. univerSitét Summer Term 2024

™ innsbruck

Program Verification

Part 7 — Certification

René Thiemann

Department of Computer Science

Certification — Motivation cortteser
® situation
® program verification is work intensive
® verification might be too expensive for complex programs
® work-around via certification
® assume there is some complex function f implemented in some program
® property P(z, f(x)) should be satisfied for all =
® to this end implement a slightly extended function f. such that
® fe(x) computes the pair (f(z), c(z)) where ¢(z) is a certificate for input z, and
® certification is possible: given z, f(z), c(x) one can check P(z, f(x)) with a simple program
(certifier), and ideally, this simple program is completely verified
® advantages of certification
® no need to verify the complex programs
® one certifier can check the certificates of many similar complex programs
(assumption: common certificate format)
® disadvantages of certification
e certificates might be refused (incorrect answers of complex programs or incomplete certifier)
® overhead in certificate generation and checking

RT (DCS @ UIBK) Part 7 — Certification 3/17

Certification

Certification

Certification — Examples

® matrix-matrix multiplication: f(A,B) = A x B
® no certification possible, just computation
® matrix-inversion: f(A) = A~! (for invertible inputs A)
® certification possible without extra information
e given A and A~! it suffices to check AA™! =T
® matrix multiplication is easier to verify than an algorithm for matrix inversion
® SAT solving: f(¢) = (3a.[¢]a = T) for CNFs ¢
® certification possible for positive answers: provide «
® certification possible for negative answers: provide resolution proof
® common format is (variant of) DRAT (used in SAT competitions)
® several independent certifiers; some of them are verified
e Termination analysis: f(R) = SN(—gr)
® certification possible: provide applied techniques with parameters and extra information
® common format is CPF (used in termination competitions)
® one certifier: CeTA (developed in Innsbruck)

RT (DCS @ UIBK) Part 7 — Certification 4/17

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Certification

Reduction Pairs

® task of termination analysis tool: find reduction pair such that constraints are satisfied

® task of certifier: given reduction pair, check that constraints are oriented
e different complexity of both tasks

® only tool: choose suitable class of reduction pairs
® only certifier: verify reduction pair properties of each class
® lexicographic path order (LPO)
search parameters: NP-complete; checking constraints: P
® Knuth-Bendix Order (KBO)
search parameters: P (complex algorithm); checking constraints: P (trivial algorithm)
® linear polynomial interpretations
search parameters: undecidable; checking constraints: P

RT (DCS @ UIBK) Part 7 — Certification 5/17

Certification

Usable Equations
e task of termination analysis tool: compute usable equations to setup constraints
® task of certifier: given usable equations, check that these have been computed correctly

® reminder: let £ be equations of program, let P be a set of dependency pairs;
define U(P) = J,_,,cp U(t) where U(t) is defined inductively as

t>u l=re& root(u)=root(l)

C=reclU(t)
O=r"ecllt) L=reld(r)
C=relt)

e difficulties

® computing usable equations is a fixpoint algorithm
(add new usable equations until nothing more is detected)
® verification of fixpoint algorithms is sometimes tricky
® tools implement different versions of usable equations
(mixture of various optimizations, e.g., inclusion of argument filters, etc.)
—— there is not the definition of usable equations

® solution: certifier allows over-approximation of those usable equations that have been verified
RT (DCS @ UIBK) Part 7 — Certification 7/17

Certification

Certificates for Applying Reduction Pairs

® question of format of certificate for (iterated) reduction pair application
® obvious idea: just provide parameters of pairs
® example

® consider termination problem with 5 dependency pairs (DP 1 — DP 5)
® termination tool internally applies
RP 1, a polynomial interpretation with certain parameters P 1, to remove DP 2 and DP 3,
then RP 2, some KBO with certain parameters P 2, to remove DP 1 and DP 4,
and finally RP 3, some other polynomial interpretation with parameters P 3 to remove DP 5
® structure of certificate

Poly(P 1); KBO(P 2); Poly(P 3)
® problem in case of rejected certificates (e.g., if tool uses tuned version of some RP)

® certifier might replay this proof, but remains with DP 1 in the end
® with above certificate structure, it is not possible to localize failure

® easy solution: add more information into certificate
Poly(P 1, delete DP 2,3); KBO(P 2, delete DP 1,4); Poly(P 3, delete DP 5)

RT (DCS @ UIBK) Part 7 — Certification 6/17

Certification

Computation of Usable Equation (Non-Optimized Version)

® U(P) = U,_sep U(t) where U(t) is defined inductively as
t>u L=re& root(u)=root(l)
L=recllt)
U=r"cl(t)y t=recl(r)
L=rellt)

e inductive definition: U(t) is least set such that inference rules are satisfied

® soundness proof reveals: U/(t) can be any set such that inference rules are satisfied
® certification

® demand that U(P) is provided in certificate
® certification: check that above inference rules are satisfied
® much easier than computing U(P) in verified way

RT (DCS @ UIBK) Part 7 — Certification 8/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Certification

Soundness Proof for Certification: Being Closed under Usable Equations
® fix Y and £

e definition: ¢ is closed under usable rules (closed(t)) if
Yu. t>u —€=r €& — root(u) =root(l) — L=recld
® lemma: assume V¢ =r € U. closed(r); then
(V&.NF (o(z)) — closed(t) — to <5f u — to <55 u

by induction on (number of steps, size of t)
e remark: conditions in lemma (being closed) are easy to check

e proof case 1: assume to <% €6 <5 rd <% u where £§ <5 1§ is first root step
® by assumptions root(to) = root(t) = root(£), hence £ = r € U and thus closed(r)

® via IH obtain to <57, £6 and 70 <53, u
® proof case 2: assume to = f(t10,... ,tno) 5% f(u1,...,un) = u (only non-root steps)

® by definition closed(t;) and IH yields ;0 <57, u; forall 1 <i<n

RT (DCS @ UIBK) Part 7 — Certification 9/17

Certification

Partially Verified Programs
® approach 3 on previous slide contains interesting idea

e verified programs can use unverified sub-algorithms to generate auxiliary information to
simplify checking task
® this approach is used in big verified programs
e example: verified C compiler (CompCert)
® correctness of C compiler has been formally verified
for every C program P, if compiler(P) = A (assembly-code), then P and A are equivalent

® many sub-algorithms of C compiler are fully verified
® some algorithms use unverified programs to compute information that is then certified
® if any of these unverified programs delivers faulty information, then compilation just fails

RT (DCS @ UIBK) Part 7 — Certification 11/17

Certification

Nontermination via Loops
® aloop is a reduction of form ¢ —* D[tf]

® whenever program admits a loop, then it is non-terminating
t <1 D[té] =T D[D[t5]6] —* D[D[D[ts]6]6] <7 ...

® certificate of non-termination: provide t, D,d and t = t; < t3 <> ... — t,, = D[tJ]
e certification needs to check that every step is correct: given t; and t; 11, ensure t; < ;41
® approach 1: verified algorithm to compute all successors of ¢;
® requires verified matching algorithm, etc.
® approach 2: certificate contains additional information
® require for every step { =r € £, C and o such that

ti = C[KO'] A ti+1 = C[TU’]

® then only the latter needs to be checked by certifier
® disadvantage: bulky certificates, more tedious to generate

® approach 3: unverified algorithm in certifier computes ¢ = r, C, and o for each t; < t;41
RT (DCS @ UIBK) Part 7 — Certification 10/17

Certification

Example: Call-Graph Analysis
® during compilation, call-graph needs to be computed
® compilation handles each block of mutually recursive functions separately
® blocks correspond to strongly connected components (SCCs) of call-graph
® instead of verifying SCC algorithm, design certificate approach

® w.l.o.g., we consider graphs G where every node has a self-loop
(no distinction between SCC {n} and a node n that is not on any SCC)
® over-approximation

certificate contains list of SCC in topologic order Cy, Co, ...
check that all nodes are covered by some C;
topologic order: whenever i < j then there is no edge from C; to C;
remark: many SCC-algorithms actually compute SCCs in (reverse) topological order
easy to verify: whenever S is SCC, then S C C; for some 4

® SCCs are non-empty, so pick some s € S and obtain ¢ such that s € C;

® now pick some arbitrary ¢t € S, hence (s,t) € G* and (t,s) € G*
then obtain j such that t € C;
® by topological order, obtain j > i from (s,t) € G* and similarly i > j, so j =1
hence t € C;, and by arbitrary choice of ¢, S C C;

Part 7 — Certification 12/17

RT (DCS @ UIBK)

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Certification Certification

Example — Completion

® task of completion: convert set of equations £ into program R such that

‘g . ° . .
SCC Certification R is co_nfluent and terminating
°* s=¢tiffsl, =t[,
® potential certificate for under-approximation e certificate contains
® for each C; in certificate, provide a cyclic path that contains all nodes of C; e proof of confluence and termination of R

® easy to certify and obviously correct ® proofs of { =¢ 7 for each L =7 € R
® lemma: whenever criterion is satisfied, then each C; is strongly connected
[]

.
format of certificate is not optimal, cf. proseminar the latter proofs are obtained via recording completion

S . L ® new equations s = ¢ are produced by overlapping two known equations s =g u =g/ t for
® for some properties, it is not required to check minimality of components intermediate set of equations &’

® memoize for each generated equation how it has been produced
® final R is just a subset of set of all equations that have been generated
® expand each R until original equations are used

® problem: size of expansion might grow exponentially

RT (DCS @ UIBK) Part 7 — Certification 13/17 RT (DCS @ UIBK) Part 7 — Certification 14/17

Certification Certification

Example Completion Run
® £ consists of

f(s(z),y) = f(z,c(y,v)) (1)
f(0,y) =g(y) (2) Improved Certification for Completion
gle) =t (3) ® do not fully expand to original equations, but allow (and certify) intermediate equations
and(g(y), g(y)) = g(c(y,y)) (4)
and(t,t) =t (5) Current Bachelor Project
start = f(s(s(s(0))),) (6) ® design automation and certificate format for similar task: rewriting induction
and we derive
glc(e.€)) = and(g(e). g(e)) 2 and(t,1) (7
glc(cle,e),cle,e))) = and(g(c(e,), cle,e)) Zand(t,t) =t (8)
g(c(c(c(e,), c(e,e)), clc(e,), cle,e))) = and(...,...) = and(t,t) = t (9)
1,2 9

start = f(s(s(s(0))),e) = g(c(...),c(...)) =t (10)

RT (DCS @ UIBK) Part 7 — Certification 15/17 RT (DCS @ UIBK) Part 7 — Certification 16/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Certification

Summary

e certification is often, but not always applicable
® design of certificate format is crucial
® should contain enough information to simplify certification task
® should be easy to generate for tools
e certification approach can be used within fully verified programs: invoke unverified
programs to enrich/generate certificates on the fly, to avoid task of full verification of
complex algorithm

RT (DCS @ UIBK) Part 7 — Certification 17/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Certification

