
Summer Term 2024

Program Verification
Part 7 – Certification

René Thiemann

Department of Computer Science

Certification

Certification

Certification – Motivation
• situation

• program verification is work intensive
• verification might be too expensive for complex programs

• work-around via certification
• assume there is some complex function f implemented in some program
• property P (x, f(x)) should be satisfied for all x
• to this end implement a slightly extended function fe such that

• fe(x) computes the pair (f(x), c(x)) where c(x) is a certificate for input x, and
• certification is possible: given x, f(x), c(x) one can check P (x, f(x)) with a simple program

(certifier), and ideally, this simple program is completely verified

• advantages of certification
• no need to verify the complex programs
• one certifier can check the certificates of many similar complex programs

(assumption: common certificate format)

• disadvantages of certification
• certificates might be refused (incorrect answers of complex programs or incomplete certifier)
• overhead in certificate generation and checking

RT (DCS @ UIBK) Part 7 – Certification 3/17

Certification

Certification – Examples

• matrix-matrix multiplication: f(A,B) = A×B
• no certification possible, just computation

• matrix-inversion: f(A) = A−1 (for invertible inputs A)
• certification possible without extra information
• given A and A−1 it suffices to check AA−1 = I
• matrix multiplication is easier to verify than an algorithm for matrix inversion

• SAT solving: f(φ) = (∃α.[[φ]]α = ⊤) for CNFs φ
• certification possible for positive answers: provide α
• certification possible for negative answers: provide resolution proof
• common format is (variant of) DRAT (used in SAT competitions)
• several independent certifiers; some of them are verified

• Termination analysis: f(R) = SN(→R)
• certification possible: provide applied techniques with parameters and extra information
• common format is CPF (used in termination competitions)
• one certifier: CeTA (developed in Innsbruck)

RT (DCS @ UIBK) Part 7 – Certification 4/17

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss24/pv/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Certification

Reduction Pairs

• task of termination analysis tool: find reduction pair such that constraints are satisfied

• task of certifier: given reduction pair, check that constraints are oriented
• different complexity of both tasks

• only tool: choose suitable class of reduction pairs
• only certifier: verify reduction pair properties of each class
• lexicographic path order (LPO)

search parameters: NP-complete; checking constraints: P
• Knuth-Bendix Order (KBO)

search parameters: P (complex algorithm); checking constraints: P (trivial algorithm)
• linear polynomial interpretations

search parameters: undecidable; checking constraints: P

RT (DCS @ UIBK) Part 7 – Certification 5/17

Certification

Certificates for Applying Reduction Pairs

• question of format of certificate for (iterated) reduction pair application

• obvious idea: just provide parameters of pairs
• example

• consider termination problem with 5 dependency pairs (DP 1 – DP 5)
• termination tool internally applies

RP 1, a polynomial interpretation with certain parameters P 1, to remove DP 2 and DP 3,
then RP 2, some KBO with certain parameters P 2, to remove DP 1 and DP 4,
and finally RP 3, some other polynomial interpretation with parameters P 3 to remove DP 5

• structure of certificate

Poly(P 1); KBO(P 2); Poly(P 3)

• problem in case of rejected certificates (e.g., if tool uses tuned version of some RP)
• certifier might replay this proof, but remains with DP 1 in the end
• with above certificate structure, it is not possible to localize failure

• easy solution: add more information into certificate

Poly(P 1, delete DP 2,3); KBO(P 2, delete DP 1,4); Poly(P 3, delete DP 5)

RT (DCS @ UIBK) Part 7 – Certification 6/17

Certification

Usable Equations
• task of termination analysis tool: compute usable equations to setup constraints

• task of certifier: given usable equations, check that these have been computed correctly

• reminder: let E be equations of program, let P be a set of dependency pairs;
define U(P) =

⋃
s→t∈P U(t) where U(t) is defined inductively as

t⊵ u ℓ = r ∈ E root(u) = root(ℓ)

ℓ = r ∈ U(t)
ℓ′ = r′ ∈ U(t) ℓ = r ∈ U(r′)

ℓ = r ∈ U(t)
• difficulties

• computing usable equations is a fixpoint algorithm
(add new usable equations until nothing more is detected)

• verification of fixpoint algorithms is sometimes tricky
• tools implement different versions of usable equations

(mixture of various optimizations, e.g., inclusion of argument filters, etc.)
−→ there is not the definition of usable equations

• solution: certifier allows over-approximation of those usable equations that have been verified
RT (DCS @ UIBK) Part 7 – Certification 7/17

Certification

Computation of Usable Equation (Non-Optimized Version)

• U(P) =
⋃

s→t∈P U(t) where U(t) is defined inductively as

t⊵ u ℓ = r ∈ E root(u) = root(ℓ)

ℓ = r ∈ U(t)
ℓ′ = r′ ∈ U(t) ℓ = r ∈ U(r′)

ℓ = r ∈ U(t)

• inductive definition: U(t) is least set such that inference rules are satisfied

• soundness proof reveals: U(t) can be any set such that inference rules are satisfied
• certification

• demand that U(P) is provided in certificate
• certification: check that above inference rules are satisfied
• much easier than computing U(P) in verified way

RT (DCS @ UIBK) Part 7 – Certification 8/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Certification

Soundness Proof for Certification: Being Closed under Usable Equations

• fix U and E
• definition: t is closed under usable rules (closed(t)) if

∀u. t⊵ u −→ ℓ = r ∈ E −→ root(u) = root(ℓ) −→ ℓ = r ∈ U

• lemma: assume ∀ℓ = r ∈ U . closed(r); then

(∀x.NF (σ(x)) −→ closed(t) −→ tσ i↪→∗
E u −→ tσ i↪→∗

U u

by induction on (number of steps, size of t)

• remark: conditions in lemma (being closed) are easy to check
• proof case 1: assume tσ i↪→∗

E ℓδ i↪→ rδ i↪→∗
E u where ℓδ i↪→ rδ is first root step

• by assumptions root(tσ) = root(t) = root(ℓ), hence ℓ = r ∈ U and thus closed(r)
• via IH obtain tσ i↪→∗

U ℓδ and rδ i↪→∗
U u

• proof case 2: assume tσ = f(t1σ, . . . , tnσ)
i↪→∗
E f(u1, . . . , un) = u (only non-root steps)

• by definition closed(ti) and IH yields tiσ
i↪→∗

U ui for all 1 ≤ i ≤ n

RT (DCS @ UIBK) Part 7 – Certification 9/17

Certification

Nontermination via Loops

• a loop is a reduction of form t ↪→+ D[tδ]

• whenever program admits a loop, then it is non-terminating

t ↪→+ D[tδ] ↪→+ D[D[tδ]δ] ↪→+ D[D[D[tδ]δ]δ] ↪→+ . . .

• certificate of non-termination: provide t,D, δ and t = t1 ↪→ t2 ↪→ . . . ↪→ tn = D[tδ]

• certification needs to check that every step is correct: given ti and ti+1, ensure ti ↪→ ti+1

• approach 1: verified algorithm to compute all successors of ti
• requires verified matching algorithm, etc.

• approach 2: certificate contains additional information
• require for every step ℓ = r ∈ E , C and σ such that

ti = C[ℓσ] ∧ ti+1 = C[rσ]

• then only the latter needs to be checked by certifier
• disadvantage: bulky certificates, more tedious to generate

• approach 3: unverified algorithm in certifier computes ℓ = r, C, and σ for each ti ↪→ ti+1
RT (DCS @ UIBK) Part 7 – Certification 10/17

Certification

Partially Verified Programs

• approach 3 on previous slide contains interesting idea

• verified programs can use unverified sub-algorithms to generate auxiliary information to
simplify checking task

• this approach is used in big verified programs
• example: verified C compiler (CompCert)

• correctness of C compiler has been formally verified

for every C program P, if compiler(P) = A (assembly-code), then P and A are equivalent
• many sub-algorithms of C compiler are fully verified
• some algorithms use unverified programs to compute information that is then certified
• if any of these unverified programs delivers faulty information, then compilation just fails

RT (DCS @ UIBK) Part 7 – Certification 11/17

Certification

Example: Call-Graph Analysis
• during compilation, call-graph needs to be computed

• compilation handles each block of mutually recursive functions separately

• blocks correspond to strongly connected components (SCCs) of call-graph

• instead of verifying SCC algorithm, design certificate approach

• w.l.o.g., we consider graphs G where every node has a self-loop
(no distinction between SCC {n} and a node n that is not on any SCC)

• over-approximation
• certificate contains list of SCC in topologic order C1, C2, . . .
• check that all nodes are covered by some Ci

• topologic order: whenever i < j then there is no edge from Ci to Cj

• remark: many SCC-algorithms actually compute SCCs in (reverse) topological order
• easy to verify: whenever S is SCC, then S ⊆ Ci for some i

• SCCs are non-empty, so pick some s ∈ S and obtain i such that s ∈ Ci

• now pick some arbitrary t ∈ S, hence (s, t) ∈ G∗ and (t, s) ∈ G∗

• then obtain j such that t ∈ Cj

• by topological order, obtain j ≥ i from (s, t) ∈ G∗ and similarly i ≥ j, so j = i
• hence t ∈ Ci, and by arbitrary choice of t, S ⊆ Ci

RT (DCS @ UIBK) Part 7 – Certification 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Certification

SCC Certification

• potential certificate for under-approximation
• for each Ci in certificate, provide a cyclic path that contains all nodes of Ci

• easy to certify and obviously correct
• lemma: whenever criterion is satisfied, then each Ci is strongly connected
• format of certificate is not optimal, cf. proseminar

• for some properties, it is not required to check minimality of components

RT (DCS @ UIBK) Part 7 – Certification 13/17

Certification

Example – Completion

• task of completion: convert set of equations E into program R such that
• R is confluent and terminating
• s =E t iff s

↪→

R = t

↪→

R
• certificate contains

• proof of confluence and termination of R
• proofs of ℓ =E r for each ℓ = r ∈ R

• the latter proofs are obtained via recording completion
• new equations s = t are produced by overlapping two known equations s =E′ u =E′ t for

intermediate set of equations E ′

• memoize for each generated equation how it has been produced
• final R is just a subset of set of all equations that have been generated
• expand each R until original equations are used

• problem: size of expansion might grow exponentially

RT (DCS @ UIBK) Part 7 – Certification 14/17

Certification

Example Completion Run
• E consists of

f(s(x), y) = f(x, c(y, y)) (1)

f(0, y) = g(y) (2)

g(e) = t (3)

and(g(y), g(y)) = g(c(y, y)) (4)

and(t, t) = t (5)

start = f(s(s(s(0))), e) (6)

and we derive

g(c(e, e))
4
= and(g(e), g(e))

3
= and(t, t)

5
= t (7)

g(c(c(e, e), c(e, e)))
4
= and(g(c(e, e)), c(e, e))

7
= and(t, t)

5
= t (8)

g(c(c(c(e, e), c(e, e)), c(c(e, e), c(e, e)))
4
= and(. . . , . . . )

8
= and(t, t)

5
= t (9)

start
6
= f(s(s(s(0))), e)

1,2
= g(c(. . . ), c(. . . ))

9
= t (10)

RT (DCS @ UIBK) Part 7 – Certification 15/17

Certification

Improved Certification for Completion

• do not fully expand to original equations, but allow (and certify) intermediate equations

Current Bachelor Project

• design automation and certificate format for similar task: rewriting induction

RT (DCS @ UIBK) Part 7 – Certification 16/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Certification

Summary

• certification is often, but not always applicable
• design of certificate format is crucial

• should contain enough information to simplify certification task
• should be easy to generate for tools

• certification approach can be used within fully verified programs: invoke unverified
programs to enrich/generate certificates on the fly, to avoid task of full verification of
complex algorithm

RT (DCS @ UIBK) Part 7 – Certification 17/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Certification

