Constraint Solving SS 2025 LVA 703304

EXAM 1 June 24, 2025

This exam consists of **6** exercises. The available points for each item are written in the margin. In total there are 90 points. You need 45 points to pass.

1 Algorithms for Linear Arithmetic

Consider the following formula:

$$\varphi := \exists x. \exists y. \ 2x + 3y < 1 \land x + y > 5$$

- [10] (a) Remove the quantifier of y within φ using the algorithm of Ferrante and Rackoff. You do not have to simplify the formula after the removal of the quantifier.
- (b) Start to solve φ using the simplex method: apply all initial steps and *one* iteration of the main loop. Use Bland's selection rule with the variable order y < x < t < s where s and t are the introduced slack variables.

 Is a second iteration of the main loop required? Just answer this question with a yes or no.

2 Algorithms for Difference Logic

- (a) The theory solver for difference logic is using a shortest path algorithm. Specify whether this algorithm is the one of Bellman and Ford, the one of Dijkstra, or the one of Flovd and Warshall.
 - (b) In the shortest path algorithm for difference logic, the array with the computed distances is updated in |V| 1 many iterations, where V is the set of vertices of the graph. Now consider the situation where the algorithm is modified in such a way that it only performs |V| 2 many iterations.

For each of the following problematic situations, argue that it cannot happen, or provide an example graph where such a situation can arise.

- i. The modified algorithm reports a negative cycle, although the graph has no negative cycle.
- ii. The modified algorithm returns a distance array, the graph has no negative cycle, but the distances are incorrect.
- iii. The modified algorithm returns a distance array, but the graph has a negative cycle.

3 Algorithms for Equation Handling

[10] Apply Griggio's algorithm to convert E into an equi-satisfiable set of equations S that is in solved form. Here, E consists of the following two equations.

$$3x + 12y - 6z = 15$$
$$\frac{1}{2}x + 3y + \frac{3}{2}z = 2$$

[3]

[3]

[3]

Provide intermediate results and explain your calculation.

4 Algorithms for Combinations of Theories

(a) Consider the EUF+LIA formula ψ over variables $\{x, y, z\}$ defined as:

$$f(x+1) = g(y) \land x < z \le x+2 \longrightarrow f(z) = g(y)$$

Investigate validity of ψ with the help of the Nelson–Oppen algorithm.

- Briefly mention the applied steps and write down intermediate results
- Mention each invocation of an SMT-solver for LIA or of an SMT-solver for EUF. Just mention the (obvious) results of these invocations, and do *not* provide a detailed trace of the execution of the SMT-solvers.
- (b) SMT solving via the non-deterministic Nelson–Oppen algorithm was introduced for arbitrary quantifier-free formulas φ over two stably infinite theories that only share the equality predicate. With these assumption, the Nelson–Oppen algorithm is a decision procedure for satisfiability.

Investigate what happens if one drops the assumption of stably infinite theories. Is the following statement still true?

• If the Nelson–Oppen algorithm on formula φ returns "unsat", then φ is indeed not satisfiable.

Provide a counter-example or briefly argue why the statement is still satisfied.

[5] Encoding Problems

[10]

[10]

Consider the following Kakuro puzzle.

[10] Encode this puzzle in LRA. To remind you, here are the rules:

- (a) Every white cell is filled with a digit between 1 and 9.
- (b) Every row and every line must be filled with distinct digits.
- (c) The numbers indicate the required sum of the digits in that line or row.

Please indicate which parts of the encoding take care of which aspects of the rules; moreover, describe the meaning of the variables.

6 Multiple Choice

[20] There are ten questions on the answer sheet.

Mark your answers by crossing the correct box, e.g., like this: \boxtimes .

- Each correct answer is worth 2 points.
- Each wrong answer is worth -1 point.
- \bullet Giving no answer to a question is worth 0 points.
- If the total number of points is negative, then this exercise will be evaluated with 0 points.