

Summer Term 2024

Program Verification

Part 7 – Certification

René Thiemann

Department of Computer Science

Certification – Motivation

- situation
 - program verification is work intensive
 - verification might be too expensive for complex programs
- work-around via certification
 - ${\ensuremath{\,\bullet\,}}$ assume there is some complex function f implemented in some program
 - property $P(\boldsymbol{x},f(\boldsymbol{x}))$ should be satisfied for all \boldsymbol{x}
 - ${\ensuremath{\,^\circ}}$ to this end implement a slightly extended function f_e such that
 - $f_e(x)$ computes the pair (f(x), c(x)) where c(x) is a certificate for input x, and
 - certification is possible: given x, f(x), c(x) one can check P(x, f(x)) with a simple program (certifier), and ideally, this simple program is completely verified
- advantages of certification
 - no need to verify the complex programs
 - one certifier can check the certificates of many similar complex programs (assumption: common certificate format)
- disadvantages of certification
 - certificates might be refused (incorrect answers of complex programs or incomplete certifier)
 - overhead in certificate generation and checking

Certification

RT (DCS @ UIBK)

Certification

Certification – Examples

- matrix-matrix multiplication: $f(A, B) = A \times B$
 - no certification possible, just computation
- matrix-inversion: $f(A) = A^{-1}$ (for invertible inputs A)
 - $\bullet\,$ certification possible without extra information
 - given A and A^{-1} it suffices to check $AA^{-1} = I$
 - $\bullet\,$ matrix multiplication is easier to verify than an algorithm for matrix inversion
- SAT solving: $f(\varphi) = (\exists \alpha. \llbracket \varphi \rrbracket_{\alpha} = \top)$ for CNFs φ
 - certification possible for positive answers: provide $\boldsymbol{\alpha}$
 - certification possible for negative answers: provide resolution proof
 - common format is (variant of) DRAT (used in SAT competitions)
 - several independent certifiers; some of them are verified
- Termination analysis: $f(R) = SN(\rightarrow_R)$
 - certification possible: provide applied techniques with parameters and extra information
 - common format is CPF (used in termination competitions)
 - one certifier: CeTA (developed in Innsbruck)

Certification

Certificates for Applying Reduction Pairs guestion of format of certificate for (iterated) reduction pair application Reduction Pairs • obvious idea: just provide parameters of pairs task of termination analysis tool: find reduction pair such that constraints are satisfied • example task of certifier: given reduction pair, check that constraints are oriented • consider termination problem with 5 dependency pairs (DP 1 - DP 5) different complexity of both tasks • termination tool internally applies RP 1, a polynomial interpretation with certain parameters P 1, to remove DP 2 and DP 3, • only tool: choose suitable class of reduction pairs then RP 2, some KBO with certain parameters P 2, to remove DP 1 and DP 4, • only certifier: verify reduction pair properties of each class and finally RP 3, some other polynomial interpretation with parameters P 3 to remove DP 5 lexicographic path order (LPO) • structure of certificate search parameters: NP-complete; checking constraints: P Knuth-Bendix Order (KBO) Poly(P 1); KBO(P 2); Poly(P 3) search parameters: P (complex algorithm); checking constraints: P (trivial algorithm) • problem in case of rejected certificates (e.g., if tool uses tuned version of some RP) • linear polynomial interpretations • certifier might replay this proof, but remains with DP 1 in the end search parameters: undecidable; checking constraints: P • with above certificate structure, it is not possible to localize failure • easy solution: add more information into certificate Poly(P 1, delete DP 2,3); KBO(P 2, delete DP 1,4); Poly(P 3, delete DP 5) RT (DCS @ UIBK) RT (DCS @ UIBK) Part 7 - Certification 5/17 Part 7 - Certification 6/17

Certification

Certification

Usable Equations

- task of termination analysis tool: compute usable equations to setup constraints
- task of certifier: given usable equations, check that these have been computed correctly
- reminder: let \mathcal{E} be equations of program, let \mathcal{P} be a set of dependency pairs; define $\mathcal{U}(\mathcal{P}) = \bigcup_{s \to t \in \mathcal{P}} \mathcal{U}(t)$ where $\mathcal{U}(t)$ is defined inductively as

$$\frac{t \succeq u \quad \ell = r \in \mathcal{E} \quad root(u) = root(\ell)}{\ell = r \in \mathcal{U}(t)}$$
$$\frac{\ell' = r' \in \mathcal{U}(t) \quad \ell = r \in \mathcal{U}(r')}{\ell = r \in \mathcal{U}(t)}$$

• difficulties

- computing usable equations is a fixpoint algorithm (add new usable equations until nothing more is detected)
- verification of fixpoint algorithms is sometimes tricky
- tools implement different versions of usable equations (mixture of various optimizations, e.g., inclusion of argument filters, etc.)
- \longrightarrow there is not the definition of usable equations
- solution: certifier allows over-approximation of those usable equations that have been verified
 Part 7 Certification

Computation of Usable Equation (Non-Optimized Version)

• $\mathcal{U}(\mathcal{P}) = \bigcup_{s \to t \in \mathcal{P}} \mathcal{U}(t)$ where $\mathcal{U}(t)$ is defined inductively as

$$\frac{t \succeq u \quad \ell = r \in \mathcal{E} \quad root(u) = root(\ell)}{\ell = r \in \mathcal{U}(t)}$$
$$\frac{\ell' = r' \in \mathcal{U}(t) \quad \ell = r \in \mathcal{U}(r')}{\ell = r \in \mathcal{U}(t)}$$

- inductive definition: $\mathcal{U}(t)$ is least set such that inference rules are satisfied
- ${\mbox{\circ}}$ soundness proof reveals: $\mathcal{U}(t)$ can be any set such that inference rules are satisfied
- certification
 - demand that $\mathcal{U}(\mathcal{P})$ is provided in certificate
 - $\ensuremath{\,^\circ}$ certification: check that above inference rules are satisfied
 - much easier than computing $\mathcal{U}(\mathcal{P})$ in verified way

Certification

Certification

8/17

Soundness Proof for Certification: Being Closed under Usable Equations

- fix $\mathcal U$ and $\mathcal E$
- definition: t is closed under usable rules (closed(t)) if

$$\forall u. \ t \trianglerighteq u \longrightarrow \ell = r \in \mathcal{E} \longrightarrow root(u) = root(\ell) \longrightarrow \ell = r \in \mathcal{U}$$

• lemma: assume $\forall \ell = r \in \mathcal{U}. \ closed(r)$; then

$$(\forall x.NF(\sigma(x)) \longrightarrow closed(t) \longrightarrow t\sigma \stackrel{\cdot}{\longrightarrow}^*_{\mathcal{E}} u \longrightarrow t\sigma \stackrel{\cdot}{\longrightarrow}^*_{\mathcal{U}} u$$

by induction on (number of steps, size of t)

- remark: conditions in lemma (being closed) are easy to check
- proof case 1: assume $t\sigma \stackrel{\iota}{\to} {}^{*}_{\mathcal{E}} \ell \delta \stackrel{\iota}{\to} r\delta \stackrel{\iota}{\to} {}^{*}_{\mathcal{E}} u$ where $\ell \delta \stackrel{\iota}{\to} r\delta$ is first root step
 - by assumptions $root(t\sigma) = root(\ell) = root(\ell)$, hence $\ell = r \in \mathcal{U}$ and thus closed(r)
 - via IH obtain $t\sigma \stackrel{i}{\hookrightarrow}^*_{\mathcal{U}} \ell\delta$ and $r\delta \stackrel{i}{\hookrightarrow}^*_{\mathcal{U}} u$
- proof case 2: assume $t\sigma = f(t_1\sigma, \ldots, t_n\sigma) \stackrel{i}{\hookrightarrow}^*_{\mathcal{E}} f(u_1, \ldots, u_n) = u$ (only non-root steps)
 - by definition $closed(t_i)$ and IH yields $t_i \sigma \stackrel{\cdot}{\hookrightarrow}^*_{\mathcal{U}} u_i$ for all $1 \leq i \leq n$

```
RT (DCS @ UIBK)
```

```
Part 7 – Certification
```

Nontermination via Loops

- a loop is a reduction of form $t \hookrightarrow^+ D[t\delta]$
- whenever program admits a loop, then it is non-terminating

$$t \hookrightarrow^+ D[t\delta] \hookrightarrow^+ D[D[t\delta]\delta] \hookrightarrow^+ D[D[D[t\delta]\delta]\delta] \hookrightarrow^+ \dots$$

- certificate of non-termination: provide t, D, δ and $t = t_1 \hookrightarrow t_2 \hookrightarrow \ldots \hookrightarrow t_n = D[t\delta]$
- certification needs to check that every step is correct: given t_i and t_{i+1} , ensure $t_i \hookrightarrow t_{i+1}$
- approach 1: verified algorithm to compute all successors of t_i
 - requires verified matching algorithm, etc.
- approach 2: certificate contains additional information
 - require for every step $\ell = r \in \mathcal{E}$, C and σ such that

 $t_i = C[\ell\sigma] \wedge t_{i+1} = C[r\sigma]$

- then only the latter needs to be checked by certifier
- disadvantage: bulky certificates, more tedious to generate

• approach 3: unverified algorithm in certifier computes $\ell = r$, C, and σ for each $t_i \hookrightarrow t_{i+1}$ RT (DCS @ UIBK) Part 7 - Certification

Certification

9/17

- Partially Verified Programs
 - approach 3 on previous slide contains interesting idea
 - verified programs can use unverified sub-algorithms to generate auxiliary information to simplify checking task
 - this approach is used in big verified programs
 - example: verified C compiler (CompCert)
 - correctness of C compiler has been formally verified
 - for every C program P, if compiler(P) = A (assembly-code), then P and A are equivalent
 - many sub-algorithms of C compiler are fully verified
 - some algorithms use unverified programs to compute information that is then certified
 - if any of these unverified programs delivers faulty information, then compilation just fails

Example: Call-Graph Analysis

- during compilation, call-graph needs to be computed
- compilation handles each block of mutually recursive functions separately
- blocks correspond to strongly connected components (SCCs) of call-graph
- instead of verifying SCC algorithm, design certificate approach
- w.l.o.g., we consider graphs G where every node has a self-loop (no distinction between SCC {n} and a node n that is not on any SCC)
- over-approximation
 - certificate contains list of SCC in topologic order C_1 , C_2 , ...
 - check that all nodes are covered by some ${\cal C}_i$
 - topologic order: whenever i < j then there is no edge from C_i to C_j
 - remark: many SCC-algorithms actually compute SCCs in (reverse) topological order
 - easy to verify: whenever S is SCC, then $S\subseteq C_i$ for some i
 - SCCs are non-empty, so pick some $s \in S$ and obtain i such that $s \in C_i$
 - now pick some arbitrary $t \in S$, hence $(s,t) \in G^*$ and $(t,s) \in G^*$
 - then obtain j such that $t \in C_j$
 - by topological order, obtain $j \ge i$ from $(s,t) \in G^*$ and similarly $i \ge j$, so j = i
 - hence $t \in C_i$, and by arbitrary choice of $t, S \subseteq C_i$

11/17

Part 7 – Certification

Certification

			Example – Completion			
 SCC Certification potential certificate for under-approximation for each C_i in certificate, provide a cyclic path that contains all nodes of C_i easy to certify and obviously correct lemma: whenever criterion is satisfied, then each C_i is strongly connected format of certificate is not optimal, cf. proseminar for some properties, it is not required to check minimality of components 			 task of completion: convert set of equations £ into program R such that R is confluent and terminating s = t iff s↓_R = t↓_R certificate contains proof of confluence and termination of R proofs of l = r for each l = r ∈ R the latter proofs are obtained via recording completion new equations s = t are produced by overlapping two known equations s = t for intermediate set of equations £' memoize for each generated equation how it has been produced final R is just a subset of set of all equations that have been generated expand each R until original equations are used 			
		 problem: size of expansion might grow exponentially 				
RT (DCS @ UIBK)	Part 7 – Certification	13/17	RT (DCS @ UIBK)	Part 7 - Certification	14/17	
Example Completion Run • \mathcal{E} consists of		Certification			Certification	
	f(s(x), y) = f(x, c(y, y))	(1)				
	f(0,y)=g(y)	(2)	Improved Certification	ation for Completion		
g(e) = t		(3)		and to original equations, but allow (and certify) inter	mediate equations	
	$\operatorname{and}(\operatorname{g}(y),\operatorname{g}(y)) = \operatorname{g}(\operatorname{c}(y,y))$	(4)				
	$\begin{aligned} and(t,t) &= t \\ start &= f(s(s(s(0))),e) \end{aligned}$	(5) (6)	Current Bachelor	Project		
and we derive	Start = T(S(S(S(0))), e)	(0)	 design automatic 	on and certificate format for similar task: rewriting inc	Juction	
and we derive	4 3 5					
	$g(c(e, e)) \stackrel{4}{=} and(g(e), g(e)) \stackrel{3}{=} and(t, t) \stackrel{5}{=} t$	(7)				
$g(c(c(e, e), c(e, e))) \stackrel{4}{=} and(g(c(e, e)), c(e, e)) \stackrel{7}{=} and(t, t) \stackrel{5}{=} t$		(8)				
$g(c(c(c(e, e), c(e, e)), c(c(e, e), c(e, e))) \stackrel{4}{=} and(\dots, \dots) \stackrel{8}{=} and(t, t) \stackrel{5}{=} t$		(9)				
RT (DCS @ UIBK)	$\frac{start}{Part 7} \stackrel{6}{=} f(s(s(s(0))), e) \stackrel{1,2}{=} g(c(\dots), c(\dots)) \stackrel{9}{=} t$	(10)	RT (DCS @ UIBK)	Part 7 - Certification	16/17	

Certification

Summary

- certification is often, but not always applicable
- design of certificate format is crucial
 - should contain enough information to simplify certification task
 - should be easy to generate for tools
- certification approach can be used within fully verified programs: invoke unverified programs to enrich/generate certificates on the fly, to avoid task of full verification of complex algorithm

Part 7 – Certification

17/17