)

Proof Tableaux

**Example with Destructive Updates** 

• assume we want to calculate u = x + y via the following program P

$$(|\mathsf{true}|)$$
$$(|x + y = x + y|)$$
$$z := x$$
$$(|z + y = x + y|)$$
$$z := z + y$$
$$(|z = x + y|)$$
$$u := z$$
$$(|u = x + y|)$$

- the midconditions have been inserted fully automatic
- hence we easily conclude  $\vdash (|\mathsf{true}|) P (|u = x + y|)$
- note: although the tableau is constructed bottom-up, it also makes sense to read it top-down

```
RT (DCS @ UIBK)
```

```
Part 6 - Verification of Imperative Programs
```

```
An Invalid Example
```

Proof Tableaux

consider the following invalid tableau

([true])  
(
$$x + 1 = x + 1$$
]  
x := x + 1  
( $x = x + 1$ )

• if the tableau were okay, then the result would be the arithmetic property x = x + 1, a formula that does not hold for any number x

• problem in tableau

• assignment rule was not applied correctly

• reason: substitution has to replace all variables

corrected version

RT (DCS @ UIBK)

$$(x + 1 = (x + 1) + 1)$$
  
x := x + 1  
 $(x = x + 1)$ 

Part 6 - Verification of Imperative Programs

26/66

Proof Tableaux

#### Constructing the Proof Tableau – If-Then-Else Example with If-Then-Else • aim: calculate $\varphi$ such that consider non-optimal code to compute the successor (true) $\vdash (|\varphi|)$ if b then $C_1$ else $C_2(|\psi|)$ $(((x+1)-1=0\longrightarrow 1=x+1)\land ((x+1)-1\neq 0\longrightarrow x+1=x+1))$ a := x + 1;can be derived $((a-1=0\longrightarrow 1=x+1)\land (a-1\neq 0\longrightarrow a=x+1))$ • applying our procedure recursively, we get if (a - 1 = 0) then { • formula $\varphi_1$ such that $\vdash (|\varphi_1|) C_1 (|\psi|)$ is derivable (1 = x + 1)• formula $\varphi_2$ such that $\vdash (|\varphi_2|) C_2 (|\psi|)$ is derivable y := 1 (|y = x + 1|)(formula copied to end of then-branch) • then weakest precondition for if-then-else is formula } else { $\varphi := (b \longrightarrow \varphi_1) \land (\neg b \longrightarrow \varphi_2)$ (|a = x + 1|)v := a • formal justification that $\varphi$ is sound (y = x + 1)(formula copied to end of else-branch)

25/66

Proof Tableaux

$$\frac{\vdash (|\varphi_1|) C_1 (|\psi|)}{\vdash (|\varphi \land b|) C_1 (|\psi|)} \quad \frac{\vdash (|\varphi_2|) C_2 (|\psi|)}{\vdash (|\varphi \land \neg b|) C_2 (|\psi|)}$$
$$\frac{\vdash (|\varphi|) \text{ if } b \text{ then } C_1 \text{ else } C_2 (|\psi|)}{\vdash (|\varphi|) \text{ for them } C_1 \text{ else } C_2 (|\psi|)}$$

RT (DCS @ UIBK)

(|y| = x + 1))

• insertion of midconditions is completely automatic

• large formula obtained in 2nd line must be proven in underlying logic RT (DCS @ UIBK) Part 6 - Verification of Imperative Programs

Applying the While Rule

to derive the following?

•  $\models \varphi \longrightarrow n$ 

notes

RT (DCS @ UIBK)

•  $\vdash (|\gamma|) C (|\eta|)$ 

•  $\models \eta \land b \longrightarrow \gamma$ 

•  $\models n \land \neg b \longrightarrow \psi$ 

solution: find invariant  $\eta$  such that

Proof Tableaux

29/66

Proof Tableaux

precondition implies invariant

 $\eta$  is indeed invariant

handle loop body recursively, produces  $\gamma$ 

invariant and  $\neg b$  implies postcondition

Proof Tableaux

$$\frac{\vdash (\eta \land b) C (\eta)}{\vdash (\eta) \text{ while } b \ C (\eta \land \neg b)} \text{ while }$$

 let us consider applicability in combination with implication-rule for arbitrary setting: how to derive the following?

 $\vdash (|\varphi|)$  while  $b \ C (|\psi|)$ 

solution: find invariant  $\eta$  such that

Applying the While Rule – Soundness

| ٠ | $\models \varphi \longrightarrow \eta$           |
|---|--------------------------------------------------|
| • | $\vdash (\uparrow \gamma)) C (\uparrow \eta)$    |
| ٠ | $\models \eta \land b \longrightarrow \gamma$    |
| ٠ | $\models \eta \land \neg b \longrightarrow \psi$ |

soundness proof

RT (DCS @ UIBK)

precondition implies invariant handle loop body recursively, produces  $\gamma$  $\eta$  is indeed invariant invariant and  $\neg b$  implies postcondition

$$\frac{ \begin{array}{c} \vdash (\gamma) C (\eta) \\ \hline (\eta \wedge b) C (\eta) \end{array}}{ \vdash (\eta) \text{ while } b C (\eta \wedge \neg b) \\ \hline \vdash (\varphi) \text{ while } b C (\psi) \end{array}}$$

Part 6 - Verification of Imperative Programs

30/66

Proof Tableaux

Schema to Find Loop Invariant

• to create a Hoare-triple for a while-loop

• invariant often captures the core of an algorithm:

it often helps to execute the loop a few rounds

it describes connection between variables throughout execution • finding invariant is not automatic, but for seeing the connection

 $\vdash (|\varphi|)$  while  $b \ C (|\psi|)$ 

 $\frac{\vdash (\eta \land b) C (\eta)}{\vdash (\eta) \text{ while } b C (\eta \land \neg b)} \text{ while }$ 

let us consider applicability in combination with implication-rule for arbitrary setting: how

 $\vdash (|\varphi|)$  while  $b \ C (|\psi|)$ 

• invariant  $\eta$  has to be satisfied at beginning and end of loop-body, but not in between

Part 6 - Verification of Imperative Programs

find  $\eta$  such that

| • $\models \varphi \longrightarrow \eta$           | precondition implies invariant                  |
|----------------------------------------------------|-------------------------------------------------|
| • $\vdash ( \gamma ) C ( \eta )$                   | handle loop body recursively, produces $\gamma$ |
| • $\models \eta \land b \longrightarrow \gamma$    | $\eta$ is invariant                             |
| • $\models \eta \land \neg b \longrightarrow \psi$ | invariant and $ eg b$ implies postcondition     |

• approach to find  $\eta$ 

1. guess initial  $\eta$ , e.g., based on a few loop executions

2. check  $\models \varphi \longrightarrow \eta$  and  $\models \eta \land \neg b \longrightarrow \psi$ ; if not successful modify  $\eta$ 

- 3. compute  $\gamma$  by bottom-up generation of  $\vdash (|\gamma|) C (|\eta|)$
- 4. check  $\models \eta \land b \longrightarrow \gamma$
- 5. if last check is successful, proof is done
- 6. otherwise, adjust  $\eta$
- note: if  $\varphi$  is not known for checking  $\models \varphi \longrightarrow \eta$ , then instead perform bottom-up propagation of commands before while-loop (starting with  $\eta$ ) and then use precondition of whole program

Verification of Factorial Program – Initial Invariant

- program P: y := 1; while x > 0 {y := y \* x; x := x 1}
- aim:  $\vdash (|x = x_0 \land x \ge 0|) P (|y = x_0!)$
- for guessing initial invariant, execute a few iterations to compute 6!

| $x_0$ | x                     | y                               | x!                                                   |
|-------|-----------------------|---------------------------------|------------------------------------------------------|
| 6     | 6                     | 1                               | 720                                                  |
| 6     | 5                     | 6                               | 120                                                  |
| 6     | 4                     | 30                              | 24                                                   |
| 6     | 3                     | 120                             | 6                                                    |
| 6     | 2                     | 360                             | 2                                                    |
| 6     | 1                     | 720                             | 1                                                    |
|       | 6<br>6<br>6<br>6<br>6 | 6 6<br>6 5<br>6 4<br>6 3<br>6 2 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

observations

- column x! was added since computing x! is aim
- multiplication of y and x! stays identical:  $y \cdot x! = x_0!$
- hence use  $y \cdot x! = x_0!$  as initial candidate of invariant
- alternative reasoning with symbolic execution

• in y we store 
$$x_0 \cdot (x_0 - 1) \cdot \ldots \cdot (x + 1) = x_0!/x!$$
,

so multiplying with x! we get  $y \cdot x! = x_0!$ RT (DCS @ UIBK)

Part 6 – Verification of Imperative Programs

Proof Tableaux Proof Tableaux Verification of Factorial Program – Testing Initial Invariant Verification of Factorial Program – Strengthening Invariant • initial invariant:  $\eta = (y \cdot x! = x_0!)$ • strengthened invariant:  $\eta = (y \cdot x! = x_0! \land x \ge 0)$  potential proof tableau • potential proof tableau  $(|x = x_0 \land x > 0|)$  $(|x = x_0 \land x > 0|)$  $(1 \cdot x! = x_0!)$ (implication verified)  $(1 \cdot x! = x_0! \land x > 0)$ (implication verified) y := 1; y := 1;  $(|\eta|)$  $(\eta)$ while (x > 0) { while (x > 0) {  $(\eta \wedge x > 0)$  $(\eta \wedge x > 0)$  $((y \cdot x) \cdot (x - 1)! = x_0! \land x - 1 > 0))$ (implication verified) y := y \* x; y := y \* x; $(|y \cdot (x-1)| = x_0! \land x - 1 > 0)$ x := x - 1 x := x - 1  $(\eta)$  $(\eta)$  $(\eta \land \neg x > 0)$  $(\eta \wedge \neg x > 0)$  $(|y| = x_0!)$ (implication does not hold)  $(|y| = x_0!)$ (implication verified) • problem: condition  $\neg x > 0$  ( $x \le 0$ ) does not enforce x = 0 at end proof completed, since all implications verified (e.g. by SMT solver) RT (DCS @ UIBK) Part 6 – Verification of Imperative Programs RT (DCS @ UIBK) Part 6 - Verification of Imperative Programs 33/66 34/66

Proof Tableaux

Larger Example – Minimal-Sum Section

- assume extension of programming language: read-only arrays (writing into arrays requires significant extension of calculus)
- user is responsible for proper array access
- problem definition
  - given array  $a[0], \ldots, a[n-1]$  of length n,
  - a section of a is a continuous block  $a[i], \ldots, a[j]$  with  $0 \leq i \leq j < n$
  - define  $S_{i,j}$  as sum of section

$$S_{i,j} := a[i] + \dots + a[j]$$

- section (i, j) is minimal, if  $S_{i,j} \leq S_{i',j'}$  for all sections (i', j') of a
- example: consider array  $\left[-7,15,-1,3,15,-6,4,-5\right]$ 
  - $\left[3,15,-6\right]$  and  $\left[-6\right]$  are sections, but  $\left[3,-6,4\right]$  is not
  - there are two minimal-sum sections:  $\left[-7\right]$  and  $\left[-6,4,-5\right]$

Minimal-Sum Section – Tasks

- write a program that computes sum of minimal section
- write a specification that makes "compute sum of minimal section" formal
- show that program satisfies the formal specification

Proof Tableaux

38/66

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |                | Minimal-Sum Sect                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tion – Algorithm                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| <ul> <li>Minimal-Sum Section – Challenges</li> <li>trivial algorithm <ul> <li>compute all sections (O(n<sup>2</sup>))</li> <li>compute all sums of these sections and find the minimum</li> <li>results in O(n<sup>3</sup>) algorithm</li> </ul> </li> <li>aim: O(n)-algorithm which reads the array only once</li> <li>consequence: proof required that it is not necessary to explicitly compute all O(n<sup>2</sup>) sections</li> <li>example: consider array [-8, 3, -65, 20, 45, -100, -8, 17, -4, -14]</li> <li>when reading from left-to-right a promising candidate might be [-8, 3, -65], but there also is the later [-100, -8], so how to decide what to take?</li> </ul> |                                              | $O(n^2)$       | <ul> <li>idea of algorithm</li> <li>k: index that traverses array from left-to-right</li> <li>s: minimal-sum of all sections seen so far</li> <li>t: minimal-sum of all sections that end at position k - 1</li> <li>algorithm Min_Sum</li> <li>k := 1;</li> <li>t := a[0];</li> <li>s := a[0];</li> <li>while (k != n) {</li> <li>t := min(t + a[k], a[k]);</li> <li>s := min(s, t);</li> <li>k := k + 1</li> <li>correctness not obvious, so let us better prove it</li> </ul> |                                              |
| RT (DCS @ UIBK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Part 6 – Verification of Imperative Programs | 37/66          | RT (DCS @ UIBK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Part 6 – Verification of Imperative Programs |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              | Proof Tableaux | Minimal-Sum Sect                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tion – Proving $Sp_1$                        |

| Minimal Sum   | Castion | Cupation        |  |
|---------------|---------|-----------------|--|
| iviinimai-Sum | Section | - Specification |  |

- we split the specification in two parts via two Hoare-triples
  - $Sp_1$  specifies that the value of s is smaller than the sum of any section

 $(|\mathsf{true}|) \operatorname{Min}_{\mathsf{Sum}} (|\forall i, j. 0 \le i \le j < n \longrightarrow s \le S_{i,j})$ 

•  $Sp_2$  specifies that there exists some section whose sum is s

$$(|\mathsf{true}|)$$
 *Min\_Sum*  $(|\exists i, j. 0 \le i \le j < n \land s = S_{i,j}|)$ 

$$\begin{array}{l} \textbf{Minimal-Sum Section - Proving } Sp_1 & \\ \texttt{k} := 1; \\ \texttt{t} := \texttt{a[0]}; \\ \texttt{s} := \texttt{a[0]}; \\ \texttt{while } (\texttt{k} != \texttt{n}) \{ \\ \texttt{t} := \texttt{min}(\texttt{t} + \texttt{a[k]}, \texttt{a[k]}); \\ \texttt{s} := \texttt{min}(\texttt{s}, \texttt{t}); \\ \texttt{k} := \texttt{k} + 1 \\ \} \\ & \\ Sp_1 : (\texttt{true}) \textit{Min}_S \textit{um} (\forall i, j. \ 0 \le i \le j < n \longrightarrow \texttt{s} \le S_{i,j}) \end{array}$$

- find candidate invariant
  - invariant often similar to postcondition
  - invariant expresses relationships that are valid at beginning of each loop-iteration
- suitable invariant is  $Inv_1(s,k)$  defined as

$$\forall i, j. \ 0 \le i \le j < k \longrightarrow s \le S_{i,j}$$

|                 | $([\mathit{Inv}_1(a[0],1)])$                                                 | (true statement)                 | xL    | Minimal-Sum Section – St                                             | rengthening Invariant                                                                           |
|-----------------|------------------------------------------------------------------------------|----------------------------------|-------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| k := 1;         | $( \mathit{Inv}_1(a[0],k) )$                                                 |                                  |       | k := 1;<br>t := a[0];                                                |                                                                                                 |
| t := a[0];      | $( Inv_1(a[0],k) )$                                                          |                                  |       | <pre>s := a[0]; while (k != n) {     t := min(t + a[k], a[k]);</pre> |                                                                                                 |
| s := a[0];      | $( Inv_1(s,k) )$                                                             |                                  |       | <pre>s := min(t + a[k], a[k]), s := min(s, t); k := k + 1</pre>      |                                                                                                 |
| while (k != n)  | ) {                                                                          |                                  |       | }                                                                    |                                                                                                 |
|                 | $ ([Inv_1(s,k) \land k \neq n])  ([Inv_1(\min(s,\min(t+a[k],a[k])), k+1)]) $ | (does not hold, no info on $t$ ) |       | $Sp_1:( 	t true )$ A                                                 | $\textit{Min}_{\textit{Sum}} (\forall i, j. \ 0 \le i \le j < n \longrightarrow s \le S_{i,j})$ |
| t := min(t -    | + a[k], a[k]);<br>$([Inv_1(\min(s,t), k+1)])$                                |                                  |       | • suitable invariant for $s$ is $Ir$                                 | $nv_1(s,k)$ defined as                                                                          |
| s := min(s,     | t);                                                                          |                                  |       |                                                                      | $\forall i, j. \ 0 \le i \le j < k \longrightarrow s \le S_{i,j}$                               |
| k := k + 1;     | $( \mathit{Inv}_1(s,k+1) )$                                                  |                                  |       | • define similar invariant for a                                     |                                                                                                 |
| }               | $( Inv_1(s,k) )$                                                             |                                  |       |                                                                      | $\forall i. \ 0 \le i < k \longrightarrow t \le S_{i,k-1}$                                      |
| ,               | $( Inv_1(s,k) \land \neg k \neq n )$                                         |                                  |       | <ul> <li>now try strengthened invari</li> </ul>                      | ant $Inv_1(s,k) \wedge Inv_2(t,k)$                                                              |
| RT (DCS @ UIBK) | $( \mathit{Inv}_1(s,n) )$ Part 6 – Verification of Imperative Programs       | (implication verified)           | 41/66 | RT (DCS @ UIBK)                                                      | Part 6 - Verification of Imperative Programs                                                    |

| $( \mathit{Inv}_1(a[0],1) \wedge \mathit{Inv}_2(a[0],1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )) (true statement)                                                                                               | XL    | Minimal-Sum Section – Proving the Implications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{l} \texttt{k} := \texttt{1}; \\ ( \mathit{Inv}_1(a[0], k) \land \mathit{Inv}_2(a[0], k) \\ \texttt{t} := \texttt{a}[0]; \\ ( \mathit{Inv}_1(a[0], k) \land \mathit{Inv}_2(t, k) ) \\ \texttt{s} := \texttt{a}[0]; \\ ( \mathit{Inv}_1(s, k) \land \mathit{Inv}_2(t, k)) \\ \texttt{while} (\texttt{k} != \texttt{n}) \{ \\ ( \mathit{Inv}_1(s, k) \land \mathit{Inv}_2(t, k) \land k \\ ( \mathit{Inv}_1(\min(s, \min(t + a[k], a[k]); \\ ( \mathit{Inv}_1(\min(s, t), k + 1) \land in \\ \texttt{s} := \min(\texttt{s}, \texttt{t}); \\ ( \mathit{Inv}_1(s, k) \land \mathit{Inv}_2(t, k) \land k \\ \texttt{k} := \texttt{k} + 1; \\ ( \mathit{Inv}_1(s, k) \land \mathit{Inv}_2(t, k) ) \\ \} \end{array} $ | $\neq n [\ a[k]), k+1) \land Inv_2(\min(t+a[k], a[k]), k+1)[)  (implication verifiers);$ $pv_2(t, k+1)[)$ $+1)[)$ | ·d)   | <ul> <li>invariants</li> <li>Inv<sub>1</sub>(s,k) := ∀i, j. 0 ≤ i ≤ j &lt; k → s ≤ S<sub>i,j</sub></li> <li>Inv<sub>2</sub>(t,k) := ∀i. 0 ≤ i &lt; k → t ≤ S<sub>i,k-1</sub></li> <li>implications</li> <li>true → Inv<sub>1</sub>(a[0], 1) ∧ Inv<sub>2</sub>(a[0], 1)</li> <li>because of the conditions of the quantifiers, by fixing k = 1 we only have to consider section (0,0), i.e, we show a[0] ≤ S<sub>0,0</sub> = a[0]</li> <li>let 0 &lt; k &lt; n where n is length of array a; then Inv<sub>1</sub>(s, k) ∧ Inv<sub>2</sub>(t, k) ∧ k ≠ n implies both Inv<sub>2</sub>(min(t + a[k], a[k]), k + 1) and Inv<sub>1</sub>(min(s, min(t + a[k], a[k])), k + 1); proof</li> <li>pick any 0 ≤ i &lt; k + 1; we show min(t + a[k], a[k])) ≤ S<sub>i,k</sub>; if i &lt; k then S<sub>i,k</sub> = S<sub>i,k-1</sub> + a[k], so we use Inv<sub>2</sub>(t, k) to get t ≤ S<sub>i,k-1</sub> and thus min(t + a[k], a[k])) ≤ t + a[k] ≤ S<sub>i,k-1</sub> + a[k] = S<sub>i,k</sub>; otherwise, i = k and we have min(t + a[k], a[k])) ≤ a[k] = S<sub>i,k</sub></li> <li>pick any 0 ≤ i ≤ j &lt; k + 1; we need to show min(s, min(t + a[k], a[k])) ≤ S<sub>i,j</sub>; if j = k then the result follows from Inv<sub>1</sub>(s, k)</li> </ul> |
| $( \mathit{Inv}_1(s,n) )$ rt (DCS @ UIBK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (implication verified)<br>Part 6 – Verification of Imperative Programs                                            | 43/66 | RT (DCS @ UIBK) Part 6 – Verification of Imperative Programs 44/66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Proof Tableaux

#### Proof Tableaux – Summary

- we have proven soundness of non-trivial algorithm *Min\_Sum*
- with gaps
  - we only proved  $Sp_1$ , but not  $Sp_2$
  - lemma on previous slide demanded 0 < k < n which does not follow from loop-condition  $k \neq n$ ; a proper fix would require a strengthened invariant which includes bounds on k
- main reasoning (proving the implications on previous slide) was done purely in logic with no reference to program

## **Verification Condition Generation**

Part 6 - Verification of Imperative Programs

45/66

Verification Condition Generation

#### Verification Condition Generator – VCG

- previous part: find suitable invariants, propagate formulas via substitution, etc., and check implication
- a VCG automates this process
  - input is annotated program with pre- and post-conditions and invariants
  - VCG generates implications automatically (verification conditions)
  - verification conditions are passed to SMT-solver, theorem prover, etc., to finally show correctness
- VCG simplifies reasoning a lot, more automation
- still: in case SMT-solver or theorem prover fails, user needs to understand failure to adapt invariants, assertions, or perform manual proofs, etc.

#### IMP2 – A VCG Implementation in Isabelle

#### Verification Condition Generation

- IMP2 is an Isabelle formalization of our small imperative language while-language
- it includes a VCG; the verification conditions have to be proven using the Isabelle system
  - the conditions can be forwarded to an SMT solver (sledgehammer)
  - the conditions can be solved by Isabelle's automation (simp,  $\dots$ )
  - manual proofs are possible
- example: Demo06.thy

```
(note that x_0 in IMP2 refers to initial value of x without explicit assumption x_0 = x)
procedure_spec (partial) fact_prog(x)
```

```
returns y
assumes <x ≥ 0>
ensures "y = fact_int x0"
defines <
    y = 1;
    while (x > 0)
    @invariant <y * fact_int x = fact_int x0>
    {
        y = y * x;
        x = x - 1
     }
    ;
     apply simp
     apply
     apply simp
     apply
     apply
     ap
```

#### Verification Condition Generation

Example

50/66

assume we want to write method for binomial coefficients

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

to compute chance of lotto-jackpot 1 :  $\binom{49}{6}$ 

• example program

```
procedure_spec (partial) binom_prog(n,k)
  returns r
  assumes \langle n \ge 0 \land k \ge 0 \land n \ge k \rangle
    ensures "r = binom int n<sub>0</sub> k<sub>0</sub>"
  defines <
    a = fact prog(n);
    b = fact prog(k);
    c = fact_prog (n - k);
    r = a / (b * c)
  apply vcg
```

- in example, we need to ensure that preconditions of factorial program are met
- generated verification conditions then use post-conditions for factorial

|       | generated vermeation | conditions then use post conditions for h    |
|-------|----------------------|----------------------------------------------|
| 49/66 | RT (DCS @ UIBK)      | Part 6 – Verification of Imperative Programs |

RT (DCS @ UIBK)

Part 6 - Verification of Imperative Programs

• specifications via Hoare-triple  $(|\varphi|) P(|\psi|)$  may be seen as a contract between supplier

• once contracts have been verified for algorithm f, during verification one can replace

• supplier insists that consumer invokes P only on states satisfying  $\varphi$ 

• supplier promises that after execution of P formula  $\psi$  holds

• validation of Hoare-triples with Hoare-calculus can be seen as

validation of contracts for method- or procedure-calls

program invocations of f by its contract

Verification Condition Generation

#### Programming by Contract – Advantages

- in the same way as methods help to structure larger programs, contracts for these methods help to verify larger programs
- reason: for verifying code invoking method  $m_{\rm r}$  it suffices to look at contract of  $m_{\rm r}$ without looking at implementation of m
- positive effects
  - add layer of abstraction

Modular Verification via VCGs

and consumer of program P

- easy to change implementation of m as long as contract stays identical
- verification becomes more modular
- example: for invocation of min in minimal-sum section it does not matter whether
  - min is built-in operator which is substituted as such, or
  - min is user-defined method that according to the contract computes the mathematical min-operation

**Termination of Imperative Programs** 

Adding Termination to Calculus

• since while-loops are only source of non-termination in presented imperative language, it suffices to adjust the while-rule in the Hoare-calculus

all other Hoare-calculus rules can be used as before

- recall: total correctness = partial correctness + termination
- · previous while-rule already proved partial correctness
- only task: extend existing while-rule to additionally prove termination
- idea of ensuring termination: use variants
  - a variant (or measure) is an integer expression;
  - this integer expression strictly decreases in every loop iteration and
  - at the same time the variant stays non-negative;
  - conclusion: there cannot be infinitely many loop iterations
- in IMP2, termination is proved by omitting "(partial)" in procedure definitions, and by providing a variant for every while-loop, cf. fact\_total\_prog in Demo06.thy

```
RT (DCS @ UIBK)
```

```
Part 6 – Verification of Imperative Programs
```

```
53/66
```

Termination of Imperative Programs

- A While-Rule For Total Correctness
- while-rule for partial correctness

$$\frac{\vdash (\![\varphi \land b]\!] C (\![\varphi]\!]}{\vdash (\![\varphi]\!] \text{ while } b C (\![\varphi \land \neg b]\!]} \text{ while }$$

• extended while-rule for total correctness

$$\frac{\vdash \left(\!\left| \varphi \wedge b \wedge e_0 = e \ge 0\right|\!\right) C \left(\!\left| \varphi \wedge e_0 > e \ge 0\right|\!\right)}{\vdash \left(\!\left| \varphi \wedge e \ge 0\right|\!\right) \text{ while } b \; C \left(\!\left| \varphi \wedge \neg b\right|\!\right)} \text{ while-total}$$

where

- e is variant expression with values before execution of C
- e is (the same) variant expression with values after execution of C
- $e_0$  is fresh logical variable, used to store the value of e before:  $e_0 = e$
- hence, postcondition  $e_0 > e$  enforces decrease of e when executing C
- non-negativeness is added three times, even in precondition of while
- e is of type integer so that SN  $\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x > y \ge 0\}$  can be used as underlying terminating relation: each loop iteration corresponds to a step  $(\llbracket e \rrbracket_{\alpha_{\text{after}}}, \llbracket e \rrbracket_{\alpha_{\text{after}}})$  in this
- RT (DCS @ UIBK)
- Part 6 Verification of Imperative Programs

54/66

Applying While-Total

$$\frac{\vdash (|\varphi \land b \land e_0 = e \ge 0|) C (|\varphi \land e_0 > e \ge 0|)}{\vdash (|\varphi \land e \ge 0|) \text{ while } b C (|\varphi \land \neg b|)} \text{ while-total}$$

#### • application

- $e_0$  is fresh logical variable, so nothing to choose
- variant e has to be chosen, but this is often easy
  - while (x < 5) { ... x := x + 1 ...} is same as while (5 - x > 0) { ... x := x + 1 ...}, so e = 5 - x
  - while (y >= x) { ... y := y 2 ...} is same as while (y x >= 0) { ... y := y 2 ...}, so e = y x (+2)
    while (x != y) { ... y := y + 1 ...} is same as
  - while  $(x = y) \{ \dots y := y + 1 \dots \}$  is same as while  $(x - y := 0) \{ \dots y := y + 1 \dots \}$ , so e = x - y
- checking the condition is then easily possible via proof tableau, in the same way as for the while-rule for partial correctness
- all side-conditions  $e \geq 0$  can completely be eliminated by choosing  $e = \max(0,e')$  for some
- e', but then proving  $e_0 > e$  will become harder as it has to deal with max
- invariant  $\varphi$  can be taken unchanged from partial correctness proof

RT (DCS @ UIBK)

55/66

RT (DCS @ UIBK)

Total Correctness of Factorial Program

#### .

Termination of Imperative Programs

### • red parts have been added for termination proof with variant x-z

$$\begin{array}{l} (|\operatorname{true} \land x \ge 0|) & (\operatorname{new \ termination \ condition \ on \ x}) \\ (|1 = 0! \land x - 0 \ge 0|) \\ \texttt{y} := 1; & (|y = 0! \land x - 0 \ge 0|) \\ \texttt{z} := 0; & (|y = z! \land x - z \ge 0|) & (\operatorname{new \ condition \ added}) \\ \texttt{while} \ (\texttt{x} \, != \texttt{z}) \ \{ & (|y = z! \land x \neq z \land e_0 = x - z \ge 0|) & (\operatorname{new \ condition \ added}) \\ (|y \cdot (z + 1) = (z + 1)! \land e_0 > x - (z + 1) \ge 0|) & (\operatorname{more \ reasoning}) \\ \texttt{z} := \texttt{z} + 1; & (|y - z! \land e_0 > x - z \ge 0|) \\ \texttt{y} := \texttt{y} * \texttt{z}; & (|y = z! \land e_0 > x - z \ge 0|) \\ \texttt{y} := \texttt{y} * \texttt{z}; & (|y = z! \land e_0 > x - z \ge 0|) \\ \end{bmatrix} \quad (\texttt{new \ condition \ added}) \\ \begin{cases} (y = z! \land \neg x \neq z) \\ (|y = x!|) \end{cases} \end{array}$$

#### Part 6 - Verification of Imperative Programs

**Remarks on Total Correctness of Factorial Program** 

- precondition  $x \ge 0$  was added automatically from termination proof
- in fact, the program does not terminate on negative inputs
- for factorial program (and other imperative programs) Hoare-calculus permits to prove local termination, i.e., termination on certain inputs
- in contrast, for functional program we always considered universal termination, i.e., termination of all inputs
- termination proofs can also be performed stand-alone (without partial correctness proof): just prove postcondition "true" with while-total-rule:

 $\vdash (|\varphi|) P (|\mathsf{true}|)$ 

implies termination of P on inputs that satisfy  $\varphi$ , so

 $\vdash$  (|true|) P (|true|)

Part 6 - Verification of Imperative Programs

shows universal termination of P

RT (DCS @ UIBK)

57/66

## Soundness of Hoare-Calculus

Soundness of Hoare-Calculus

Termination of Imperative Programs

Soundness of Hoare-Calculus

- so far, we have two notions of soundness
  - $\models (\!|\varphi|\!) P (\!|\psi|\!)$ : via semantic of imperative programs, i.e., whenever  $\alpha \models \varphi$  and  $(P, \alpha) \hookrightarrow^* (\text{skip}, \beta)$  then  $\beta \models \psi$  must hold
  - $\vdash$   $(\!| \varphi \!| ) P (\!| \psi \!| )$ : syntactic, what can be derived via Hoare-calculus rules
- missing: soundness of calculus, i.e.,

$$\vdash (\varphi) P (\psi) \text{ implies } \models (\varphi) P (\psi)$$

- formal proof is based on big-step semantics  $\rightarrow$  (see exercises):  $(P, \alpha) \hookrightarrow^* (\text{skip}, \beta)$  is turned into  $(P, \alpha) \rightarrow \beta$
- soundness of the calculus is then established by the following property, which is proven by induction w.r.t. the Hoare-calculus rules for arbitrary  $\alpha, \beta$ :

$$\vdash {(\!\!| \varphi |\!\!)} \mathrel{C} {(\!\!| \psi |\!\!)} \longrightarrow \alpha \models \varphi \longrightarrow (C, \alpha) \rightarrow \beta \longrightarrow \beta \models \psi$$

 $\begin{array}{l} \textbf{Proving} \vdash (\! \| \varphi \| ) C (\! \| \psi \|) \longrightarrow \alpha \models \varphi \longrightarrow (C, \alpha) \rightarrow \beta \longrightarrow \beta \models \psi \\ \textbf{Case 1: implication-rule} \\ \vdash (\! \| \varphi \| ) C (\! \| \psi \|) \text{ since } \models \varphi \longrightarrow \varphi', \vdash (\! \| \varphi' \|) C (\! \| \psi' \|), \text{ and } \models \psi' \longrightarrow \psi \\ \bullet \text{ IH: } \forall \alpha, \beta, \alpha \models \varphi' \longrightarrow (C, \alpha) \rightarrow \beta \longrightarrow \beta \models \psi' \\ \bullet \text{ assume } \alpha \models \varphi \text{ and } (C, \alpha) \rightarrow \beta \\ \bullet \text{ then by } \models \varphi \longrightarrow \varphi' \text{ conclude } \alpha \models \varphi' \\ \bullet \text{ in combination with IH get } \beta \models \psi' \end{array}$ 

• with  $\models \psi' \longrightarrow \psi$  conclude  $\beta \models \psi$ 

RT (DCS @ UIBK)

Soundness of Hoare-Calculus

Summary of Soundness of Hoare-Calculus

- since Hoare-calculus rules and semantics are formally defined, it is possible to verify soundness of the calculus
- proof requires inner induction for while-loop, since big-step semantics of while-command refers to itself
- here: only soundness of Hoare-calculus for partial correctness
- possible extension: total correctness
  - define semantic notion  $\models_{total} (|\varphi|) C (|\psi|)$  stating total correctness
  - prove that Hoare-calculus with while-total is sound w.r.t.  $\models_{total}$

### Summary – Verification of Imperative Programs

- covered
  - syntax and semantic of small imperative programming language
  - Hoare-calculus to verify Hoare-triples  $(|\varphi|) P(|\psi|)$
  - proof tableaux and automation: use VCG that converts program logic into implications (verification conditions) that must be shown in underlying logic
  - proofs are often automatic, given good pre- and post-conditions and (in)variants
  - soundness of Hoare-calculus
  - programming by contracts: abstract from concrete method-implementations, use contracts
  - example VCG for core language: IMP2, based on Isabelle

#### not covered

- heap-access, references, arrays, etc.: extension to separation logic, memory model
- bounded integers: reasoning engine for bit-vector-arithmetic
- multi-threading

RT (DCS @ UIBK)

Part 6 – Verification of Imperative Programs

65/66

RT (DCS @ UIBK)

Part 6 – Verification of Imperative Programs