

Summer Term 2024

Program Verification

Part 8 – Summary and Outlook

René Thiemann

Department of Computer Science

Summary of Course

Summary by Parts

- part 2: extend first-order logic (of Logic course) by types
- part 3: define standard model for well-defined functional programs;
- part 4: methods to ensure well-definedness of functional programs, including automated termination analysis
- part 5: derive axioms for induction, equality of constructors, etc.; framework for induction proofs and equational reasoning; specifications can be given via functional programs
- part 6: verification of imperative programs via Hoare-calculus; includes formal semantics and proof of soundness of calculus verification condition generation;
- part 7: certification

main software stays unverified; generate justifications for each output; verified certifier checks these justifications

Summary of Course

Summary by Methodology

- inductively defined sets
- proofs by induction in various settings (by algorithm, by data-structure, by inductively defined set, ...)
- proofs by invariants
- verification by refinement
 - prove soundness of (abstract) pseudo-code against specification
 - prove that concrete code is valid implementation pseudo-code
- integrating external tools and certification termination proofs via SMT-solver, logic-solver for Hoare-calculus
- development of paper-verified interpreter for functional programs written in Haskell
 - checks well-definedness of input (missing: termination analyser)
 - algorithms for these checks have been verified
 - verified implementation of one-step evaluation \hookrightarrow

Summary of Course

Summary of Course

Feedback

• feedback is highly welcome

(via mail, anonymous via PV-website, via evaluation, etc.)

- $\bullet \ \ {\rm content} + {\rm structure}$
- feasibility
- typos
- ...

RT (DCS @ UIBK)

Part 8 – Summary and Outlook

5/9

Outlook

Related Courses

- backend-solvers: constraint solving, automated theorem proving
- core evaluation mechanism: (selected topics in) term rewriting
- $\ensuremath{\,\bullet\,}$ program verification with tool support: interactive theorem proving
- more automation: program analysis

Related Bachelor Thesis Topics

recently finished

 efficient implementation of weighted path order 	(verified)
 translation of multitape Turing machines into singletape TMs 	(partly verified)
 decision procedure for termination of right-ground term rewrite systems 	s (verified)
 encoding of multiset-comparisons into SAT 	(verified)
• ongoing	
	no verification aspect)

Outlook

• automation of rewriting induction with machine checkable proof generation (certification)

available

- optimizing an algorithm for multiset-comparisons (verified)
- Certification Problem Format Visualizer
 (certification)
- always: contact me with your own ideas on program verification related topics

Outlook

Thank you for your interest!

RT (DCS @ UIBK)

Part 8 – Summary and Outlook

9/9