

Program Verification

Part 7 - Certification

René Thiemann

Department of Computer Science

Certification – Motivation

- situation
 - program verification is work intensive
 - verification might be too expensive for complex programs
 - work-around via certification
 - assume there is some complex function f implemented in some program
 - property P(x, f(x)) should be satisfied for all x
 - to this end implement a slightly extended function f_e such that
 - $f_e(x)$ computes the pair (f(x), c(x)) where c(x) is a certificate for input x, and
 - certification is possible: given x, f(x), c(x) one can check P(x, f(x)) with a simple program
 - advantages of certification
 - no need to verify the complex programs
 - one certifier can check the certificates of many similar complex programs (assumption: common certificate format)

(certifier), and ideally, this simple program is completely verified

- disadvantages of certification
 - certificates might be refused (incorrect answers of complex programs or incomplete certifier)
 overhead in certificate generation and checking

Certification – Examples

- matrix-matrix multiplication: $f(A, B) = A \times B$
 - no certification possible, just computation
- matrix-inversion: $f(A) = A^{-1}$ (for invertible inputs A)
 - certification possible without extra information
 - given A and A^{-1} it suffices to check $AA^{-1} = I$
 - matrix multiplication is easier to verify than an algorithm for matrix inversion
- \bullet SAT solving: $f(\varphi) = (\exists \alpha. \llbracket \varphi \rrbracket_\alpha = \top)$ for CNFs φ
 - ullet certification possible for positive answers: provide α
 - certification possible for negative answers: provide resolution proof
 - common format is (variant of) DRAT (used in SAT competitions)
 - several independent certifiers; some of them are verified
- Termination analysis: $f(R) = SN(\rightarrow_R)$
 - certification possible: provide applied techniques with parameters and extra information
 - common format is CPF (used in termination competitions)
 - one certifier: CeTA (developed in Innsbruck)

Reduction Pairs

- task of termination analysis tool: find reduction pair such that constraints are satisfied
- task of certifier: given reduction pair, check that constraints are oriented
- different complexity of both tasks
 - only tool: choose suitable class of reduction pairs
 - only certifier: verify reduction pair properties of each class
 - lexicographic path order (LPO)
 search parameters: NP-complete; checking constraints: P
 - Knuth-Bendix Order (KBO)
 search parameters: P (complex algorithm); checking constraints: P (trivial algorithm)
 - linear polynomial interpretations search parameters: undecidable; checking constraints: P

Certificates for Applying Reduction Pairs

- question of format of certificate for (iterated) reduction pair application
- obvious idea: just provide parameters of pairs
- example
 - consider termination problem with 5 dependency pairs (DP 1 DP 5)
 - termination tool internally applies
 RP 1, a polynomial interpretation with certain parameters P 1, to remove DP 2 and DP 3, then RP 2, some KBO with certain parameters P 2, to remove DP 1 and DP 4, and finally RP 3, some other polynomial interpretation with parameters P 3 to remove DP 5
 - structure of certificate

- problem in case of rejected certificates (e.g., if tool uses tuned version of some RP)
 - certifier might replay this proof, but remains with DP 1 in the end
 - with above certificate structure, it is not possible to localize failure
- easy solution: add more information into certificate
- Poly(P 1, delete DP 2,3); KBO(P 2, delete DP 1,4); Poly(P 3, delete DP 5)

7/17

Usable Equations

- task of termination analysis tool: compute usable equations to setup constraints
- task of certifier: given usable equations, check that these have been computed correctly
- reminder: let $\mathcal E$ be equations of program, let $\mathcal P$ be a set of dependency pairs; define $\mathcal U(\mathcal P) = \bigcup_{s \to t \in \mathcal P} \mathcal U(t)$ where $\mathcal U(t)$ is defined inductively as

$$\frac{t \trianglerighteq u \quad \ell = r \in \mathcal{E} \quad root(u) = root(\ell)}{\ell = r \in \mathcal{U}(t)}$$

$$\frac{\ell' = r' \in \mathcal{U}(t) \quad \ell = r \in \mathcal{U}(r')}{\ell = r \in \mathcal{U}(t)}$$

- difficulties
 - computing usable equations is a fixpoint algorithm (add new usable equations until nothing more is detected)
 - verification of fixpoint algorithms is sometimes tricky
 tools implement different versions of usable equations
 - (mixture of various optimizations, e.g., inclusion of argument filters, etc.)
 - there is not the definition of usable equations
 solution: certifier allows over-approximation of those usable equations that have been verified

Part 7 - Certification

Computation of Usable Equation (Non-Optimized Version)

• $\mathcal{U}(\mathcal{P}) = \bigcup_{s \to t \in \mathcal{P}} \mathcal{U}(t)$ where $\mathcal{U}(t)$ is defined inductively as

$$\frac{t \trianglerighteq u \quad \ell = r \in \mathcal{E} \quad root(u) = root(\ell)}{\ell = r \in \mathcal{U}(t)}$$
$$\frac{\ell' = r' \in \mathcal{U}(t) \quad \ell = r \in \mathcal{U}(r')}{\ell = r \in \mathcal{U}(t)}$$

- ullet inductive definition: $\mathcal{U}(t)$ is least set such that inference rules are satisfied
- ullet soundness proof reveals: $\mathcal{U}(t)$ can be any set such that inference rules are satisfied
- certification
 - demand that $\mathcal{U}(\mathcal{P})$ is provided in certificate
 - · certification: check that above inference rules are satisfied
 - much easier than computing $\mathcal{U}(\mathcal{P})$ in verified way

Soundness Proof for Certification: Being Closed under Usable Equations

• definition: t is closed under usable rules (closed(t)) if

$$\forall u. \ t \triangleright u \longrightarrow \ell = r \in \mathcal{E} \longrightarrow root(u) = root(\ell) \longrightarrow \ell = r \in \mathcal{U}$$

• lemma: assume $\forall \ell = r \in \mathcal{U}.\ closed(r)$; then

$$(\forall x.NF(\sigma(x)) \longrightarrow closed(t) \longrightarrow t\sigma \stackrel{:}{\hookrightarrow}_{\mathcal{E}}^* u \longrightarrow t\sigma \stackrel{:}{\hookrightarrow}_{\mathcal{U}}^* u$$

by induction on (number of steps, size of t)

- remark: conditions in lemma (being closed) are easy to check
- proof case 1: assume $t\sigma \stackrel{\cdot}{\hookrightarrow}^*_{\mathcal{E}} \ell\delta \stackrel{\cdot}{\hookrightarrow} r\delta \stackrel{\cdot}{\hookrightarrow}^*_{\mathcal{E}} u$ where $\ell\delta \stackrel{\cdot}{\hookrightarrow} r\delta$ is first root step
 - by assumptions $root(t\sigma) = root(t) = root(\ell)$, hence $\ell = r \in \mathcal{U}$ and thus closed(r)
- via IH obtain $t\sigma \stackrel{i}{\hookrightarrow}_{\mathcal{U}}^* \ell\delta$ and $r\delta \stackrel{i}{\hookrightarrow}_{\mathcal{U}}^* u$ • proof case 2: assume $t\sigma = f(t_1\sigma, \dots, t_n\sigma) \stackrel{\cdot}{\hookrightarrow}_{\mathcal{E}}^* f(u_1, \dots, u_n) = u$ (only non-root steps)
- by definition $closed(t_i)$ and IH yields $t_i \sigma \stackrel{i}{\hookrightarrow}_{\mathcal{U}}^* u_i$ for all $1 \leq i \leq n$

Certification

10/17

Nontermination via Loops • a loop is a reduction of form $t \hookrightarrow^+ D[t\delta]$

- whenever program admits a loop, then it is non-terminating

$$t \hookrightarrow^+ D[t\delta] \hookrightarrow^+ D[D[t\delta]\delta] \hookrightarrow^+ D[D[D[t\delta]\delta]\delta] \hookrightarrow^+ \dots$$

- certificate of non-termination: provide t, D, δ and $t = t_1 \hookrightarrow t_2 \hookrightarrow \ldots \hookrightarrow t_n = D[t\delta]$
- certification needs to check that every step is correct: given t_i and t_{i+1} , ensure $t_i \hookrightarrow t_{i+1}$
 - approach 1: verified algorithm to compute all successors of t_i requires verified matching algorithm, etc.
- approach 2: certificate contains additional information

• require for every step $\ell = r \in \mathcal{E}$, C and σ such that

- then only the latter needs to be checked by certifier
- disadvantage: bulky certificates, more tedious to generate
- approach 3: unverified algorithm in certifier computes $\ell = r$, C, and σ for each $t_i \hookrightarrow t_{i+1}$ Part 7 - Certification

 $t_i = C[\ell\sigma] \wedge t_{i+1} = C[r\sigma]$

Partially Verified Programs

- approach 3 on previous slide contains interesting idea
- verified programs can use unverified sub-algorithms to generate auxiliary information to simplify checking task
- this approach is used in big verified programs
- example: verified C compiler (CompCert)
 - ullet correctness of C compiler has been formally verified for every C program P, if compiler(P) = A (assembly-code), then P and A are equivalent
 - many sub-algorithms of C compiler are fully verified
 - some algorithms use unverified programs to compute information that is then certified
 - if any of these unverified programs delivers faulty information, then compilation just fails

12/17

Example: Call-Graph Analysis

- during compilation, call-graph needs to be computed
- compilation handles each block of mutually recursive functions separately
- blocks correspond to strongly connected components (SCCs) of call-graph
- instead of verifying SCC algorithm, design certificate approach
- ullet w.l.o.g., we consider graphs G where every node has a self-loop (no distinction between SCC $\{n\}$ and a node n that is not on any SCC)
- over-approximation
 - certificate contains list of SCC in topologic order C_1, C_2, \ldots
 - check that all nodes are covered by some C_i
 - topologic order: whenever i < j then there is no edge from C_i to C_j
 - remark: many SCC-algorithms actually compute SCCs in (reverse) topological order

• easy to verify: whenever S is SCC, then $S \subseteq C_i$ for some i

- SCCs are non-empty, so pick some $s \in S$ and obtain i such that $s \in C_i$
 - now pick some arbitrary $t \in S$, hence $(s,t) \in G^*$ and $(t,s) \in G^*$

 - then obtain j such that $t \in C_i$
 - by topological order, obtain j > i from $(s,t) \in G^*$ and similarly i > j, so j = i• hence $t \in C_i$, and by arbitrary choice of $t, S \subseteq C_i$

Part 7 - Certification

SCC Certification

- potential certificate for under-approximation
 - for each C_i in certificate, provide a cyclic path that contains all nodes of C_i
 - · easy to certify and obviously correct
 - lemma: whenever criterion is satisfied, then each C_i is strongly connected
 - format of certificate is not optimal, cf. proseminar
- for some properties, it is not required to check minimality of components

Example – Completion

- ullet task of completion: convert set of equations ${\mathcal E}$ into program ${\mathcal R}$ such that
 - ullet R is confluent and terminating
 - $s =_{\mathcal{E}} t \text{ iff } s \downarrow_{\mathcal{R}} = t \downarrow_{\mathcal{R}}$
- certificate contains
 - ullet proof of confluence and termination of ${\cal R}$
 - proofs of $\ell =_{\mathcal{E}} r$ for each $\ell = r \in \mathcal{R}$
- the latter proofs are obtained via recording completion
 - new equations s=t are produced by overlapping two known equations $s=_{\mathcal{E}'}u=_{\mathcal{E}'}t$ for intermediate set of equations \mathcal{E}'
 - memoize for each generated equation how it has been produced
 - final \mathcal{R} is just a subset of set of all equations that have been generated
 - ullet expand each ${\cal R}$ until original equations are used
- problem: size of expansion might grow exponentially

Example Completion Run		Certification
$ullet$ ${\cal E}$ consists of		
	f(s(x),y) = f(x,c(y,y))	(1)
	f(0,y) = g(y)	(2)
	g(e) = t	(3)
	and(g(y),g(y)) = g(c(y,y))	(4)
	and(t,t)=t	(5)
	start = f(s(s(s(0))), e)	(6)
and we derive		
	$g(c(e, e)) \stackrel{4}{=} and(g(e), g(e)) \stackrel{3}{=} and(t, t) \stackrel{5}{=} t$	(7)
	$g(c(c(e, e), c(e, e))) \stackrel{4}{=} and(g(c(e, e)), c(e, e)) \stackrel{7}{=} and(t, t) \stackrel{5}{=} t$	(8)

 $g(c(c(c(e,e),c(e,e)),c(c(e,e),c(e,e))) \stackrel{4}{=} and(\ldots,\ldots) \stackrel{8}{=} and(t,t) \stackrel{5}{=} t$

 $\frac{6}{5} f(s(s(s(0))), e) \stackrel{1,2}{=} g(c(...), c(...)) \stackrel{9}{=} t$

(9)

(10)

Improved Certification for Completion

• do not fully expand to original equations, but allow (and certify) intermediate equations

Current Bachelor Project

• design automation and certificate format for similar task: rewriting induction

Summary

- certification is often, but not always applicable
- design of certificate format is crucial
 - should contain enough information to simplify certification task
 - should be easy to generate for tools
- certification approach can be used within fully verified programs: invoke unverified programs to enrich/generate certificates on the fly, to avoid task of full verification of complex algorithm