

Logik 25S LVA 703026

EXAM 2 September 25, 2025

This exam consists of five exercises. The available points for each item are written in the margin. You need at least 50 points to pass. *Explain your answers to the first four exercises!*

[7] 1 (a) Use DPLL to check whether the formula φ :

$$(r \lor q \lor p) \land (\neg p \lor s \lor r) \land (\neg r \lor \neg p) \land (\neg r \lor \neg q \lor \neg p) \land (\neg r \lor p) \land (\neg s \lor r \lor \neg q)$$

is satisfiable.

- [7] (b) Use Tseitin's transformation to turn the formula $\psi = \neg(p \land q) \rightarrow (\neg q \lor r)$ into an equisatisfiable CNF.
- [6] (c) Consider the propositional formula χ :

$$(q \to s) \land (s \land t \to \bot) \land (\top \to q) \land (s \land r \to t) \land (q \to r) \land (r \to s)$$

- i. Is χ a Horn formula? If not, why? If yes, is it satisfiable?
- ii. Transform χ into an equivalent CNF. Is χ valid?
- [6] 2 (a) Use resolution to determine satisfiability of the clausal form

$$\{\{\neg P(x), Q(x)\}, \{\neg Q(a)\}, \{P(b), R(x,y)\}, \{S(x), \neg R(a,b)\}, \{\neg S(a)\}\}$$

where a and b are constants.

[7] (b) Compute a most general unifier of the terms

$$q(f(x, f(b, a)), q(x, f(b, y)))$$
 and $q(f(q(y, b), z), q(q(a, b), z))$

or argue why this is not possible. Here, a and b are constants and f and g are binary functions.

(c) Transform the following formula into an equisatisfiable Skolem normal form:

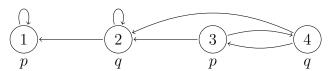
$$\varphi = \forall x \exists y \forall z (R(x, y, z) \rightarrow \exists w S(y, z, w))$$

- [3] For each of the following sequents, either give a natural deduction proof or find a model which does not satisfy it. In parts (b) and (c), a and b are constants and P and Q are unary predicate symbols.
- [6] (a) $p, r \to \neg p, \neg r \land s \to t, \neg t \vdash \neg s$

[7]

- [7] (b) $\forall x (x = a \lor x = b), \forall x (x = a \to P(x)), \forall x (x = b \to Q(x)) \vdash \forall x (P(x) \lor Q(x))$
- [7] (c) $\forall x (x = a \lor x = b), \forall x (x = a \to P(x)), \forall x (x = b \to Q(x)) \vdash \forall x P(x) \lor \forall x Q(x)$

4 Consider the following model \mathcal{M} :



- [6] (a) Use the CTL model checking algorithm to determine in which states of \mathcal{M} the CTL formula $\varphi = \mathsf{EF} \mathsf{A}[\mathsf{EF} \ p \ \mathsf{U} \ \mathsf{AX} \ q]$ holds.
- [7] (b) Give an LTL formula ψ such that $\mathcal{M}, s \models \psi$ if and only if s = 2.
- [7] (c) Show that the two CTL formulas with fairness constraints $\mathsf{E}_{\{p,q\}} \mathsf{G} \top$ and $\mathsf{E}_{\{p \wedge q\}} \mathsf{G} \top$ are not equivalent.
- [20] 5 Determine whether the following statements are true or false. Every correct answer is worth 2 points. For every wrong answer 1 point is subtracted, provided the total number of points is non-negative.

statement

Austria is 3-colorable.

The formulas $p \wedge \neg q$ and $p \wedge q$ are equisatifiable.

The proof rule ¬¬e is a derived rule of natural deduction.

The clause $\{P(z)\}$ is a resolvent of $\{\neg P(x)\}$ and $\{P(z), P(y)\}$.

If a binary function f is monotone and f(1,1) = 0 then f(x,y) = 0.

The set $\{R, U, X\}$ is an adequate set of temporal connectives for LTL.

Deciding the satisfiability of propositional Horn formulas is NP-complete.

The problem whether an arbitrary propositional formula is valid is decidable.

The sequent $\forall x \exists y \ P(x,y), \forall x \ \forall y \ (P(x,y) \to Q(x,y)) \vdash \exists y \ \forall x \ Q(x,y)$ is valid.

Every reduced OBDD for an *n*-ary boolean function has at most $2^{n+1} - 1$ nodes.