

Logik 25S LVA 703026

EXAM 1 June 23, 2025

 $\boxed{1}$ (a) answer + explanation

- i. The function f is not monotone because f(1,0) = 1 and f(1,1) = 0. So $f(1,x) = \overline{x}$.
- ii. The function f is not self-dual because f(0,0) = 0 = f(1,1).
- iii. We compute the algebraic normal form of f:

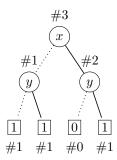
$$\begin{array}{rcl} f(x,y) & = & (x+y) \oplus y \\ & = & (x \oplus y \oplus xy) \oplus y \\ & = & x \oplus xy \end{array}$$

Since $x \oplus xy$ is not linear, f is not affine.

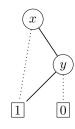
From the table

\boldsymbol{x}	y	f(x,y)	g(x, y)	$\overline{f(x,y)} + g(x,y)$
0	0	0	0	1
0	1	0	1	1
1	0	1	0	0
1	1	0	0	1

we obtain the binary decision tree



Applying the reduce algorithm produces the desired reduced OBDD:



(c) answer + explanation

Yes. We have

$$g(x,y)=\overline{x}y=(x\oplus 1)y=xy\oplus y=y\oplus yx=f(y,x)$$

where the last step uses the algebraic normal form of f computed in part (a).

Resolution produces the following clauses:

1.
$$\{p\}$$

$$2. \quad \{\neg p, q\}$$

3.
$$\{\neg q, r\}$$

4.
$$\{\neg p, \neg q, \neg r, \neg s\}$$

5.
$$\{q\}$$
 resolve 1, 2, p

6.
$$\{\neg q, \neg r, \neg s\}$$
 resolve 1, 4, p

7.
$$\{\neg p, r\}$$
 resolve 2, 3, q

8.
$$\{\neg p, \neg r, \neg s\}$$
 resolve 2, 4, q

9.
$$\{\neg p, \neg q, \neg s\}$$
 resolve 3, 4, r

10.
$$\{r\}$$
 resolve 3, 5, q

11.
$$\{\neg q, \neg s\}$$
 resolve 3, 6, r

12.
$$\{\neg r, \neg s\}$$
 resolve 5, 6, q

13.
$$\{\neg p, \neg s\}$$
 resolve 5, 9, q

14.
$$\{\neg s\}$$
 resolve 5, 11, q

As there are no further resolvents, the formula is satisfiable.

We first transform φ into an equivalent prenex normal form:

$$\forall x (P(x) \to \exists y (Q(x,y) \land Q(f(x),g(y))))$$

$$\equiv \forall x \exists y (P(x) \to Q(x,y) \land Q(f(x),g(y)))$$

Next, we transform the quantifier-free part of the prenex normal form into CNF:

$$\equiv \forall x \,\exists y \, (\neg P(x) \vee (Q(x,y) \wedge Q(f(x),g(y))))$$

$$\equiv \forall x \,\exists y \, ((\neg P(x) \vee Q(x,y)) \wedge (\neg P(x) \vee Q(f(x),g(y))))$$

We obtain an equisatisfiable Skolem normal form by replacing the existentially quantified variable y by the fresh Skolem function h(x):

$$\approx \forall x ((\neg P(x) \lor Q(x, h(x))) \land (\neg P(x) \lor Q(f(x), g(h(x)))))$$

(c) answer + explanation

The following refutation shows that the clausal form is unsatisfiable:

```
1. \{P(x), Q(x, y)\}

2. \{\neg Q(f(x), y)\}

3. \{\neg P(f(g(x)))\}

4. \{\neg Q(f(x'), y')\} rename 2 \{x \mapsto x', y \mapsto y'\}

5. \{P(f(x'))\} resolve 1, 4 \{x \mapsto f(x'), y \mapsto y'\}

6. \square resolve 3, 5 \{x' \mapsto g(x)\}
```

In the first resolution step we solve the unification problem

$$\begin{aligned} & \underline{Q(x,y)} \approx \underline{Q(f(x'),y')} \\ & \mathbf{d} \downarrow \\ & \underline{x} \approx \underline{f(x')}, \ y \approx y' \\ & \mathbf{v} \downarrow \{x \mapsto f(x')\} \\ & \underline{y} \approx \underline{y'} \\ & \mathbf{v} \downarrow \{y \mapsto y'\} \end{aligned}$$

and obtain the mgu $\{x \mapsto f(x'), y \mapsto y'\}$. In the second resolution step we solve the unification problem

$$\begin{split} \frac{P(f(g(x))) \approx P(f(x'))}{\operatorname{d} \Downarrow} \\ \frac{f(g(x)) \approx f(x')}{\operatorname{d} \Downarrow} \\ \frac{g(x) \approx x'}{\operatorname{v} \Downarrow \{x' \mapsto g(x)\}} \end{split}$$

and obtain the mgu $\{x' \mapsto g(x)\}.$

 $\boxed{3}$ (a) \boxed{answer}

For the valuation $v(p) = \mathsf{F}$ and $v(q) = v(r) = \mathsf{T}$, the formula $p \to q \to r$ evaluates to T but $r \to q \to p$ evaluates to F . Hence, $p \to q \to r \nvDash r \to q \to p$. Using soundness of natural deduction it follows that the sequent $p \to q \to r \vdash r \to q \to p$ is not valid.

answer			
1		$\exists x \left(\neg P(x) \land \forall y \left(x = y \to \neg Q(y) \right) \right)$	premise
2		$\forall x (P(x) \lor Q(x))$	assumption
3	x_0	$\neg P(x_0) \land \forall y \ (x_0 = y \to \neg Q(y))$	assumption
4		$\neg P(x_0)$	$\wedge e_1 \ 3$
5		$\forall y (x_0 = y \to \neg Q(y))$	$\wedge e_2 \ 3$
6		$x_0 = x_0 \to \neg Q(x_0)$	$\forall e 5$
7		$x_0 = x_0$	=i
8		$\neg Q(x_0)$	\rightarrow e 6,7
9		$P(x_0) \vee Q(x_0)$	\forall e 2
10		$P(x_0)$	assumption
11		1	$\neg e \ 10, 4$
12		$Q(x_0)$	assumption
13		<u></u>	¬e 12,8
14			$\vee e 9, 10-11, 12-13$
15			∃e 1, 3-14
16		$\neg \forall x (P(x) \lor Q(x))$	¬i 2-15

(c) answer

1		$\exists x \ (P(x) \land \exists y \ (\neg(x=y) \land \neg Q(y)))$	premise
2		$\forall x \left(P(x) \land Q(x) \right)$	assumption
3	x_0	$P(x_0) \land \exists y \ (\neg(x_0 = y) \land \neg Q(y))$	assumption
4		$\exists y \ (\neg(x_0 = y) \land \neg Q(y))$	∧e ₂ 3
5	y_0	$\neg(x_0 = y_0) \land \neg Q(y_0)$	assumption
6		$\neg Q(y_0)$	$\wedge e_2 5$
7		$P(y_0) \wedge Q(y_0)$	∀e 2
8		$Q(y_0)$	$\wedge e_2$ 7
9		\perp	¬e 8, 6
10			$\exists e \ 4, \ 5-9$
11		1	∃e 1, 3−10
12		$\neg \forall x \left(P(x) \land Q(x) \right)$	¬i 2-11

From the table

	p	q	$\neg p$	$EX \neg p$	AFq	$EX\neg p \lor AFq$	EGp	φ
1	✓			✓		✓	✓	✓
2		✓	✓	✓	✓	\checkmark		
3	✓	✓			✓	\checkmark	✓	\checkmark
4	✓				✓	✓	\checkmark	\checkmark

we conclude that the formula φ holds in states 1, 3 and 4.

(b) answer + explanation

We have

$\mathcal{M}, 1 \nvDash \psi_1$	$\mathcal{M}, 1 \nvDash \psi_2$	$\mathcal{M}, 1 \nvDash \psi_3$
$\mathcal{M}, 2 \vDash \psi_1$	$\mathcal{M}, 2 \nvDash \psi_2$	$\mathcal{M}, 2 \vDash \psi_3$
$\mathcal{M}, 3 \nvDash \psi_1$	$\mathcal{M}, 3 \vDash \psi_2$	$\mathcal{M}, 3 \vDash \psi_3$
$\mathcal{M}, 4 \vDash \psi_1$	$\mathcal{M}, 4 \vDash \psi_2$	$\mathcal{M}, 4 \vDash \psi_3$

- i. The formula ψ_1 holds in state 2 of \mathcal{M} because $\neg p$ holds and in state 4 because p holds and qholds in the only possible next state. It does not hold in state 1 due to the path 1^{ω} and also not in state 3 due to the path 31^{ω} .
- ii. The formula ψ_2 holds in state 3 of \mathcal{M} because $p \wedge q$ already holds and in state 4 as state 3 is the only possible next state. It does not hold in state 1 due to the path 1^{ω} and also not in state 2 due to the path 2^{ω} .
- iii. The formula ψ_3 holds in states 2 and 3 of \mathcal{M} , since q holds already in those states. It holds in state 4 as p holds and state 3 is the only possible next state. It does not hold in state 1 due to the path 1^{ω} .

(c)	answer + explanation	
, ,	The formula $\neg p$ holds only in state 2. The formula $AX(p \land q)$ holds only in state 4. Hence we can take $\chi = \neg p \lor AX(p \land q)$.	

5	true false	statement
		The sequent $\neg p \vdash p \lor \neg \neg p$ is valid.
		Every finite LTL model satisfies either Fp or $G\neg p$.
		The set of boolean functions $\{0, \bar{}, \oplus\}$ is adequate.
	X	The term $g(f(x), y)$ is free for x in $\exists x P(x, g(f(x), y))$.
		The boolean function $f(x, y, z) = x\overline{y} + zy$ is monotone.
	X	$\mathcal{M}, s \vDash A[p U q] \to (AG p \vee AF q)$ for every model \mathcal{M} and state s .
		Validity of formulas in first-order logic is decidable.
		The Skolem normal form of any valid formula in predicate logic is valid.
	X	The clause $\{\neg P(a), R(b)\}$ is a resolvent of $\{\neg P(a), Q(x)\}$ and $\{\neg Q(z), R(b)\}$.
	X	The number of nodes of a reduced OBDD for a boolean function depends on the variable order.